Università degli studi di Verona

Corsi di laurea in Matematica Applicata, Informatica e Informatica Multimediale Prova scritta di Matematica di Base — 23 giugno 2008

matricola				nome				C	cognome			
	ırea in [Informatica Informatica Mult.			t. Mate	Matematica Appl.						
	1	2	3	4	5	6	7	8	9	Tot		
	•	_		•			•			100		

1) Si consideri la seguente relazione sull'insieme **Z** dei numeri interi

$$R = \{ (a,b) \mid a,b \in \mathbb{Z}, a-5b \text{ è multiplo di 4} \}.$$

Dimostrare che R è una relazione d'equivalenza. È vero che $[1]_R = [15]_R$? È vero che $[10]_R = [2]_R$? Quante sono le classi d'equivalenza individuate da R?

- 2) Mostrare che $R = \{(a,b), (a,c), (a,d), (a,e), (a,f), (a,g), (b,c), (b,e), (b,d), (b,f), (b,g), (c,g), (d,e), (d,f), (d,g), (e,f), (e,g)\}$ è una relazione d'ordine stretto sull'insieme $\{a,b,c,d,e,f,g\}$. Determinare gli elementi massimali, minimali, eventuali massimo, minimo, maggioranti, minoranti, estremo superiore e estremo inferiore del sottoinsieme $\{b,c,d,e\}$.
- 3) Dimostrare per induzione che, per $n \ge 2$, $5^n \ge 4^n + 2^n$.
- 4) Si risponda alle seguenti domande, motivando le risposte:
 - (1) Quando due insiemi hanno la stessa cardinalità?
 - (2) L'insieme **Q** dei numeri razionali e l'insieme **N** dei numeri naturali hanno la stessa cardinalità? Perché?
 - (3) L'insieme Π dei numeri reali irrazionali è numerabile? Perché?
 - (4) Gli insiemi $\{x \mid x \in \mathbf{R}, \ 0 < x < \sqrt{3}\}\ e\ \{x \mid x \in \mathbf{R}, \ 0 < x < 4\}\ hanno la stessa cardinalità? Perché?$
- 7) Sia \mathfrak{N} la struttura dei numeri naturali e \mathfrak{R} quella dei numeri reali, con le usuali relazioni e funzioni e l'usuale linguaggio.
 - (1) Il seguente enunciato

$$\forall v_0 \rightarrow < v_0 0 \exists v_1 \land < 0 v_1 = v_0 \times \times v_1 v_1 v_1$$

è vero o falso in \mathfrak{N} ? E in \mathfrak{R} ? Motivare le risposte.

- (2) Si consideri la formula $\varphi : \neg \exists v_2 \land < v_0 v_2 < v_2 v_1$ e la realizzazione $\sigma = (\mathfrak{N}, \underline{a})$, dove $\underline{a} : \mathbf{N} \to \mathbf{N}$, $n \to n+2$. Si calcoli esplicitamente (passaggio per passaggio) φ^{σ} .
- 6) Dire che cosa significa che una formula α è soddisfacibile. Dire cosa significa che la formula α è conseguenza logica dell'insieme di formule $\{\beta,\gamma\}$. Dimostrare che, per ogni scelta delle formule α e β ,

$$\{\alpha \lor \beta\} \models \to \neg \alpha \beta$$

7) Si consideri la struttura $\mathfrak{N} = (\mathbf{N}, \{\equiv, \prec\}, \{\oplus, \otimes\}, \{0, 1\})$, dove \mathbf{N} denota l'insieme dei numeri naturali, \equiv la relazione binaria di essere lo stesso numero, \prec , \oplus e \otimes rispettivamente l'ordine, l'addizione e la moltiplicazione tra numeri naturali, 0 e 1 i numeri zero e uno.

Sia \mathcal{L} un linguaggio adatto alla struttura i cui simboli propri siano i predicati =, <; i simboli per funzione +, × e s; i simboli per costante $\mathbf{0}$ e $\mathbf{1}$.

Nel linguaggio \mathcal{L} si scriva una formula $\varphi(v_0, v_1)$ con le sole variabili libere indicate tale che $\mathfrak{N} \models \varphi(v_0, v_1)[a, b]$ se e solo se a - b è un numero pari non divisibile per 5.

8) Per ogni $\lambda \in \mathbf{R}$, sia $f_{\lambda} \colon \mathbf{R} \to \mathbf{R}$ definita da:

$$f_{\lambda}(x) = \begin{cases} -e^{-x} & x \le 0\\ \lambda x^2 - 1 & x \ge 0 \end{cases}$$

Per quali valori di λ f_{λ} è una funzione da **R** in **R**? Per quali valori di λ f_{λ} è una funzione da **R** in **R** f_{λ} totale, iniettiva, suriettiva? Esiste l'inversa di f_{λ} ? In caso affermativo, trovare f_{λ}^{-1} .

9) Siano $f,g: \mathbf{R} \to \mathbf{R}$ definite da

$$f(x) = \sqrt{\ln x + 1} \qquad g(x) = e^{\frac{x}{x-1}}$$

- (1) Trovare l'insieme di definizione di f e l'insieme di definizione di g.
- (2) Determinare le funzioni composte $f \circ g$ e $g \circ f$, specificandone gli insiemi di definizione.