

Masters Programme in **Mathematics**

Written test in Optimization

Verona, 14th November 2017

Name and surname: ______ ID number:

Exercise 1. Let Ω be a bounded open subset of \mathbb{R}^2 . Consider the problem:

 $\inf_{u \in H_0^1(\Omega)} \int_{\Omega} \left(5 \left| \nabla u \left(x_1, x_2 \right) \right|^2 - 2 \partial_{x_2} u \left(x_1, x_2 \right) \partial_{x_1} u \left(x_1, x_2 \right) + \left(\left(x_1^4 + 3x_2^2 \right) u \left(x_1, x_2 \right) - 2 \right)^2 + 4 \left[\partial_{x_1} u \left(x_1, x_2 \right) \right]^2 + \left[\partial_{x_2} u \left(x_1, x_2 \right) \right]^2 \right) dx_1 dx_2.$

- (1) Prove that the problem admits a unique solution.
- (2) State the problem in the form $\mathscr{F}(u) = F(u) + G \circ \Lambda(u)$, where $F: X \to]-\infty, +\infty]$, $G: Y \to]-\infty, +\infty]$ and $\Lambda: X \to Y$, carefully precising the function spaces X, Y and discussing the regularity properties of F, G, Λ .
- (3) Write the dual problem and the extremality conditions, establish whether the dual problems admits a unique solution.
- (4) Use the previous results to write a partial differential equations satisfied by the minimum.

Exercise 2. Let Ω be an open bounded subset of \mathbb{R}^d , $q \in H^1_0(\Omega; \mathbb{R})$ be fixed. Set:

$$\mathscr{C} := \{ v \in H_0^1(\Omega; \mathbb{R}) : \| \nabla v - \nabla q \|_{L^2(\Omega; \mathbb{R}^d)} \le 1 \}.$$

Consider the problem

$$\inf_{u \in \mathscr{C}} \int_{\Omega} \frac{|u(x)|^2}{2} \, dx.$$

- (1) Prove that the problem admits a unique solution.
- (2) Formulate the problem in the whole space in the form $\mathscr{F}(u) = F(u) + G \circ \Lambda(u)$, where $F: X \to]-\infty, +\infty], G: Y \to]-\infty, +\infty]$, and $\Lambda: X \to Y$, carefully precising the functional spaces X, Y and discuting the regularity of F, G, Λ .
- (3) Write the dual problem and the extremality relations. Establish if the dual problem admits an unique solution.

Exercise 3.

- (1) Prove that the two marginals of a convex functions $\Phi: X \times Y \to \mathbb{R} \cup] \infty, +\infty]$ are convex.
- (2) Let Ω_1, Ω_2 be nonempty convex subsets of a Banach space X. We say that Ω_1, Ω_2 are an *extremal system* if for every $\varepsilon > 0$ there exists $a \in X$, $||a|| \le \varepsilon$ such that $(\Omega_1 + a) \cap \Omega_2 = \emptyset$. Prove that Ω_1, Ω_2 are an extremal system if and only if $0 \notin \operatorname{int}(\Omega_1 - \Omega_2)$ where $\Omega_1 - \Omega_2 := \{x_1 - x_2 : x_i \in \Omega_i = 1, 2\}$.
- (3) Let $f : \mathbb{R}^2 \to \mathbb{R} \cup \{+\infty\}$ be defined as $f(x_1, x_2) = (3x_1 + 4x_2)^3$ if $3x_1 + 4x_2 > 0$ and $f(x_1, x_2) = +\infty$ if $3x_1 + 4x_2 \le 0$. Prove that f is convex and compute f^* and f^{**} .
- (4) Let C be a closed nonempty convex subset of \mathbb{R}^d with $\operatorname{int} C \neq \emptyset$. Prove that $C = \operatorname{int} \overline{C}$.
- (5) Discuss the continuity properties of convex functions defined on a Banach space, proving some relevant results.