- 1. (a) Prove that $f = x^5 x + 1$ is an irreducible polynomial in $\mathbb{F}_3[x]$, and it is reducible in $\mathbb{F}_2[x]$.
 - (b) Decompose f in irreducible factors in $\mathbb{F}_2[x]$
- 2. Consider the field $\mathbb{F}_9 \cong \mathbb{F}_3[x]/(f)$, where $f = x^2 + 1 \in \mathbb{F}_3[x]$.
 - (a) Determine the elements of \mathbb{F}_9 and their sums.
 - (b) Let $\alpha = \overline{x}$. Compute $(1 + \alpha)(2 + \alpha)$ and $(1 + \alpha)^2$.
 - (c) Determine $(1+2\alpha)^{-1}$.
- 3. Find the lattice of the subfields of: \mathbb{F}_{2^7} , $\mathbb{F}_{2^{15}}$, $\mathbb{F}_{2^{18}}$.
- 4. Determine the splitting field of:
 - (a) $x^4 + x^3 + 1$ over \mathbb{F}_2
 - (b) $x^3 + x^2 + x + 1$ over \mathbb{F}_3
 - (c) $x^4 + 2x^2 + 2x + 2$ over \mathbb{F}_3
- 5. (a) Show that $f = x^4 + x + 1$ is irreducible over \mathbb{F}_2 .
 - (b) Find the primitive elements of $\mathbb{F}_{16} \cong \mathbb{F}_2[x]/(f)$.
 - (c) Find the subfields of \mathbb{F}_{16} . For any subfield find its elements.
 - (d) Decompose $x^{15} 1$ in irreducible factors over \mathbb{F}_2 .
 - (e) Decompose $x^{15} 1$ in irreducible factors over \mathbb{F}_4 .
- 6. How many irreducible factor over \mathbb{F}_2 does the polynomial $x^{63} 1$ admit? Which are their degrees?
- 7. An element ξ ∈ F_q is an *nth root of unity* if ξⁿ = 1. The element ξ is a *primitive nth root of unity* provided ξⁿ = 1 and ξ^s ≠ 1 for any 0 < s < n.
 Show that F_q contains a primitive *n*th root of unity if and only if *n* divides q − 1. In such a case find a primitve *n*th root of unity.
- 8. (a) What is the smallest field of characteristic 2 containing a primitive 9th root of unity?(b) What is the smallest field of characteristic 3 containing a primitive 11th root of unity?
- 9. Show that $\sum_{\alpha \in \mathbb{F}_q} \alpha = 0$, for any $q \neq 2$.
- 10. Let p be a prime number, n ∈ N. Recall that F_{pⁿ} is an extension of F_p such that the Galois group G = Gal(F_{pⁿ}/F_p) is generated by the Frobenius automorphism φ : F_{pⁿ} → F_{pⁿ}, x ↦ x^p. Let m be a divisor of n. Consider the subgroup H =< φ^m > and L = Fix_{F_{pⁿ}}(H) the subfield of F_{pⁿ} consisting on the elements fixed by all the automorphisms in H. Recall that |L : F_p| = |G : H|. Show that:
 - (a) *H* has order $\frac{n}{m}$
 - (b) L has p^m elements
 - (c) L is the unique subfield of \mathbb{F}_{p^n} with p^m elements.