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Gaussian Channel

Introduction
The most important continuous alphabet channel is the Gaussian channel
depicted in Figure. This is a time-discrete channel with output Yi at time i, where
Yi is the sum of the input Xi and the noise Zi . The noise Zi is drawn i.i.d. from a 
Gaussian distribution with variance N. Thus,

Yi = Xi + Zi, Zi ∼ N(0,N).

The noise Zi is assumed to be independent of the signal Xi . The continuos
alphabet is due to the presence of Z, that is a continuous random variable.
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Gaussian Channel
This channel is a model for some common communication channels, such as
wired and wireless telephone channels and satellite links.

Without further conditions, the capacity of this channel may be infinite. If the 
noise variance is zero, the receiver receives the transmitted symbol perfectly. 
Since X can take on any real value, the channel can transmit an arbitrary real
number with no error.

If the noise variance is nonzero and there is no constraint on the input, we can 
choose an infinite subset of inputs arbitrarily far apart, so that they are 
distinguishable at the output with arbitrarily small probability of error. Such a 
scheme has an infinite capacity as well. Thus if the noise variance is zero or the 
input is unconstrained, the capacity of the channel is infinite.

Power Limitation
The most common limitation on the input is an energy or power constraint.We
assume an average power constraint. For any codeword (x1, x2, . . . , xn) 
transmitted over the channel, we require that:

The additive noise in such channels may be due to a variety of causes. However, 
by the central limit theorem, the cumulative effect of a large number of small
random effects will be approximately normal, so the Gaussian assumption is valid
in a large number of situations.
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Usage of the Channel
We first analyze a simple suboptimal way to use this channel. Assume that we
want to send 1 bit over the channel.

Given the power constraint, the best that we can do is to send one of two levels, 
+√P or −√P. The receiver looks at the corresponding Y received and tries to
decide which of the two levels was sent.

Assuming that both levels are equally likely (this would be the case if we wish to
send exactly 1 bit of information), the optimum decoding rule is to decide that
+√P was sent if Y > 0 and decide −√P was sent if Y < 0. 

Probability of Error
The probability of error with such a decoding scheme can be computed as
follows:

Where Ф(x) is the cumulative normal function
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Using such a scheme, we have converted the Gaussian channel into a discrete 
binary symmetric channel with crossover probability Pe. 

Similarly, by using a four-level input signal, we can convert the Gaussian channel
into a discrete four input channel. 

In some practical modulation schemes, similar ideas are used to convert the 
continuous channel into a discrete channel. The main advantage of a discrete 
channel is ease of processing of the output signal for error correction, but some 
information is lost in the quantization.

Definitions
We now define the (information) capacity of the channel as the maximum of the 
mutual information between the input and output over all distributions on the 
input that satisfy the power constraint.

Definition The information capacity of the Gaussian channel with power constraint
P is
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We can calculate the information capacity as follows: Expanding I (X; Y), we
have:

I (X; Y) = h(Y ) − h(Y |X)
= h(Y ) − h(X + Z|X)
= h(Y ) − h(Z|X)
= h(Y ) − h(Z)

since Z is independent of X. 

Now, h(Z) = 1/2 log 2πeN, and: EY2 = E(X + Z)2 = EX2 + 2EXEZ + EZ2 = P 
+ N, since X and Z are independent and EZ = 0.

Given EY2 = P + N, the entropy of Y is bounded by 12 log 2πe(P + N) because
the normal maximizes the entropy for a given variance.

Information Capacity
Applying this result to bound the mutual information, we obtain:

Hence, the information capacity of the Gaussian channel is:

and the maximum is attained when X ∼ N(0, P).

We will now show that this capacity is also the supremum of the rates achievable
for the channel. 
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(M,n) Code for the Gaussian Channel

Definition An (M, n) code for the Gaussian channel with power constraint P 
consists of the following:

1. An index set {1, 2, . . . , M}.
2. An encoding function x : {1, 2, . . . , M} → χn, yielding codewords xn(1), xn(2), 
. . . , xn(M), satisfying the power constraint P; that is, for every codeword:

w = 1, 2, . . .,M.

3. A decoding function g : Yn→ {1, 2, . . . , M}.

The rate and probability of error of the code are defined as for the discrete case. 
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Rate for a Gaussian Channel
Definition A rate R is said to be achievable for a Gaussian channel with a power 
constraint P if there exists a sequence of (2nR, n) codes with codewords satisfying
the power constraint such that the maximal probability of error λ(n) tends to
zero. 

The capacity of the channel is the supremum of the achievable rates.
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Capacity of the Gaussian Channel
Theorem The capacity of a Gaussian channel with power constraint
P and noise variance N is

bits per transmission.
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Capacity of the Gaussian Channel
We present a plausibility argument as to why we may be able to construct (2nC, n) 
codes with a low probability of error.

Consider any codeword of length n. The received vector is normally distributed
with mean equal to the true codeword and variance equal to the noise variance.

With high probability, the received vector is contained in a sphere of radius
√n(N+ε ) around the true codeword.

If we assign everything within this sphere to the given codeword, when this
codeword is sent there will be an error only if the received vector falls outside the 
sphere, which has low probability.
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Capacity of the Gaussian Channel
Similarly, we can choose other codewords and their corresponding decoding
spheres.

How many such codewords can we choose? The volume of an n-dimensional
sphere is of the form Cnrn where r is the radius of the sphere. In this case, each
decoding sphere has radius √nN.

These spheres are scattered throughout the space of received vectors. The 
received vectors have energy no greater than n(P + N), so they lie in a sphere of 
radius √n(P + N). The maximum number of nonintersecting decoding spheres in 
this volume is no more than
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Capacity of the Gaussian Channel
Thus, the rate rate of the code is 1/2 log(1 + P/N ). 

This idea is illustrated in Figure

This sphere-packing argument indicates that we cannot hope to send at rates
greater than C with low probability of error. However, we can actually do almost
as well as this

√nN

√n(P+N)

√nP
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Converse to the Coding Theorem for
Gaussian Channels

The capacity of a Gaussian channel is C = 1/2 log(1 + P/N ). In fact, rates R > 
C are not achievable.

The proof parallels the proof for the discrete channel. The main new ingredient
is the power constraint.

Bandlimited Channels
A common model for communication over a radio network or a telephone line is
a bandlimited channel with white noise. This is a continuous-time channel. The 
output of such a channel can be described as the convolution:

Y(t) = (X(t) + Z(t)) ∗ h(t),

where X(t) is the signal waveform, Z(t) is the waveform of the white Gaussian
noise, and h(t) is the impulse response of an ideal bandpass filter, which cuts out 
all frequencies greater than W.
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Bandlimited Channels
We begin with a representation theorem due to Nyquist and Shannon which
shows that sampling a bandlimited signal at a sampling rate 1/2W is sufficient to
reconstruct the signal from the samples.

Intuitively, this is due to the fact that if a signal is bandlimited to W, it cannot
change by a substantial amount in a time less than half a cycle of the maximum
frequency in the signal, that is, the signal cannot change very much in time 
intervals less than 1/2W seconds.

Nyquist Theorem
Theorem Suppose that a function f (t) is bandlimited to W, namely, the 
spectrum of the function is 0 for all frequencies greater than W. Then the 
function is completely determined by samples of the function spaced 1/2W 
seconds apart.
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Capacity of Bandlimited Channels
A general function has an infinite number of degrees of freedom—the value of 
the function at every point can be chosen independently. 

The Nyquist–Shannon sampling theorem shows that a bandlimited function has
only 2W degrees of freedom per second. 

The values of the function at the sample points can be chosen independently, 
and this specifies the entire function.

If a function is bandlimited, it cannot be limited in time. But we can
consider functions that have most of their energy in bandwidth W and
have most of their energy in a finite time interval, say (0, T ).

Capacity of Bandlimited Channels
Now we return to the problem of communication over a bandlimited channel. 

Assuming that the channel has bandwidth W, we can represent both the input 
and the output by samples taken 1/2W seconds apart.

Each of the input samples is corrupted by noise to produce the corresponding
output sample. Since the noise is white and Gaussian, it can be shown that each
noise sample is an independent, identically distributed Gaussian random variable.
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Capacity of Bandlimited Channels
If the noise has power spectral density N0/2 watts/hertz and bandwidth W hertz, 
the noise has power N0/2 (2W) = N0W and each of the 2WT noise samples in 
time T has variance N0WT/2WT = N0/2. 

Looking at the input as a vector in the 2TW-dimensional space, we see that the 
received signal is spherically normally distributed about this point with covariance
N0/2 (I) .

Capacity of Bandlimited Channels
Now we can use the theory derived earlier for discrete-time Gaussian channels, 
where it was shown that the capacity of such a channel is

Let the channel be used over the time interval [0, T ]. In this case, the energy per 
sample is PT/2WT = P/2W, the noise variance per sample is N0/2 (2W) T/2WT 
= N0/2, and hence the capacity per sample is

bits per sample.
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Capacity of Bandlimited Channels
Since there are 2W samples each second, the capacity of the channel can be
rewritten as:

This equation is one of the most famous formulas of information theory. It gives
the capacity of a bandlimited Gaussian channel with noise spectral density N0/2 
watts/Hz and power P watts.

If we let W →∞ we obtain:

as the capacity of a channel with an infinite bandwidth, power P, and noise
spectral density N0/2. Thus, for infinite bandwidth channels, the capacity grows
linearly with the power.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

WN
PWC
0

1log

e
N
PC 2

0

log=

Example: Telephone Line
To allow multiplexing of many channels, telephone signals are bandlimited to
3300 Hz. 

Using a bandwidth of 3300 Hz and a SNR (signal-to-noise ratio) of 33 dB (i.e., 
P/N0W = 2000) we find the capacity of the telephone channel to be about
36,000 bits per second.

Practical modems achieve transmission rates up to 33,600 bits per second in both
directions over a telephone channel. In real telephone channels, there are other
factors, such as crosstalk, interference, echoes, and nonflat channels which must
be compensated for to achieve this capacity.
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Example: Telephone Line
The V.90 modems that achieve 56 kb/s over the telephone channel achieve this
rate in only one direction, taking advantage of a purely digital channel from the 
server to final telephone switch in the network.

In this case, the only impairments are due to the digital-to-analog conversion at 
this switch and the noise in the copper link from the switch to the home.

These impairments reduce the maximum bit rate from the 64 kb/s for the digital
signal in the network to the 56 kb/s in the best of telephone lines.

Example: Telephone Line
The actual bandwidth available on the copper wire that links a home to a 
telephone switch is on the order of a few megahertz; it depends on the length of 
the wire.

The frequency response is far from flat over this band. If the entire bandwidth is
used, it is possible to send a few megabits per second through this channel.

Schemes such at DSL (Digital Subscriber Line) achieve this using special 
equipment at both ends of the telephone line (unlike modems, which do not
require modification at the telephone switch).


