Copyright ® The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel Programming
in C with MPI and OpenMP

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

OpenMP

m OpenMP: An application programming
interface (API) for parallel programming on
multiprocessors

+ Compiler directives
+ Library of support functions

m OpenMP works in conjunction with Fortran,
(C YOTHCH=:

‘Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared-memory Model

Processor Processor Processor Processor

Memory

Processors interact and synchronize with each
other through shared variables.

Fork/Join Parallelism

m [nitially only master thread is active
m Master thread executes sequential code

m Fork: Master thread creates or awakens
additional threads to execute parallel code

m Join: At end of parallel code created threads
die or are suspended

Copyright ® The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fork/Join Parallelism
Master Thread

Other threads
= — - -

‘Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared-memory Model vs.
Message-passing Model (#1)

m Shared-memory model

+ Number active threads 1 at start and
finish of program, changes dynamically
during execution

m Message-passing model

+ All processes active throughout execution
of program

Copyright ® The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Incremental Parallelization

m Sequential program a special case of a
shared-memory parallel program

m Parallel shared-memory programs may only
have a single parallel loop

m Incremental parallelization: process of
converting a sequential program to a
parallel program a little bit at a time

‘Copyright ® The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared-memory Model vs.
Message-passing Model (#2)

m Shared-memory model
+ Execute and profile sequential program
+ Incrementally make it parallel
+ Stop when further effort not warranted
= Message-passing model
+ Sequential-to-parallel transformation requires
major effort
+ Transformation done m one giant step rather
than many tiny steps

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel for Loops

m C programs often express data-parallel operations
as for loops

for (i = first; i < size; i += prime)
marked[i] = 1;

= OpenMP makes it easy to indicate when the
iterations of a loop may execute in parallel

= Compiler takes care of generating code that

forks/joins threads and allocates the iterations to
threads

Copyright ® The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pragmas

m Pragma: a compiler directive in C or C++
m Stands for “pragmatic information”

m A way for the programmer to communicate
with the compiler

m Compiler free to ignore pragmas
m Syntax:

#pragma omp <rest of pragma>

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

parallel Pragma

m The parallel pragma precedes a block
of code that should be executed by all of the
threads

m Note: execution 1is replicated among all
threads

Code transformation

» Every time the compiler finds a #pragma omp parallel
directive creates a new function in which the code
belonging to the scope of the pragma itself is moved

» The directive is replaced with a call to a runtime function
that is responsible for forking new threads (in a thread-
based implementation) or for loading parallel code onto
the slave processors

» Once the parallel region has been executed
threads/processors need to synchronize.

Copyright ® The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel for Pragma

m Format:

#pragma omp parallel for

for (i = 0; i < N; i++)
af[i] = b[i] + c[i];

m Compiler must be able to verify the run-
time system will have information it needs
to schedule loop iterations

Reuif_start ()
{ GCC PARSER DUMP
int D,26891
int D,2630%
int D,2591:
int T,2532%

D.2593: q
e The parser splits

toaflo]:
int BLL0]: Wi i
int el 10]3 directive in two
#pzagma onp parallel sharedic) shared(b) shared(a) Separate

directives

int i.03

int D.Z2586:
int D,2567;
int D,2568;
Hpragma omp howait private(i)
(i=0ri<=9ri=1+1)
{

i
¥

1
D,2530 = a[1]:
D.2531 = b[2]:
D,2532 = D,2590 + D,2591;
D,2593 = c[3];
D,2583 = D,2592 + D,2603;
D,2589:

It recognizes which
variables must be
shared and which
can be private to

each processor

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

X~

_suif_start (f]
{

S GCC OPENMP EXPANSION DUMP
it bLL0]:
i:t ?Elol; struct

int II,2693; {
int. D,2592; int[10] * a;
e int[10] * b; Make shared data

int D,2589; int{10] * ¢; visible to all
struct ,omp_data_s,1 ,omp_data_o,3: } .omp_data_o.3; processors/threads

<bb 2>y /
Lonp_data_o,3.a = &ai

Lonp_data_o,3.b = &b:
comp_data_o,3.c = kol ™\ /)

__builtin_GOMP_parallel_start (_suif_start,omp_fn,0, &.omp_data_o,3, 0):

_suif_start,omp_fn,0 (&,omp_data_o.3):

~builtin_GOMP_parallel end ()3 call runtime to wake-up slave threads

D.2590 = a[1]:

D'55a1 - Llal: and run parallel code on them

D.2592 = D,2530 + D,2591:

D.2593 = c[3]:

D.2589 = D,2592 + D,2593;)
1,2583; call parallel function on master thread

pointer to parallel function

+ call runtime to join workers
1,14

Es #1 - pthreads

» Current implementation of GCC OpenMP runtime
environment (libgomp) is basically a wrapper around the
pthreads library.

» Master forks new worker threads with a call to the
runtime function GOMP _parallel_start

 After parallel region master joins workers with a call to
the runtime function GOMP_parallel_end

X -

C\
en

M
ru

Af
thq

woid
GOMP_parallel_start (void (*Fn) (void *), void *data, unzigred rum_theeads)

num_threads :Igomp_resolue_num_threads {rum_threads) l

#* Launch new threads, */
(3 i < nthreads; ++i, ++start_data)

If num_threads =
determine number of worker
threads

pthread_t pt:
int err:

start_data—>ts,team = team?
start_data—>ts,work_share = work_share:
start_data->ts,team_id = i
start_data—>tz,work_share_generation = 02
start_data—>ts,static_trip = O
start_data—>fn = fn:
start_data—fr_data = data:
start_data—rrested = nested:

Fork worker threads

/

pthread_create (&pt, &gomp_thread_attr,
gomp_thread_start, start_data):

err =

gomp_Fétal ("Thread creation failed: ¥=", strerror (err)):

(nested 7 &team—>barrier 1

e

tgomp_threads_dock) 3

\Walt for all threads to be ready before starting

parallel region 576,01

X~ /ot

woid
GOMP_parallel_start (void (*Fn) (void *), void *data, unzigred rum_theeads)

num_threads :Igomp_resolue_num_threads {rum_threads) l

IFX B

BEX

[

wiid

#* Terminate the current team,
thread.

gonp_tean_end {void)
¢

struct gomp_thread *thr = gomp_thread ():

struct gomp_team *team = thr-rtz,tegps
gonp_barrier_wait [#1%am->barrier):

thr->ts = team->prev_ts:

free_team (team):

Thiz is only to be called by the mazter

Wz aszume that we muzt wait for the other threads, */

We need to synchronize threads with a barrier at
the end of a parallel region

302,0-1 9z

tgomp_threads_dock) 3

(nested 7 &team—>barrier 1

¥ \Walt for all threads to be ready before starting

parallel region 576,01

Es #2 - MPARM

runtime library parallel code
void main() {
initenv(); void parallel_routine() {
if (cpulD == MASTER) {

// gather workers on barrier

Start (); ——

// release workers

for (i=N*cpulD/nprocs;
i<N* (cpulD+1l) /nprocs;

i++)

} else { for (j=i; J<N; j++)
// spin until work provided A[i][§] = 1.0;
parallel _routine(); oss— !
// spin until work provided }

}
}
int start() {

void doall() {
// release workers : // sequential code
parallel_routine();
// gather workers on barrier

} do_all();

// Synchronization facilities
// sequential code
// Lock Implementation }

// Barrier Implementation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Functions for SPMD-style
Programming

m The parallel pragma allows us to write
SPMD-style programs

m In these programs we often need to know
number of threads and thread ID number

m OpenMP provides functions to retrieve this
information

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function omp get thread num

®m This function returns the thread
1dentification number

m If there are ¢ threads, the ID numbers range
from 0 to #-1

m The master thread has ID number 0

int omp get thread num (void)

Function omp get num_threads

m Function omp get num threads returns the
number of active threads

m If call this function from sequential portion
of program, it will return 1

int omp get num threads (void)

11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

for Pragma

m The parallel pragma instructs every
thread to execute all of the code inside the
block

m If we encounter a for loop that we want to
divide among threads, we use the for

pragma

#pragma omp for

_builtin_omp_get_num_threads (1
__builtin_omp_get_thread_num ()&
0,2619 = 10 / D, 2617:
0,2620 = D,2619 * D,2617: struct
0.2621 = L2620 1= 103
D.2622 = [.2619 + D.26213 {
D,2623 = D,2622 * D,2618: i * g0
0,2624 = D,2623 + D,26222 !nt[1 0] &
D,2625 = HIN_EXPR <D,2624, 10%; int[10] * b;
(D,2623 »= D,2625) <Ld»: f *
int[10] * c;

} .omp_data_o.3;

B3 * 1t
03 Make shared data

0.2
i
D,2625 * 1y o
0,7657 + 0 visible to all
processors/threads

Lomp_data_i-*h:

{*0,26083[1.2]2

el Replace uses of
shared variables

with corresponding

](fgéiggal[lﬁh field in shared data

1,986 + 11,2567 struct

: Lomp_data_i->e:
i.0x

12

10 / D, 2617:
0,2619 * D,2617:
0,2620 1= 102
0.2619 + 1L26213
D,2622 * D,2618:
= D,2623 + D,26222
]] 2625 = MIN_EXPR <D,2624,
(D,2623 »= D,2625)

<Ldri:

L2623

2625
12627

2 (*n 2608)[1,2]:
= (=15 H

= .nmp data_i->ec:
2 (*n 26091213
= D, 26107

= l] 2586 + 1,2587:
1 = .omp_data_i-ba:

i,01
)[1 2] = D,2588:

< D,2628;
2825) ALZx:

105

<Ld»:

__huiltin_omp_get_num_threads (1
builtin_omp_get_thread_num (s

Call runtime to
determine number
of threads

Call runtime to
determine thread ID

Create work sharing by
splitting loop iterations
between threads

34,1

]] 2624 =]J 2623 + T, 2522‘

IL2620 = MIN FHPR <D 2524 05

(1,263 »= 1,2625)
<Ly

ALy
IL2E2E = TL2ERS * 1t

<Ld>:

Ci=nzee - o

]J.282? = D265 * 1
T.2628 = DL2627 + 0:

—-builtin_omp_get_run tgr::ﬁs(g?, COMPUTE LOWER

AND UPPER
BOUNDS FOR EACH
THREAD

“ HOW?

It depends on what the
schedule clause specifies
(see after)

Initialize induction variable

= .nmp data_i->ec:

B (1,2009)1.23;
2B107

 DiomEe e 00567
= .amp_s data_i-a:

L0
1)[1 2] = D,2588:

to lower bound

Create work sharing by
splitting loop iterations
between threads

Check termination

L Qoms:
1. 26207 [5T)

Lir:]

condition on upper bound
34,1

13

Canonical Shape of for Loop
Control Clause

index + +

+ +1index
index ——

— ——index
for(index = start;index > end; index+ = inc
index— = inc

index = index +inc

index =inc +Hndex

index =index —inc

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared and Private Variables

m Shared variable: has same address
execution context of every thread

m Private vaniable: has different address 1in
execution context of every thread

m A thread cannot access the private variables
of another thread

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared and Private Variables

int main (int arge, char *argv[]) Heap
{ ‘ \
int b[3]: QI‘__] ‘

w |

char *cptr; Stack | /

int i; \ . \[]
el cpyr i

\ §
cptr = malloc(1):
#pragma omp parallel for
for (1=0:1<3; i++)
bli] =1

Master Thread Thread 1
(Thread 0)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Declaring Private Variables

for (i = 0; i < BLOCK_SIZE(id,p,n); i++)
for (j = 0; jJ < n; jJt++)
al[i]l[3j] = MIN(a[il[3]1,al[i][k]+tmp)

= Either loop could be executed in parallel
= We prefer to make outer loop parallel, to reduce
number of forks/joins

= We then must give cach thread its own private
copy of variable j

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

private Clause
m Clause: an optional, additional component

to a pragma

m Private clause: directs compiler to make one
or more variables private

private (<variable list>)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example Use of private Clause

#ipragma omp parallel for private(j)
for (i = 0; i < BLOCK_SIZE(id,p,n); i++)
for (j = 0; j < n; j++)
al[i] [j] = MIN(a[i][j],al[i] [k]+tmp)

16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

firstprivate Clause

m Used to create private variables having initial
valucs 1dentical to the variable controlled by the
master thread as the loop is entered

m Variables are initialized once per thread, not once
per loop iteration

m If a thread modifies a variable’s value in an

iteration, subsequent iterations will get the
modified value

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

ﬂlnclude <ztdio,hx
[l|#include "appsupport.h"

Variable tmp is only R
i accessible by the master initial
) L5 thread. It has an initial value
_suif_start () 4

int i3 s that slaves need to know Gd by the
o
m /

#pr‘agma arp parallel
(120 § < N i+ d, not once

alil = b[i] + 0[1] + tmp:

tnp += i3 Slave threads will have a
private copy of tmp

initialized with this value

#define M 10

al1] + b[2] + c[3]:

1.1

modified value

17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

X -

zsuiF_Start 9]

int tmp}
int c[10]:
int

int

@nt i S HL
int initial
int

@nt

o : The init value is made
ztruct ,omp_data_z,l ,omp_data_o,3: visible to slaves through the

bb 2 «— shared data struct
I‘DmE data o, 3, tmp = tmp: I

somp_data_o,3,a = &al

Lomp_data_o,3.b = &bz

somp_data_o,3,0 = &o}

__builtin_GOMP_parallel _start {_suif_start.omp_fn,0, &,omp_data_o,3, 003

_suif_start,omp_fn,0 (&,omp_data_o,3):

__builtin_GOMP_parallel _end (33

D,2591:

X -

zsuiF_Start 9]

int tmp}
int c[10]:
int

int

int i

int

int

int

int

int
struct ,omp_data_s.1l .om

TR

Private copy of tmp is

IR initialized with this value

03
(*0,26100[1.2]3
D, 26122

Bh o

I‘DmE data_o,3.tmp = tmp
somp_data_o,3,a = &al
Lomp_data_o,3.b = &bz
somp_data_o,3,0 = &o}
__builtin_GOMP_parallel
_suif_start,omp_fn,0 (&,
__builtin_GOMP_parallel |

(RTINS

Lomp_data_i->ct

(*D0,28133 (1,212
D, 2614
0,2587 + D,2588:
0,2589 + tmp:
| Jomp_data_i->a:
i %‘2 = i,?E]
*D,2615)[1.2] = D,2590¢
D, 2591 tip = tmp + it
i=1i+1;
0L2633 = i < DL2632;
(D,2633) L2

(BN TR TR TN

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

lastprivate Clause

m Sequentially last iteration: iteration that
occurs last when the loop is executed
sequentially

m lastprivate clause: used to copy back
to the master thread’s copy of a variable the
private copy of the variable from the thread
that executed the sequentially last iteration

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

i
[Zinclude <stdio.h>
[l|#include "appsupport.h”

#define N 10

Variable tmp is only
i accessible by the master

aall oy, oW — thread.
.
*Pragm? onp parallel \

i=05 1 4 Ny i++)
ali] = bli] + e[i] + tmp:
i Its value will be written by

the last thread that works iriable the
on its private copy
o he thread
that executed the sequentially last iteration

19

X - =Joed

_suif_start,omp_fr, 0 (,onp_data_i)
i

vor After all iterations have been
int tmp:

executed..

Binclude <stdio.h>

#include "appsupport
__builtin_omp_get_rum_threads)
__builtin_omp_get_thread_num ()3

D,2620

lextern int 11" (D,2825 3= 1,2607 <LB:
_suif_start () { : J

int i | Ge s
alll], clt 55 == 10) oo o <65: |

o
<«
#pragma omp parallel
{i=03 1 < My i
ali] = blilo ..
tmp += i3 I‘omp_data_i->tmp =S tmp:l
o=, LA s T

<LE>3:

<L3xe:
D.2628 = DL2625 * 1;
i=D,2628 + 02 . .
D.2629 = D.2627 * 13 ...local value of tmp is copied

e S into the shared data struct..
“Ldrr:

i 0= i
2606 = ,omp_data_i->bt

i,2 = 1,08
D.2608 = (*D.260630[1.2]:

=Joed

rations have been

...and through this copied xecuted..

into the master’s copy of tmp

struct ,omp_data_s.1l ,omp_data_o,3:

<bb 2%
Lonp_data_o,3.a = &ar
Lonp_data_o,3.b = &by
Lomp_data_o,3,c = &Cr
__builtin_GOMP_parallel_start {_spdF_start,omp_fr.0, &,omp_data_o,3, 002
_suif_start,onp_fn,0 (&,omp_da 3
Lo o

E;p S ,om;_dat;_o'E.tmp;
J LA u B e B || L

D,2551:

1.1 Top
D.2629 = D.2627 * 13 ...Jocar value of tmp is copied

e S into the shared data struct..
“Ldrr:

i0o=

1, 2606

i2 = 1,03

01,2608 = (*D,2606)[i,2]:

H

= .omp_data_i->hb:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Critical Sections

double area, pi, X;
int i, n;

area = 0.0;
for (i = 0; i < n; i++) {

x += (i+0.5)/n;

arca += 4.0/(1.0 + x*x);
}

pPi = area / n;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Race Condition

m Consider this C program segment to
compute 7 using the rectangle rule:

double area, pi, X;
int i, n;

area = 0.0;

for (i = 0; i < n; i++) {
x = (i+0.5)/n;
area += 4.0/(1.0 + =x*x);

area / n;

21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Race Condition (cont.)

m If we simply parallelize the loop...

double area, pi, X;
int i, n;

area = 0.0;
#ipragma omp parallel for private (x)
for (i = 0; i < n; i++) {
x = (i+0.5)/n;
area += 4.0/(1.0 + x*x):;
}

pi = area / n;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Race Condition (cont.)

® ... we set up a race condition in which one
process may “race ahead” of another and
not see its change to shared variable area

area E Answer should be 18.995

area += 4.0/(1.0 + x*x)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Race Condition Time Line

Value of area Thread A Thread B

11.667 >

11.667

15432 =

15.230 -

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

critical Pragma

m Critical section: a portion of code that only
thread at a time may execute

m We denote a critical section by putting the
pragma

#pragma omp critical

in front of a block of C code

23

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Correct, But Inefficient, Code

double area, pi, x;
int i, n;
area = 0.0;
#pragma omp parallel for private (x)
for (i = 0; i € n; i++) {
x = (i+0.5)/n;
#pragma omp critical
area += 4.0/(1.0 + =x*x);

= area / n;

X -

_suif_start,onp_fn,0 {,omp_data_i)

THIS IS DONE AT EVERY LOOP

ITERATION!

{double} i:
D, 2586 + 5.0=-1:
Lonp_data_i-sn:

11, 2605+
{double) D,2506: /
x = 1,2687 / 1.25a8;

__builtin_GOMP_critical_start ()i
2684

call runtime to acquire lock

14D Lock-protected
Jonp_data_i-Pares:
Hooeas operations
= 0,553 + I,2608:
Lomp_data_i-Darea = D,26007
__builtin_GOMP_critical_end ()¢ .
i=i+1: ¥ call runtime to release lock
0,2637 = i < D,2626:

(D,2627) L2 (I

[T T

24

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Source of Inefficiency

m Update to area inside a critical section

m Only one thread at a time may execute the
statement; 1.e., it 1s sequential code

m Time to execute statement significant part
of loop

m By Amdahl’s Law we know speedup will be
severely constrained

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Reductions

m Reductions are so common that OpenMP provides
support for them

= May add reduction clause to parallel for
pragma

m Specify reduction operation and reduction variable

= OpenMP takes care of storing partial results in

private variables and combining partial results
after the loop

25

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

reduction Clause

= The reduction clause has this syntax:
reduction (<op> :<variable>)
m QOperators
s+ Sum
o # Product
Bitwise and
Bitwise or
Bitwise exclusive or
Logical and
Logical or

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

n-finding Code with Reduction Clause

double area, pi, x;
int i, n;

area = 0.0;
#pragma omp parallel for \
private (x) reduction (+:area)
for (1 = 0; 1 < n; i++) {
x = (i + 0.5)/n;
area += 4.0/(1.0 + x*x);
}

pi = area / n;

26

X -

X -

_suif_start,omp_fn,0 (,omp_data_i)

1., UNOPTIMIZED CODE

D,2605 = ,omp_data_i->nt
0,2615% = builtin ome ast num threads ()¢

02616 = Shared variable is
12673 = updated at every
(D26 iteration.

44> This is NOT necessary

L2>k

D,2596 = (double) i

D,2587 = D,268E + §,0=-1:

D,2605 = ,omp_data_i->n:

D,2606 = D,2E05:

D.2583 = (double) D,2606:

¥ = D,2587 7 D,2h88r

bulltln_GDMP critical_start (J:

ol £ 1 AR
Loinp_data_ ca = [L2ED9:
builtin GOHP critical _end ()
i=i+13
I, 252? =i < D,2626:
D.2627) <L2>*

X -

_suif_start,onp_fr,0 (,omp_data_i)

|n
<bb 27t

area = (0,01

DL2E05 = ,omp_data_i-—>n:

D,2615 = __builtin_omp_get_rum_threads ()¢
01,2616 = __builtin_omp_get_thread_num (J:

D.2623 = WIN_EWPR <D,2622, D,2605:
(D,2621 >= 1,2623) P

<Ld>z:
__builtin_GOMP_atomic_start ():
D,2607 = &,omp_data_i->area:
DL2E08 = *D,2607:
0,2609 = D,2608 + area:
*0,2607 = 1,2609:
__builtin_GOMP_atomic_end ()3

Lz
D,2585 = (double) i
D,2537 = 0,2586 + §,0e-1:
0,2605 = ,omp_data_i-nt
1L2606 = I,2R05:
11,2588 = (double) T =eoes . .
E 55392§8? ¢ D258t Shared variable is only
D'5530 - 1,058 + 1 updated at the end of the

D.2551 = 4.0e+0 / I loop, when its final value
area = = D,2591 + are
T ol is known

1
1.2627 = { < D.2626
(D,2627) A2 <Ldz:

X -

_suif_start,omp_fn,0 (,omp_data_i)

1., UNOPTIMIZED CODE

D,2605 = ,omp_data_i->nt
0,2615% = builtin ome ast num threads ()¢

02616 = Shared variable is
12673 = updated at every
(D26 iteration.

4422 This is NOT necessary

|n
<bb 27t

L2>k

D,2596 = (double) i

D,2587 = D,268E + §,0=-1:

DL2605 = ,omp_data_i->ni

D,2606 = D,2E05:

D.2583 = (double) D,2606:

¥ = D,2587 7 D,2h88r
__builtin_ GDMP critical_start (J:
2589

b, 2“84 + 1,0+
= 4,0e+) / D,2090
BT = Lomp_data_i->al
H ZE08 = D, 2E07:
0,2609 = D, 2591 + D,QBUP'
Jonp_data_i-rarea = 0,2
_builtin_GOHP_ critical end (s
i=i+13
I, 282? =i < D,2626:
D,2827) <L2>*

13
13
reat

_suif_start,onp_fr,0 (,omp_data_i)

This is a single atomic
write. Target architecture
may provide such an

instruction

ares = 0,03
DL2605 = Lor
D.2615 = __k
D.2616 = __&

D.2623 = WIN_EWPR <D,2622, D,2605:
(D,2621 >= 1,2623) P

<L

_ sync_fetch_and_add(&.omp_data_i->area,
area) ;

Lz
D,2585 = (double) i
D.2587 = 1,2586 + 5,0e-1:
0,2605 = ,omp_data_i-nt
D.2606 = D,2F05:
11,2588 = (double) T =eoes . .
E 55392§8? ¢+ 1.258 Shared variable is only
D'5830 - 1,058 + 1 updated at the end of the

D.2591 = 4.0e+0 / I Joop, when its final value
area = = 0,2591 + are
i is known

i+ 1
D‘2B2? =i < D,2626;
(D.2627) Lxr Ld=r

27

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Performance Improvement #1

m Too many fork/joins can lower performance
m Inverting loops may help performance 1f
¢ Parallelism is in inner loop

+ After inversion, the outer loop can be
made parallel

+ Inversion does not significantly lower
cache hit rate

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Performance Improvement #2

m If loop has too few iterations, fork/join
overhead 1s greater than time savings from
parallel execution

m The if clause instructs compiler to insert
code that determines at run-time whether
loop should be executed in parallel; e.g.,

#pragma omp parallel for if(n > 5000)

28

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

unsigred int D,2629:
double xx -
double pi: Check condition to

fodble area; determine whether to

int i parallelize the loop or not
int 0,2534;

double D,2593;

_Bool D,2586:

ztruct ,omp_data_s.0 ,omp_data_o,l:

Lomp_data_o. I area = area:

omp_data o 1 n = n:

0,2623 = D,2586 == O:

__builtin_GUAF_parallel_start (_suif_start,omp_fn,0, &,omp_data_o,l
_suif_start,omp_fn.0 (k.omp_data_o, 1)t

__builtin_GOMP_parallel_end {):
area = ,omp_data_o.l.arear

n = .omp_data_o.l.n:

D.2592 = (double) n:

pL = area / 1,2532; Pass NTHR to runtime: if it equals 1 only
D.2594 = (int) pit . .
0,254 one thread will execute it.

1.1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Performance Improvement #3

m We canuse schedule clause to specify how
iterations of a loop should be allocated to threads

m Static schedule: all iterations allocated to threads
before any iterations executed

= Dynamic schedule: only some iterations allocated
to threads at beginning of loop’s execution.
Remaining iterations allocated to threads that
complete their assigned iterations.

29

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Static vs. Dynamic Scheduling

m Static scheduling

+ LLow overhead

+ May exhibit high workload imbalance
m Dynamic scheduling

¢ Higher overhead

¢ Can reduce workload imbalance

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chunks

m A chunk is a contiguous range of iterations

m Increasing chunk size reduces overhead and
may increase cache hit rate

m Decreasing chunk size allows finer
balancing of workloads

30

USING THE schedule CLAUSE

» A parallel region has at least one barrier at its end, and
may have additional barriers within it

» At each barrier the other members of the team must wait
for the last thread to arrive

* To minimize this wait time shared work should be
distributed so that all threads arrive at the barrier at about
the same time

» The choice of a schedule for a for construct is also
determined by characteristics of the memory system
(presence of caches, uniform access times, etc.)

USING THE schedule CLAUSE

* A parallel 1~ Ass1GNING SAME ITERATIONS To same |d» and
may have § THREADS MAY IMPROVE DATA REUSE

» At each barrie Im must wait

#pragma omp parallel
for the last thrg

{
* To minimize th #pragma omp for schedule (static) |d be
distributed so { for (i=0: i<n: i++) rrier at about

the same time| i _ worki(i:

* The choice of { #pragma omp for schedule (static) |s also
determined by| for (i=0; i<n; i++) system
(presence of ¢| it (i>=k) a[i] = work2(i); ()

31

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

schedule Clause

= Syntax of schedule clause
schedule (<type>[,<chunk>])

m Schedule type required, chunk size optional
= Allowable schedule types

« static: static allocation

¢ dynamic: dynamic allocation

guided: guided self-scheduling

+ runtime: type chosen at run-time based on value
of environment variable OMP_SCHEDULE

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Scheduling Options

m schedule(static): block allocation of about
n/t contiguous iterations to each thread

m schedule(static,C): interleaved allocation of
chunks of size C to threads

m schedule(dynamic): dynamic one-at-a-time
allocation of iterations to threads

m schedule(dynamic,C): dynamic allocation of
C iterations at a time to threads

32

SPLITTING LOOP ITERATIONS - schedule (static)

» The static schedule is appropriate for a parallel region containing a single
for construct, with each iteration requiring the same amount of work

» Loop boundaries are statically determined at compile time. No interaction
with the runtime is required.

Es. N=10, Nthr=4.
TID 0 1 2 3
DATA CHUNK
C = ceil () LB=C*TID 0 3 6 9
Nthr
3 vector
elements UB = MIN{[C*(TID+ 1)1, N} 3|6 | 9|10

NOTE: There may be LOAD IMBALANCE between threads (i.e. they

operate on data chunks of different sizes)

Buif_start.ome_fn.0 (o dt2.) GCC OPENMP EXPANSION DUMP

22
1. 2817 = __builtin_omp_get_run_threads ()

<bb

| B = M 5P N | W) 542

thread_num {):

1220 - D.26t3 # D.0617; | === Compute chunk C = ceil (N/Nthr)
D.3621 = D.2620 1= i0;

<+———— Compute LB=C *TID

(]].2523 »= 1,2625) <Ld>: <L

e))
B Compute UB =min [C *(TID + 1), N]

ran cmmmmmmmommmmoo::

—
Hfdetan
@

27 = D,2625 * 1:

26
J2E28 = L2627 + O

. Lonp_data_i->bz
103

= (*]] 2606)[1.2]:
= D,2608;

; nmp_data i—»e:

510 = (*]J 26031[1,2]:
= D,2610;

&

@

=1
'

2588 = l] 2586 + 1,2587:
811_— omp data_i-»a:

[1 2] = D,2588:

< D,2628;
E!) ALZx:

m” +»—\.-
ro .—-uo

33

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Scheduling Options

m schedule(static): block allocation of about
n/t contiguous iterations to each thread

m schedule(static,C): interleaved allocation of
chunks of size C to threads

m schedule(dynamic): dynamic one-at-a-time
allocation of iterations to threads

m schedule(dynamic,C): dynamic allocation of
C iterations at a time to threads

. IN GENERAL: Small chunks allow
schedule (static, C) finer grained control on workload

» Specifying a size for data chunks the loop is statically split between
threads in an interleaved fashion

int main () { int main () { int main £} 1
int al24]: int a[24]: int al24]:
int iz int it int i:
#pragna onp parallel #pragma onp parallel #pragna onp parallel
#p;n;éma amp schedule (static) #pragma onp schedule (static, 2 #pr:;éma arp schedule (static, 4)
(i=0: i <248 i++) (1= 081 <248 i+4) (i= 01248 i+4)

ali] = it ali] = i: alil = it

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Scheduling Options

m schedule(static): block allocation of about
n/t contiguous iterations to each thread

m schedule(static,C): interleaved allocation of
chunks of size C to threads

m schedule(dynamic): dynamic one-at-a-time
allocation of iterations to threads

m schedule(dynamic,C): dynamic allocation of
C iterations at a time to threads

SPLITTING LOOP ITERATIONS - schedule (dynamic, C)

» The dynamic schedule is appropriate for the case of a for construct with
the iterations requiring varying, or even unpredictable, amounts of work

* lterations are assigned one at a time to threads as they become available.
This requires a strict cooperation with the runtime

* Runtime overhead can be reduced by specifying a chunk size k greater
than 1, so that threads are assigned k at a time until fewer than k remain

X- BEIX]

int _suif_start (f]
{

int i3
int ng
int x[100001
#pragma onp parallel
#pragma onp schedule (dunamic, 4000 nowait
(i =0 i < 100008 i+4)
x[i] = iz

x[10]s

35

X- BEX

S PL {suiF_star*t‘omp_Fn‘O { onp_data_i)

_Boal L2607 Call runtime lteration step
_Bool DL.Z2606:

long int . iend0.5:
e Th¢ long int ,istart.d: /
thell

<bb 21
0,2605 E __builtin GOMP_loop_dunamic_start) [0, 10000 400 I&,istar‘tOA, &‘iend0‘51:
+ ltef (D, g g
Thil g5,
__builtin_GOMP_loop_end_nowait ()%
* Ru :
thal 1.,

i = ,istart0,4:

D.2600 = . 1end0.5; Retrieve lower and upper

<L2>(:): bounds for current
1112255412 omp_data_1->x; thread’s first iteration
i2=1,
(]]29)[12]-1'
i=i+1:
D,2606 = i < D,26003
(D,2608) L2 L3>
L3xir
D,2607 = __builtin_GOMP_loop_dynamic_next (&, istart0,.4, &,.isnd0,5):
(D, 280?) L1 <L4>:

7.0-1 All

X- MEX|
SPL {suiF_star*t‘omp_Fn‘O { onp_data_i) C)

_Bool D.2E07:

_Bool D.2606:

long int . iend0.5:
* Thg long int ,istart0.4;

1
thelhn 21

D.2605 = __builtin_GOMP_loop_dynamic_start (0. 10000, 1, 400, &,istart0.4, &,iend0,5):
o lter {D.2505) ALl LA

Thil g5,
builtin_GOMP_loop_end_nowait ()%

L] - -
Ru| ~=torns
tha<L1>” Execute loop body over this iteration space..
i= Jar‘tO 4’
D.2606 = Retrieve lower and upper
<L2>(:; e— bounds for current
10 = , . . q
1131259415 Lorp_data_i-Fa thread’s first iteration
1.2 = i*(}: . v
E*?*?ﬁf*iﬂwl =i ..then compute next
BL2606 = 1 < D,26008 chunk’s iteration space
(0,2608) <L L3t
L3x:s
D.2607 = __builtin_GOMP_loop_dunamic_next [&.istart0.4, &.iend0.5):
(1, 280?) Lok L4
i

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Scheduling Options (cont.)

= schedule(guided, C): dynamic allocation of chunks
to tasks using guided self-scheduling heuristic.
Initial chunks are bigger, later chunks arc smaller,
minimum chunk size 1s C.

m schedule(guided): guided sell-scheduling with
minimum chunk size 1

= schedule(runtime): schedule chosen at run-time
based on value of OMP SCHEDULE; Unix

cxample:
setenv OMP SCHEDULE “static,l1”

SPLITTING LOOP ITERATIONS - schedule (guided, C)

» The guided schedule is appropriate for the case in which the threads may
arrive at varying times at a for construct with each iterations requiring
about the same amounts of work

+ This can happen if, for example, the for construct is preceded by one or
more for constructs with nowait clauses

» The interaction with the runtime works much like the dynamic schedule,
but the size of chunks is computed dividing remaining iterations among
threads, and considering C as a minimum size for the chunk

37

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Scheduling Options (cont.)

= schedule(guided, C): dynamic allocation of chunks
to tasks using guided self-scheduling heuristic.
Initial chunks are bigger, later chunks arc smaller,
minimum chunk size 1s C.

m schedule(guided): guided sell-scheduling with
minimum chunk size 1

= schedule(runtime): schedule chosen at run-time
based on value of OMP SCHEDULE; Unix
cxample:
setenv OMP SCHEDULE “static,l1”

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More General Data Parallelism

m Our focus has been on the parallelization of
for loops

m Other opportunities for data parallelism

¢ processing items on a “to do” list

¢ for loop + additional code outside of
loop

38

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Processing a “To Do’ List

S
; ‘ ' ; Heap
| .

1
] mj
- ‘Variables
job_ptr

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sequential Code (1/2)

int main (int argc, char *argv|[])
{
struct job struct *job ptr;
struct task struct *task ptr;

task ptr = get next task (&job ptr);
while (task ptr != NULL) {

complete task (task ptr);

task ptr = get next task (&job ptr);

39

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sequential Code (2/2)

char *get next task(struct job_struct
**job_ptr) {
struct task struct *answer;

if (*job_ptr == NULL) answer = NULL;
else {

answer = (*job ptr)->task;

*job ptr = (*job ptr)->next;
}

return answer;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallelization Strategy

m Every thread should repeatedly take next
task from list and complete it, until there are
no more tasks

® We must ensure no two threads take same
take from the list; 1.e., must declare a
critical section

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Use of parallel Pragma

#pragma omp parallel private(task ptr)
{
task ptr = get next task (&job ptr);
while (task ptr != NULL) {
complete task (task ptr);
task_ptr = get next task (&job ptr);

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Critical Section for get _next task

char *get next task(struct job_struct
**job_ptr) {
struct task struct *answer;
#pragma omp critical
{
if (*job ptr == NULL) answer = NULL;
else {
answer = (*job ptr)->task;
*job ptr = (*job ptr)->next;
}
}

return answer;

41

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example Use of for Pragma

#pragma omp parallel private(i,3j)
0; i < m; i++) {
a

for (i

if (low > high) {
printf ("Exiting (%d)\n", i);
break;

}
#pragma omp for
for (jJ = low; j < high; j++)
cl[j]l = (el3] - alil)/bI[i];

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
single Pragma

m Suppose we only want to see the output
once

m The single pragma directs compiler that

only a single thread should execute the
block of code the pragma precedes

m Syntax:

#ipragma omp single

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Use of single Pragma

#ipragma omp parallel private (i, j)
for (i = 0; i < m; i++) {
low = a[i]:
high = b[i];
if (low > high) {
#ipragma omp single
printf ("Exiting (%d)\n", i)
break;

}
#pragma omp for
for (j = low; j < high; j++)
clil = (ecl[3]1 - alil)/bIli];

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

nowait Clause

m Compiler puts a barrier synchronization at
end of every parallel for statement

m In our example, this is necessary: if a thread
leaves loop and changes 1ow or high, it
may affect behavior of another thread

m If we make these private variables, then it
would be okay to let threads move ahead,
which could reduce execution time

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Use of nowait Clause

#pragma omp parallel private(i,j,low,high)

for (i = 0; i < m; i++) {
= a[i];
high = b[i];
if (low > high) {
#pragma omp single
printf ("Exiting (%d)\n", i);
break;
}
#pragma omp for nowait
for (j = low; j < high; j++)
cl[il = (c[3] - alil)/bIi]l;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Functional Parallelism

m To this point all of our focus has been on
exploiting data parallelism

m OpenMP allows us to assign different
threads to different portions of code
(functional parallelism)

44

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Functional Parallelism Example

v alpha() ;

w beta() ;

X gamma (v, W)

y = delta();

printf ("%6.2f\n", epsilon(x,y)):

May execute alpha,
beta, and delta in
parallel

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

parallel sections Pragma

m Precedes a block of & blocks of code that
may be executed concurrently by & threads

® Syntax:

#pragma omp parallel sections

45

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

section Pragma

m Precedes each block of code within the
encompassing block preceded by the
parallel sections pragma

m May be omitted for first parallel section
after the parallel sections pragma

m Syntax:

#pragma omp section

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example of parallel sections

#ipragma omp parallel sections
{
#fpragma omp section /* Optional */
v = alpha();
#ipragma omp section
w = beta();
#pragma omp section
y = delta();
}
X = gamma (v, w);
printf ("%6.2£f\n", epsilon(x,vy)):;

46

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Another Approach

@ o Execute alpha and

beta in parallel.
@ Execute gamma and

delta in parallel.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

sections Pragma

m Appears inside a parallel block of code
m Has same meaning as the parallel
sections pragma

m If multiple sections pragmas mnside one
parallel block, may reduce fork/join costs

47

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Use of sections Pragma

#pragma omp parallel
{
#pragma omp sections
{
v = alpha();
#pragma omp section
w = beta():;
}
#pragma omp sections
{
X = gamma (v, W)
#ipragma omp section
y = delta();

}
printf ("%6.2f\n", epsilon(x,y)):;

X -~

_suif_staBc,omp_fr,0 {,omp_data_i)
i

..specifying number of
l_bui ltin_GDMP_sections_star'¢2D sections..

{,section,3)
<Las Call runtime
I ¢ to obtain consecutive
R scheduling ids

__builtin_GOMP_sections_end ()2
Jzection,2 = __builtin_GOWP_sections_start (2);
ves /¥ Code to hande zecond #pragma omp Sections*/

__builtin_GOMP_sections_next I(s
ISR 5

uiltin_trap ()3

<1351
0,253 = beta (J:
somp_data_i-Pw = D,2593:
<bb 11> (<L73)2

L1k

D,2597 = alpha ()

Lomp_data_i-»w = D, 25972
<bb 11> (<L7>):

X -~

_suif_staBc,omp_fr,0 {,omp_data_i)

..specifying number of

{
Chb ,
l : l_builtin_GDMP_sections_star'¢2D sections..

<L Rx2r

{,section,3)
o: <Las Call runtime
BTG to obtain consecutive

) <L scheduling ids

L8k

__builtin_GOMP_sections_end ()2

Jzection,2 = __builtin_GOWP_sections_start (2);

vee #% Code to hande second #pragma omp sections */
<

@ __builtin_GOMP_sections_next J{J:

e ISR 5

L1y
__builtin_trap ()3

<1351
0,253 = beta (J:
somp_data_i-Pw = D,2593:
<bb 11> (<L73)2

L1230t
D,2597 = alpha ()
Lomp_data_i-»w = D, 25972
<bb 11> (<L7>):

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary (1/3)

m OpenMP an API for shared-memory
parallel programming

m Shared-memory model based on fork/join

parallelism
m Data parallelism
¢ parallel for pragma

+ reduction clause

49

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary (2/3)

= Functional parallelism (parallel sections pragma)
= SPMD-style programming (parallel pragma)
m Critical sections (critical pragma)
= Enhancing performance of parallel for loops
+ Inverting loops
+ Conditionally parallelizing loops

+ Changing loop scheduling

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary (3/3)

Characteristic

Suitable for multiprocessors
Suitable for multicomputers

Supports incremental
parallelization

Minimal extra code

Explicit control of memory
hierarchy

50

