
1

2

3

4

5

6

Code transformation

• Every time the compiler finds a #pragma omp parallel
directive creates a new function in which the code
belonging to the scope of the pragma itself is moved

• The directive is replaced with a call to a runtime function

that is responsible for forking new threads (in a thread-

based implementation) or for loading parallel code onto
the slave processors

• Once the parallel region has been executed

threads/processors need to synchronize.

7

The parser splits

the parallel for
directive in two

separate

directives

It recognizes which
variables must be

shared and which
can be private to
each processor

GCC PARSER DUMP

8

GCC OPENMP EXPANSION DUMP

struct

{

int[10] * a;

int[10] * b;

int[10] * c;

} .omp_data_o.3;

struct

{

int[10] * a;

int[10] * b;

int[10] * c;

} .omp_data_o.3;

pointer to parallel function

Make shared data

visible to all
processors/threads

call runtime to wake-up slave threads

and run parallel code on them

call parallel function on master thread

call runtime to join workers

Es #1 - pthreads

• Current implementation of GCC OpenMP runtime

environment (libgomp) is basically a wrapper around the
pthreads library.

• Master forks new worker threads with a call to the

runtime function GOMP_parallel_start

• After parallel region master joins workers with a call to

the runtime function GOMP_parallel_end

9

Es #1 - pthreads

• Current implementation of GCC OpenMP runtime

environment (libgomp) is basically a wrapper around the
pthreads library.

• Master forks new worker threads with a call to the

runtime function GOMP_parallel_start

• After parallel region master joins workers with a call to

the runtime function GOMP_parallel_end

Es #1 - pthreads

• Current implementation of GCC OpenMP runtime

environment (libgomp) is basically a wrapper around the
pthreads library.

If num_threads = 0

determine number of worker

threads

Fork worker threads

Wait for all threads to be ready before starting

parallel region

Es #1 - pthreads

• Current implementation of GCC OpenMP runtime

environment (libgomp) is basically a wrapper around the
pthreads library.

• Master forks new worker threads with a call to the

runtime function GOMP_parallel_start

• After parallel region master joins workers with a call to

the runtime function GOMP_parallel_end

Es #1 - pthreads

• Current implementation of GCC OpenMP runtime

environment (libgomp) is basically a wrapper around the
pthreads library.

If num_threads = 0

determine number of worker

threads

Fork worker threads

Wait for all threads to be ready before starting

parallel region

We need to synchronize threads with a barrier at

the end of a parallel region

Join worker threads and

suspend them

10

Es #2 - MPARM

parallel code

void parallel_routine() {

}

int start() {

// sequential code

for (i=0; i<N; i++)

for (j=i; j<N; j++)

A[i][j] = 1;

// sequential code

}

for (i=N*cpuID/nprocs;

i<N*(cpuID+1)/nprocs;

i++)

for (j=i; j<N; j++)

A[i][j] = 1.0;

do_all();

void main() {

initenv();

if (cpuID == MASTER) {

// gather workers on barrier

start();

// release workers

} else {

// spin until work provided

parallel_routine();

// spin until work provided

}

}

void doall() {

// release workers

parallel_routine();

// gather workers on barrier

}

// Synchronization facilities

// Lock Implementation

// Barrier Implementation

void main() {

initenv();

if (cpuID == MASTER) {

// gather workers on barrier

start();

// release workers

} else {

// spin until work provided

parallel_routine();

// spin until work provided

}

}

void doall() {

// release workers

parallel_routine();

// gather workers on barrier

}

// Synchronization facilities

// Lock Implementation

// Barrier Implementation

runtime library

11

12

GCC OPENMP EXPANSION DUMP

struct

{

int[10] * a;

int[10] * b;

int[10] * c;

} .omp_data_o.3;

struct

{

int[10] * a;

int[10] * b;

int[10] * c;

} .omp_data_o.3;

Make shared data

visible to all
processors/threads

Replace uses of

shared variables
with corresponding
field in shared data

struct

Replace uses of

shared variables
with corresponding
field in shared data

struct

13

GCC OPENMP EXPANSION DUMP

Call runtime to

determine number
of threads

Call runtime to

determine number
of threads

Create work sharing by
splitting loop iterations

between threads

Call runtime to

determine thread ID

Call runtime to

determine thread ID

GCC OPENMP EXPANSION DUMP

Create work sharing by
splitting loop iterations

between threads

COMPUTE LOWER

AND UPPER

BOUNDS FOR EACH

THREAD

Initialize induction variable

to lower bound

Check termination

condition on upper bound

HOW?
It depends on what the

schedule clause specifies

(see after)

14

15

16

17

Variable tmp is only

accessible by the master

thread. It has an initial value

that slaves need to know

Slave threads will have a

private copy of tmp
initialized with this value

18

Variable tmp is only

accessible by the master

thread. It has an initial value

that slaves need to know

Slave threads will have a

private copy of tmp
initialized with this value

The init value is made

visible to slaves through the

shared data struct

Variable tmp is only

accessible by the master

thread. It has an initial value

that slaves need to know

Slave threads will have a

private copy of tmp
initialized with this value

The init value is made

visible to slaves through the

shared data struct

Private copy of tmp is

initialized with this value

19

Its value will be written by

the last thread that works

on its private copy

Variable tmp is only

accessible by the master

thread.

20

Its value will be written by

the last thread that works

on its private copy

Variable tmp is only

accessible by the master

thread.

After all iterations have been

executed..

…local value of tmp is copied

into the shared data struct..

Its value will be written by

the last thread that works

on its private copy

Variable tmp is only

accessible by the master

thread.

After all iterations have been

executed..

…local value of tmp is copied

into the shared data struct..

…and through this copied

into the master’s copy of tmp

21

22

23

24

call runtime to acquire lock

Lock-protected

operations

call runtime to release lock

THIS IS DONE AT EVERY LOOP
ITERATION!

25

26

27

Shared variable is

updated at every
iteration.

This is NOT necessary

Shared variable is

updated at every
iteration.

This is NOT necessary

Shared variable is only

updated at the end of the
loop, when its final value

is known

Shared variable is only

updated at the end of the
loop, when its final value

is known

UNOPTIMIZED CODE

Shared variable is

updated at every
iteration.

This is NOT necessary

Shared variable is

updated at every
iteration.

This is NOT necessary

Shared variable is only

updated at the end of the
loop, when its final value

is known

Shared variable is only

updated at the end of the
loop, when its final value

is known

This is a single atomic

write. Target architecture
may provide such an

instruction

This is a single atomic

write. Target architecture
may provide such an

instruction

__sync_fetch_and_add(&.omp_data_i->area,

area);

UNOPTIMIZED CODE

28

29

Check condition to

determine whether to

parallelize the loop or not

Pass NTHR to runtime: if it equals 1 only

one thread will execute it.

If it is true set NTHR = 0,

otherwise set it to 1

30

31

USING THE schedule CLAUSE

• A parallel region has at least one barrier at its end, and

may have additional barriers within it

• At each barrier the other members of the team must wait

for the last thread to arrive

• To minimize this wait time shared work should be

distributed so that all threads arrive at the barrier at about
the same time

• The choice of a schedule for a for construct is also

determined by characteristics of the memory system

(presence of caches, uniform access times, etc.)

USING THE schedule CLAUSE

• A parallel region has at least one barrier at its end, and

may have additional barriers within it

• At each barrier the other members of the team must wait

for the last thread to arrive

• To minimize this wait time shared work should be

distributed so that all threads arrive at the barrier at about
the same time

• The choice of a schedule for a for construct is also

determined by characteristics of the memory system

(presence of caches, uniform access times, etc.)

#pragma omp parallel

{

#pragma omp for schedule (static)

for (i=0; i<n; i++)

a[i] = work1(i);

#pragma omp for schedule (static)

for (i=0; i<n; i++)

if (i>=k) a[i] = work2(i);

}

ASSIGNING SAME ITERATIONS TO SAME
THREADS MAY IMPROVE DATA REUSE

32

33

SPLITTING LOOP ITERATIONS – schedule (static)

• The static schedule is appropriate for a parallel region containing a single

for construct, with each iteration requiring the same amount of work

NOTE: There may be LOAD IMBALANCE between threads (i.e. they

operate on data chunks of different sizes)

Es. N=10, Nthr=4.

LB = C * TID

TID 0 1 2 3

• Loop boundaries are statically determined at compile time. No interaction

with the runtime is required.

0 3 6 9

3 6 9 10UB = MIN { [C * (TID + 1)], N}

N

Nthr

C = ceil ()

DATA CHUNK

3 vector
elements

GCC OPENMP EXPANSION DUMP

Compute chunk C = ceil (N/Nthr)

Compute LB = C * TID

Compute UB = min [C * (TID + 1), N]

34

schedule (static, C)

• Specifying a size for data chunks the loop is statically split between

threads in an interleaved fashion

IN GENERAL: Small chunks allow

finer grained control on workload

35

SPLITTING LOOP ITERATIONS – schedule (dynamic, C)

• The dynamic schedule is appropriate for the case of a for construct with

the iterations requiring varying, or even unpredictable, amounts of work

• Iterations are assigned one at a time to threads as they become available.

This requires a strict cooperation with the runtime

• Runtime overhead can be reduced by specifying a chunk size k greater

than 1, so that threads are assigned k at a time until fewer than k remain

36

SPLITTING LOOP ITERATIONS – schedule (dynamic, C)

• The dynamic schedule is appropriate for the case of a for construct with

the iterations requiring varying, or even unpredictable, amounts of work

• Iterations are assigned one at a time to threads as they become available.

This requires a strict cooperation with the runtime

• Runtime overhead can be reduced by specifying a chunk size k greater

than 1, so that threads are assigned k at a time until fewer than k remain

Call runtime

Absolute lower and upper bounds

Iteration step

Chunk size

Retrieve lower and upper

bounds for current

thread’s first iteration

SPLITTING LOOP ITERATIONS – schedule (dynamic, C)

• The dynamic schedule is appropriate for the case of a for construct with

the iterations requiring varying, or even unpredictable, amounts of work

• Iterations are assigned one at a time to threads as they become available.

This requires a strict cooperation with the runtime

• Runtime overhead can be reduced by specifying a chunk size k greater

than 1, so that threads are assigned k at a time until fewer than k remain

Retrieve lower and upper

bounds for current

thread’s first iteration

Execute loop body over this iteration space..

..then compute next
chunk’s iteration space

37

SPLITTING LOOP ITERATIONS – schedule (guided, C)

• The guided schedule is appropriate for the case in which the threads may

arrive at varying times at a for construct with each iterations requiring

about the same amounts of work

• This can happen if, for example, the for construct is preceded by one or

more for constructs with nowait clauses

• The interaction with the runtime works much like the dynamic schedule,

but the size of chunks is computed dividing remaining iterations among

threads, and considering C as a minimum size for the chunk

38

39

40

41

42

43

44

45

46

47

48

switch these ids to make
execution jump to the code

corresponding to the relative

#pragma omp section

Call runtime

..specifying number of

sections..

to obtain consecutive
scheduling ids

49

switch these ids to make
execution jump to the code

corresponding to the relative

#pragma omp section

Call runtime

..specifying number of

sections..

to obtain consecutive
scheduling ids

50

