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Introduction 
 
Some futurists have speculated that thousands of years into the future the human race 

may evolve to the point where our legs will atrophy, losing much of their size, power and 
endurance.  The reason for this is that in modern society we tend to rely heavily on mechanical 
devices, such as automobiles, for much of our transportation needs, thus making far less use of 
our leg muscles than did our ancestors.  Therefore, they speculate that our legs might eventually 
evolve into almost vestigial appendages, much like what has happened to the appendix in our 
gastrointestinal tract. 

 
Over the span of 40+ years of my personal teaching experience, I have observed a 

substantial atrophy of some of the brain function of the modern student.  When I attended high 
school and college, every student whom I encountered was able to carry out simple arithmetic 
operations, including addition, subtraction, multiplication and division, using manual methods, 
with considerable accuracy and at a reasonable rate of speed.  Over forty years ago, there were 
no electronic calculators.  A professional accountant or bookkeeper, an actuary, or a 
mathematician might have been fortunate enough to have had access to either a mechanical or 
possibly an electromechanical contrivance, called variously either an adding machine or a 
calculator.  This device would enable him/her merely to enter the numbers, and then the machine 
would then take over and actually perform the calculation.  Such a contrivance typically weighed 
twenty-five pounds or more, and took up a goodly portion of the space on a desktop.  It was 
powered either mechanically, by means of energy supplied manually by the operator by 
repetitively pulling a lever over a distance of a foot or more, supplemented by a spring return, or 
else it was powered electrically via electricity supplied via a wall outlet from a central electric 
utility, just the same as electrical power is provided even today to ordinary household appliances.  
In either case, the contrivance was very noisy as well as very slow.  Unless we had a lengthy 
column of numbers to add, it was often both faster and easier to perform calculations by hand 
with the aid of pencil and paper. 

 
Today, it is my practice to ask my students in college to perform what I consider to be 

simple arithmetic calculations using their old-fashioned, built-in computer, i.e., their brain.  
When I do this, I usually encounter a chorus of indignant protest.  The modern student is 
accustomed already from elementary school to performing arithmetic using an electronic 
calculator.  Powered either by small batteries or via photovoltaic generation of electricity from 
ambient light, the device is both small and light enough to be carried conveniently in the hand, 
can be taken either to the beach or to the top of Mt. Everest or anywhere else where standard 
power from the electric utility is not readily available, and produces reliable, accurate results, 
provided that the data are input correctly and that the ambient temperature doesn’t extend beyond 
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the operating range declared by the manufacturer in the specifications listed in the instruction 
manual. 

 
The modern student does not recognize any deficiency on his part because of his/her lack 

of skill in manually performing arithmetic calculations. 
 
 

Checking the Correctness of Arithmetic Calculations 
 
There is a problem that we need to contend with whenever we make use of some sort of 

electronic device to carry out an arithmetic calculation:  how can we assure ourselves that the 
result provided by the calculator is correct?  When we perform a calculation manually, we use 
well-established and accepted methods.  Therefore, to confirm the correctness of a manual 
calculation the main task is to check either by performing the calculation independently a second 
time or by performing an alternative calculation.  It is not enough that the overall methodology 
used for effecting a calculation is correct; we must also assure ourselves that we have not 
introduced errors in transcribing the numbers or in mentally carrying out the various small 
component calculations that contribute to the overall result.  To obtain assurance of correctness, 
we might perform the calculation several times, introducing modest variations in how we 
formulate the problem, and checking wither identical results are obtained.  To confirm the 
correctness of a multiplication, for example, we might interchange the multiplier and the 
multiplicand and check to see whether we obtain the same product as before.  To confirm the 
correctness of an addition, we might interchange the augend and the addend and check to see 
whether we obtain the same sum as before.  To confirm the correctness of a subtraction, we 
might add the subtrahend and the difference, and see whether the sum so obtained is equal to the 
minuend of the original calculation. 

 
With an electronic device, however, there are several additional considerations that enter 

into the determination of whether or not the result of the calculation is correct.  In order to verify 
the correctness of an electronically-performed calculation, it is necessary first to understand the 
limitations inherent in the specific form of electronic representation of the numbers that form the 
basis for the calculation, as well as the limitations in the electronic means used to implement the 
calculation.  For example, in an electronic computer the numeric inputs to the calculation are 
usually each represented as a string of bits stored in a special hardware structure known as a 
register.  The result of the calculation is also represented in a register.  It must be borne in mind 
that a register is limited in the number,  n,  of bits (zeroes and ones) comprising the number 
whose representation it contains.  This number,  n, is called the  width of the register.  The 
register width, in turn, strictly limits the number of different values of the data that can be stored 
in it, which cannot exceed  2n.  In addition, there are also several different representational 
schemes that are used to define the mapping between each different bit string that can possibly 
be stored in a register and the numeric value that the bit string represents.  Thus, a single bit 
string can possibly represent one of several different numbers, depending upon which 
representational scheme is currently in use.  Depending upon both the width of the register and 
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the representational system, the correct results of a particular arithmetic operation may or may 
not lie within the range of numbers representable in the register.  If they lie outside the range, the 
consequence will be either an overflow or an underflow.  This possibility is characteristic of the 
world of electronic computers; it is almost entirely unknown in the world of pencil-and-paper 
arithmetic, because in the latter environment it is almost always possible to accommodate the 
representation of any desired number by the simple expedient of augmenting the width of the 
number as measured by how many [decimal] numerals it contains. 

 
 

Computations and the Digital Computer 
 
The term “Digital Computer” is something of a misnomer.  In fact, although the digital 

computer can be used to store numeric data and to carry out numeric calculations or 
computations, yet a major part of its usefulness lies in that it can carry out a great variety of other 
automated tasks, including the organization and storage of data of various types, such as text, 
sound, photographs, maps and drawings, the searching of large databases of various types for 
specified content, the re-ordering of data, the control of processes and of machinery, and other 
functions as well, for which computation is only either a trivial portion of the total work carried 
out or may not enter into it at all.  Thus, actual computation is only one out of a large number of 
functions carried out by the digital “computer”.  Nevertheless, particularly for certain specific 
tasks that constitute a very significant subset of the total utilization of the digital computer of 
today, a major portion of the operations that take place in the computer consists of calculations 
that are carried out upon numeric data.  Examples of such applications include payroll 
processing, prediction of weather, simulations of various sorts, engineering design and 
manufacturing (CAD/CAM), and process control.  These activities all depend upon the ability of 
the digital computer to represent numbers as strings of bits, and the numeric operations involved 
in carrying out these activities fall within the broad subject area of digital arithmetic.  The digital 
arithmetic operations must be augmented by a variety of support operations that are also 
necessary in order to enable the calculations to occur accurately and speedily.  The vast majority 
of these calculations consist of simple arithmetic, and how they are carried out is conceptually 
very easy for even the layman to understand;  they do not constitute a challenge to the Computer 
Scientist.  However, despite the fact that most digital arithmetic operations are conceptually 
simple, the detailed understanding of how they are carried out internally within the machine, as 
well as their practical limitations and the various factors that affect their accuracy, is a substantial 
challenge for the beginning student of Computer Science.  Once mastered, however, this subject 
brings to the Computer Scientist substantial insight into how digital computers work, and 
especially into some of the programming techniques that must be employed to assure that the 
calculations performed by the computer yield answers of the requisite degree of accuracy.  
Therefore, this subject is extremely important to master. 
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Digital Representation of Numbers 
 
The overall subject matter of the treatment of numbers in digital computers can be broken 

down into two principal subtopics.  First, it is necessary to understand the various ways in which 
numbers are represented in the digital computer.  Several different schemes of number 
representation are in use, and the computer professional must understand all of the schemes that 
are in common use.  In addition, he/she must have a grasp of the basic underlying principles of 
digital number representation sufficiently thorough to enable him/her to master any additional 
representation schemes that might be developed in the future, as he/she might encounter them in 
the course of his/her work.  The student should be able to demonstrate his/her understanding of 
each scheme of number representation by relating the internal representation of a particular 
number to the actual numeric value of the number represented at a sufficient level of prowess, 
being able to map in both directions:  from the digital representation of a number to its numerical 
value, and from any numerical value to its digital representation. 

 
 

Digital Arithmetic 
 
In addition, for each form of number representation, there is one way, or sometimes more 

than one way, in which it is possible for arithmetic operations to be carried out.  Consequently, 
there is an even greater challenge for the Computer Scientist:  to understand how each kind of 
arithmetic operation is carried out for each of the schemes of number representation that are 
commonly used.  This must include an understanding of what answer will be produced by the 
computer logic circuits in every case, as well as the potential for errors occurring in the results.  
Finally, the Computer Scientist must also be able through a combination of hardware and 
software to detect initially erroneous computational results when they occur, and to implement 
appropriate measures in both software and hardware to handle initially erroneous results, and to 
take appropriate action to assure that the final results attained under defined circumstances either 
will be correct, or if not then they will at least be clearly marked in the final output as being 
incorrect. 

 
This tutorial covers in detail only part of the subjects of number representation  and 

digital arithmetic.  It is intended to convey a thorough understanding of both subjects at least for 
integer numbers and for the closely related fixed-point numbers.  Floating-point numbers, 
however, are covered only insofar as their representation in the computer is concerned.  This will 
provide the basis from which the student will be able, through outside reading, to expand his/her 
understanding of arithmetic floating-point operations starting from the understanding of floating-
point number representation that is provided here. 

 
The kinds of arithmetic operations that Computer Scientists are concerned with are 

addition, subtraction, multiplication, division, and exponentiation.  Arithmetic operations are, in 
general, performed in a different way in digital computers, depending upon the manner in which 
the underlying numbers (operands) are represented in the computer.  In some cases, the 



Representation of Numbers and Performance of Arithmetic in Digital Computers 
 
 

 
 

Page 7  
 

15 Aug 1999revised 21 Apr 2005 
© 2005 Charles Abzug 

differences are relatively minute, but in others they are considerable.  In particular, digital 
arithmetic operations come in two principal varieties:  integer operations and floating-point 
operations.  Integer operations are performed on integer numbers, or on numbers stored in a 
variant of integer number representation known as fixed-point representation.  Floating-point 
operations are performed upon numbers stored in the computer in floating-point representation.  
Floating-point operations are considerably different from integer operations, and are more of a 
challenge to the student.  This tutorial covers both integer and floating-point number 
representations, but only integer arithmetic operations. 

 
In this tutorial, we shall start out by surveying some of the mathematical concepts of the 

representation of numbers, and shall then proceed to deal with various alternative schemes for 
the representation of numbers that are in use both in human societies and within digital 
computers.  Next, we shall focus in on the representation of integer numbers and of fractional 
numbers in digital computers, including a survey of the principal forms of integer digital number 
representation.  In this survey, we shall cover some of the finer points and details and variants of 
basic integer representation.  The representation of integer numbers will also be shown to be a 
special case of fixed-point number representation.  We shall also consider the performance of 
arithmetic operations in digital computers upon numbers represented as integers or other fixed-
point numbers (binary arithmetic).  Finally, as was already mentioned, for floating-point 
numbers we shall cover only their representation, and not the detailed performance upon them of 
arithmetic operations. 
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Learning Objectives: 
 
By the end of this tutorial, the student should be able to: 
 

1. understand the mathematical concepts of Integer Number of Rational Number, and of 
Irrational Number; 
 

2. be thoroughly familiar with the various concepts underlying the positional representation of 
numbers; 

 
3. convert a rational number of arbitrary specified base or radix to its decimal equivalent; 
 
4. convert any decimal number to a number of equivalent value in any base or radix other than 

ten; 
 
5. freely inter-convert binary, octal, and hexadecimal numbers; 
 
6. accurately interpret and determine the value of a string of bits as a Non-Explicitly Signed 

(“Unsigned”) Digital Number, as a Signed-Magnitude Number, as a Ones’-Complement 
Number, as a Two’s-Complement Number, and as an Excess-N Number; 

 
7. accurately predict the results of simple digital arithmetic operations (addition and 

subtraction) carried out in the Arithmetic-Logic Unit (ALU) of a digital computer in 
accordance with the rules of Non-Explicitly Signed-Number (“Unsigned-Number”)  
Arithmetic, of Signed-Magnitude Arithmetic, of Ones’-Complement Arithmetic, of Two’s-
Complement Arithmetic, and of Saturation Arithmetic; and 

 
8. convert between a specified value of a Rational Number and its representation in a digital 

computer as a Floating-Point number, given a stylized definition of the particular 
Floating-Point representation scheme in use in the computer where the number is to be 
represented. 
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Mathematical Concepts of Numbers 
 
In mathematics, there are four principal types of numbers.  The first two of these are 

Integer Numbers and Rational Numbers.  Both are very important for the Computer Scientist to 
understand, and therefore we shall cover these two kinds of numbers in relative depth.  Two 
other kinds of numbers, Real Numbers and Complex Numbers, although very important from the 
mathematical standpoint, nevertheless do not represent a special challenge for the Computer 
Scientist, and therefore we shall briefly define these two kinds of numbers but shall not dwell on 
them. 

 
 
 

Integer Numbers 
 
Integer numbers are sometimes referred to as whole numbers.  These are the counting 

numbers, such as: 
 
1  2  3  4  5  etc. 

 
There are two concepts that are incorporated into all the representations of numbers that are in 
common use and that are well known among the populace at large, even to students at the 
elementary school level.  Yet, these concepts are both only relatively recent in origin.  The 
concept of zero originated about 1400 years ago in India, and a still more radical and much more 
recent innovation is the concept of negative numbers.  The use of negative numbers originated as 
recently as the late 18th to early 19th century.  A sampling of integer numbers as we know them 
today might therefore include negative as well as positive integers, in addition to zero, for 
example: 
 

-3,294,852,317   -79   -2   0   +3   +24   +87,346,129 
 
The performance of arithmetic operations upon integer decimal numbers is so well understood 
by most laymen, as well as Computer Science students, that it need not be reviewed here. 
 
 
 

Rational Numbers 
 

A Rational Number is one whose value can be expressed with absolute precision as the 
ratio of two integer numbers.  The two integers whose ratio defines the value of the rational 
number are known as the numerator and the denominator, and they are usually separated from 
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each other by means of a virgule (/), as, for example,  248/613.   Most fractional numbers that 
we encounter in the course of daily life are Rational Numbers.  These include prices for 
supermarket items in dollars and cents.  For example, if a can of salmon is priced at $4.99, then 
the price is really: 

 
499 cents/100 cents per dollar  =  $4.99 

 
The description of the number as being equivalent to the ratio of 499/100 emphasizes the 
rational aspect of the number.  Other examples of Rational Numbers are: 
 

7,924/3,197      3,429/12      1/789,436 
 
Rational Numbers are very frequently encountered in modern life, typically as decimally 
expressed fractions, such as currency, or the individual weights of supermarket items.  Because 
of the ubiquity of rational numbers, being able to represent them is a very important design 
consideration for digital computers.  Note that all integers are also rational numbers, under the 
special circumstance where the denominator is equal to one.  Obviously, there are many more 
rational numbers than there are  integers. 
 
 
 

Real Numbers 
 

The concept of Real Numbers includes many numbers that are not rational or irrational, 
that is, they can not be represented precisely as a ratio of two integers.  One example of an 
irrational real number is the fundamental mathematical constant π (pi), which is the ratio of 
circumference to diameter of a circle.  The value of this number is typically quoted as being 
3.14159, although in fact 3.14159 is actually a rational number and is therefore only an 
approximate representation of the true value of π.  For engineering or architectural or scientific 
purposes, the true value of π can be calculated to any desired degree of precision, with the 
specific requirement for precision being dependent upon the specific need for which π is to be 
used.  Mathematically, however, no rational number, even though its computer representation 
may go out to millions of decimal places, can ever express the value of π with absolute precision; 
it is always possible to improve on the precision by adding more decimal places.  Another 
example of a real but irrational number is Euler’s constant, e, which is the basis for the so-called 
“natural” logarithms as well as a constant of widespread use in mathematics, physics, and 
engineering.  Other irrational numbers are the square root of 2 and the square root of 3.  An 
irrational real number is generally represented in a digital computer by approximating its value 
and expressing the approximate value as a rational number.  In reality, however, the rational 
numbers constitute a proper subset of the real numbers;  that is, every rational number is also a 
real number, although not all real numbers are also rational. 
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Complex Numbers 
 

Complex Numbers are defined as having the form   a + bi   where  a  and  b  are both real 
numbers and  i  =  √(-1), or the square root of negative one.  The representation of complex 
numbers in a digital computer is not a special problem.  They are handled by means of separate 
representations of the two real coefficients,  a  and  b.  Arithmetic operations performed upon 
complex numbers are accomplished in accordance with the well-known mathematical rules 
governing such numbers. 
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Positional Number Notation 
 

Numbers today are almost universally written in a form of notation known as positional 
number representation.  In almost all human societies in the modern era, a particular variant of 
positional number representation is used that is known as decimal number representation.  The 
concept of positional number representation is conveyed most easily, therefore, through 
illustration with a decimal number.  Consider the decimal number 603,550a. This integer 
number contains two zeroes and two fives.  Although all zeroes are equal to each other, yet the 
two zeroes which are only part of this number are not equivalent to each other.  Also, the two 
fives in this number are not equivalent to each other.  The leftmost zero indicates that the number 
contains no ten-thousands, while the rightmost zero indicates that the number contains no units.  
Likewise, the left-hand five indicates a value of five hundreds, while the right-hand five indicates 
a value of five tens, or fifty.  We can generalize by stating that it is not only the value of a 
particular numeral within the number, but also the position of the numeral that together 
determine the significance of that numeral and its contribution to representing the value of the 
overall number. 

 
The word decimal is a derivative of decem, which is the Latin word for ten.  A number 

represented in positional representation is composed, in general, of some collection of numerals.  
In a decimal number there are ten such numerals that may be used, ranging in value from zero 
through nine.  The significance of each numeral within the number is directly related to how 
many numerals are present between it and the rightmost extremity of the number, that is, to its 
position in the number.  Hence, the term positional number representationb.  Taking our 
example, the decimal number 603,550, its value is understood to be the sum of: 

0  units 
5  tens 
5  hundreds 
3  thousands 
0  ten-thousands and 
6  hundred-thousands 

 
Decimal numbers are positional numbers that have a base or radix of ten.  The selection of ten as 
the base or radix for decimal numbers has two consequences:  first, it is the radix that imposes 
the requirement that there be available exactly ten distinct numerals in order to represent all 

                                                 
a  This number was selected to illustrate the major features of positional number notation, but it is not a 

randomly-selected number.  It appears prominently in the Bible.  Would you happen to remember, or if you are not 
sure then can you guess, where in the Bible this number appears and what it represents? 

b  Can you think of a form of integer number notation where the significance of each numeral is not strictly 
dependent upon how many positions the numeral is displaced from the rightmost extremity of the number?  Is the 
notation system known as “Roman numerals” a positional number system?  Why is it, or why is it not, positional?  
Can you come up with a single adjective, analogously to positional, that adequately describes this form of notation? 
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possible values for each position in the number, and hence to enable us to represent all possible 
integer numbers in decimal notation.  The decimal digits are:   

 
0 1 2 3 4 5 6 7 8 9 

 
Through the use of these ten numerals, absolutely any integer can be represented in decimal 
notation.  The second consequence of decimal numbers having a radix or base of ten is that the 
successive numerals starting from the rightmost extremity of the integer have place values that 
are successive powers of ten.  Thus, the rightmost numeral has the place value of units (= 100), 
the second numeral from the right has the place value of tens (= 101), the third numeral from the 
right has the place value of hundreds (= 102), the fourth has the place value of thousands (= 103), 
etc. 
 
 

Generalized Positional Integer Notation 
 

(i)  Radices of Ten or Less 
 

Once the concept of positional number notation is clearly grasped, there is very little 
limitation on the range of possible radices or bases.  In general, the base can be any integer 
greater than onec.  How we can write numbers in any radix can be grasped readily for radices of 
ten or less.  Thus, a radix 2 number would certainly be possible, and would consist entirely of 0’s 
and 1’s.  Note that just as radix ten numbers bear the special name of decimal, so too do radix 2 
numbers bear the special name of binary.  Similarly to the radix 2 numbers that are composed 
entirely of 0’s and 1’s, a radix 3 number would be composed entirely of 0’s, 1’s, and 2’s.  Radix 
3 number representation is known as trinary.  Trinary representation is very rarely usedd.  A 
radix 4 number would consist of 0’s, 1’s, 2’s, and 3’s, and is known as quaternary, and likewise, 
we could have radix 5 (quinary), radix 6 (hexary), radix 7 (septary), radix 8 (octal), and radix 9 
(nonal) numbers, in addition to the decimal radix 10. 

 
Consider our example number of 603,550 (decimal), if we were to express it as a base 

7 number of exactly the same value.  In base 7 notation, this number would be written as 
5,062,4237e.  The equality of value between the decimal and base-7 numbers is typically 
shown thusly: 
                                                 

c  Why is one not a permissible value for the radix of a number? 
d  For an example of its use, however, see http://www.trinary.cc/  , and click on “Tutorials”. 
e  Is this correct?  You should be able to check it out by working out the place values of each numeral in the 

base-7 representation of the number, and multiplying by the numeral representing the value for that position.  Thus, 
5,062,423 in radix 7 is equal to the sum of: 

3 x 70 

2 x 71 

4 x 72 
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603,550  =  5,062,4237. 

 
The subscript 7 indicates that the number to the right of the equals sign is to be interpreted as 
being of radix 7.  Because of the ubiquity of decimal numbers in our society, decimal numbers 
are usually written without any subscript, and there is therefore a corresponding assumption that 
any number written without subscript is a decimal number.  Therefore, the number to the left of 
the equals sign is written without a subscript.  Nevertheless, it is also correct, if perhaps a bit 
pedantic, to write: 

 
603,55010  =  5,062,4237 

 
and this notation has the advantage of being absolutely unambiguous.  Note that because of the 
convention that numbers written without subscripts are by default decimal, consequently  
10111100  and  101111002  are two numbers of radically different value, because the first is 
a decimal number, while the second is binary.  In fact, that particular binary number has a 
decimal value of only 18810

f. 
 
 

(ii) Radices Greater than Ten 
 

The problem with numbers having radices higher than ten is that the numerals that 
everyone is used to in our society extend only through nine, in consequence of the near-ubiquity 
of decimal numbers over almost all of the last few thousand years.  With the advent of digital 
computers, certain other radices have come into use principally within the field of Computer 
Science:  binary (radix 2), octal (radix 8), and hexadecimal (radix 16).  For binary and octal 
numbers, the ten decimal numerals are more than enough.  However, of hexadecimal numbers an 
additional six numerals are needed, to represent the values ten, eleven, twelve, thirteen, fourteen, 
and fifteen, each as a single numeral.  The convention is to use the letters A  B  C  D  E  
and  F  to serve as the needed numerals.  This scheme obviously would also work for each of 
the radices eleven through fifteen, with  F  being necessary only for radix 16, as the numeral 
representing a value of 15.  E  can serve in both radices 15 and 16 as the numeral representing a 
value of 14,  D  can serve as the numeral representing a value of 13, and therefore it is needed 
only in radices 14, 15, and 16,  C  can serve as the numeral representing a value of 12, and 
therefore it is needed in radices 13 through 16,  B  can serve as the numeral representing 11, and 
therefore it is needed in radices 12 through 16, and finally   A  can serve as the value representing 
                                                                                                                                                             

2 x 73 

6 x 74 

0 x 75 

5 x 76 

Is this base-7 number equal or not equal to the decimal number 603,550? 
f  The fastidious reader will check to ascertain whether this is correct. 
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10, and is therefore needed in all of the radices 11 through 16.  Obviously, this scheme can 
readily be extended as far as radix 36, if necessary, by the use of the remaining alphabetic 
characters  G   through  Z.  Radices as large as 36 are rarely, if ever, used.  Higher values of radix 
are even rarer, and additional symbols would have to be defined to represent the numerals 
needed for such radices. 

 
 

How Many Different Numbers Can a Particular Notation Represent? 
 
It is important to be able to calculate how many different numbers can be represented 

using some particular defined positional notation.  There are two features of any positional 
notation that determine the answer.  These are:  (1) the value of the radix,  r,   and (2) the width 
of the representation, that is, number of numerals, n, that are available for use in representing the 
desired number.  Remember that  r  must be greater than 1.  A single numeral can represent  r  
different numbers, because it can have any of r different values.  These are:  0, 1,  .  .  .  [r -1].  
For a number of width two, that is, the representation is limited to two numerals, the numeral on 
the left can have any of r different values, and for each of these possible values the numeral on 
the right can also have any or r different values.  Therefore, the ordered pair of numerals can 
have r2 different sets of values.  If we extend the number of numerals allowed to three, then r3 
different values are possible.  By extension, for  n  numerals (i.e., width  n), it is possible to 
represent  rn  different numbers.  If simple integers are being represented, then the range of 
numbers extends from 0 to [rn - 1].  The following table gives examples of representation of 
numbers in a variety of radices, and for a variety of widths as well: 

 
TABLE 1:  Quantitative Considerations in 

Positional Number Representation 
 

Radix 
Width of the 

Representation
(# of Numerals) 

How many 
numbers can be 

represented? 

 
Range 

r n rn 0  <  (rn - 1) 
2 12 212 = 4,096 0  <  4,095 
7 9 79 = 40,353,607 0  <  40,353,606 
10 7 107 = 10,000 000 0  < 9,999,999 
16 8 168 = 4,294,967,296 0  <  4,294 967,295 

 
The notion that the representation of a number is of predetermined width may be a brand-

new concept for many readers.  In traditional arithmetic, we are not concerned with how many 
numerals we use to represent a number.  When using paper, we can usually expand the width of 
our numbers to accommodate numbers of any desired size.  For example, in the year 1789, 
President George Washington’s first national budget had a value of around $7,000,000.00, 
requiring only seven digits to represent the integer, or dollar part of the number, plus an 
additional two digits for the cents.  In contrast, President Bush’s proposed budget for Fiscal Year 
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2005 anticipates expenditures of approximately  $2,263,000,000,000.00g, which requires thirteen 
decimal digits to represent the integer part of the number, plus the same two digits for the cents 
that were needed in 1789.  Expansion of the total width of the number from eleven digits to 
fifteen is no problem; there is plenty of room on the paper.  Who knows how many decimal 
digits might be necessary in the next 215 years?  Whatever may be the correct answer to that 
question, when dealing with paper it should be possible to accommodate whatever width might 
be necessary. 

 
When we are representing numbers inside a digital computer, however, we must 

accommodate every digit required to represent the number by providing appropriate hardware 
facilities inside the computer.  This translates into electronic circuitry needed to represent the 
current value of the number, as well as additional circuitry to carry out any arithmetic operations 
that might have to be performed.  We must also provide appropriate hardware facilities for long-
term storage of the results of any calculations that we may perform.  By working electronically, 
we gain the advantage of lightning speed with which we can carry out our operations, but we 
lose the easy flexibility that we have with paper and pencil, of being able to adjust the widths of 
our numbers on the fly. 

 
In general, we represent an integer  N  as a number of radix r  in the form of an ordered 

list of numerals [an-1,  an-2,  .  .  .  a0], where:   

∑
−

=

∗=
1

0

n

i

i
i raN

 

 
 

Radices in Use in Human Societies 
 
The most common radix in use in human societies is decimal.  This is a consequence of 

the anatomical circumstance that the normal number of fingers possessed by most people is tenh.  
Nevertheless, there are several other radices that have also been used to some extent in certain 
societies over the ages.  One such system is the quinary system (base 5), in use even today by 
merchants in the state of Maharashtra in western India.  Another is the duodecimal system (base 
12), which was used by the Assyrians, Babylonians, and Sumerians.  This system is still in use in 
parts of China, and we have a vestige of it in our division of the day and of the night each into 12 
                                                 

g  http://www.whitehouse.gov/omb/budget/fy2004/pdf/budget/tables.pdf 
h  There is an hereditary abnormality in which some people are born with not just five but six fingers on 

each hand or six toes on each foot.  These conditions bear the name of polydactyly (which means “many fingers” in 
Greek).  If six fingers and six toes had been the human norm instead of five, then society would probably have 
settled on a base 12 number system.  A base 12 number system would have been much more useful than base 10.  
Our decimal standard is relatively difficult to use, because the radix of 10 is divisible by only 2 and 5.  Radix 12 has 
a distinct advantage in that it is divisible by 2, 3, 4, and 6. 



Representation of Numbers and Performance of Arithmetic in Digital Computers 
 
 

 
 

Page 17  
 

15 Aug 1999revised 21 Apr 2005 
© 2005 Charles Abzug 

hours.  The vigesimal system (base 20) was used by the Ainu people in northern Japan, and also 
by the Aztecs, Celts, Greenland Eskimos, and Mayans.  And finally, there is the sexagesimal 
system (base 60), which was used by the Babylonians and Sumerians.  This system is the basis 
for our practice of dividing the hour into sixty minutes, and the minute into sixty seconds. 

 
For practical reasons, computers make use of the binary number system.  For ease by 

people in notating and understanding the content of binary numbers, as well as for interpreting 
the results of arithmetic operations carried out in binary, it is convenient to make use of either the 
octal (radix 8) or hexadecimal (radix 16) number systems, both of which are readily 
interconvertible with binary.  The particulars of such interconversion will be covered later. 
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Conversion of a Number from One Radix to Another 
 
The best way to develop facility in the understanding positional number notation in a 

variety of radices is to be able to convert numbers from any starting radix ra to any destination 
radix rb.  Such conversion usually requires multiple operations of both multiplication and 
division.  The trick to success in performing such conversions comes from arranging that all the 
multiplications and divisions will be done in decimal, since that is the number scheme with 
which most people know the arithmetic rules very well.  We shall first consider the conversion of 
integers from other radices to decimal, and then from decimal to other radices.  Next, we shall 
consider the conversion of (non-integral) rational numbers from other radices to decimal and 
from decimal to other radices.  Finally, we shall consider the most productive strategy for 
conversion from any starting radix ra to any destination radix rb. 

 
 

Conversion of Integers from Other Radices to Decimal 
 
Conversion of an integer number from any other radix to decimal is a straightforward 

operation.  It is accomplished by determining first the place value of every numeral, starting 
from the rightmost position (always the units digit) and then proceeding stepwise leftwards, 
progressively multiplying the place value of the previous position by the radix, until the place 
values of all the numerals are determined.  This must be done once for a particular radix of 
origin;  thereafter, the place values so calculated can be re-used for converting many different 
numbers from that radix to decimal.  The second step, after all the place values have been 
determined for the starting radix, is to multiply each numeral of the particular number being 
converted by its place value.  This gives the decimal value contributed by that particular 
numeral.  Finally, the sum of the decimal equivalents of all the numerals is calculated, thus 
giving the total decimal equivalent of the original number. 

 
For example, consider the number 2,122,2203.  The place values for radix 3 work out 

to: 
TABLE 2:  Place 

Values for Radix-3 
Numbers 

Place Value 
1 30 = 1 
2 31 = 3 
3 32 = 9 
4 33 = 27 
5 34 = 81 
6 35 = 243 
7 36 = 729 
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The value of the number  2,122,2203  in decimal thus works out to: 

TABLE 3:  Decimal Value of a 
Radix-3 Number 

Place Numeral Value of the 
Numeral 

1 0 0 x 1 = 0 
2 2 2 x 3 = 6 
3 2 2 x 9 = 18 
4 2 2 x 27 = 54 
5 2 2 x 81 = 162 
6 1 1 x 243 = 243 
7 2 2 x 729 = 1458 

Sum in Decimal: 1,941 
 
Next consider the number 2,122,2204 (same numerals as the previous number, but a different 
radix).  The place values for radix 4 work out to: 

TABLE 4:  Place 
Values for Radix-4 
Integer Numerals 
Place Value 

1 40 = 1 
2 41 = 4 
3 42 = 16 
4 43 = 64 
5 44 = 256 
6 45 = 1,024 
7 46 = 4,096 

 
The value of this number in decimal thus works out to: 

TABLE 5:  Decimal Value of a 
Radix-4 Number 

Place Numeral Value of the 
Numeral 

1 0 0 x 1 = 0 
2 2 2 x 4 = 8 
3 2 2 x 16 = 32 
4 2 2 x 64 = 128 
5 2 2 x 256 = 512 
6 1 1 x 1,024 = 1,024 
7 2 2 x 4,096 = 8,192 

Sum in Decimal: 9,896 
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Overall, please note that the conversion of an integer from an arbitrary starting radix to decimal 
is a straightforward operation that takes place using multiplications and additions in accordance 
with the rules of decimal arithmetic. 
 
 

Conversion of Integers from Decimal to Other Radices: 
 

To convert an integer number from decimal to some other radix, there is an algorithm that 
is simple to execute.  Simply divide the number over and over by the destination radix.  Each 
successive division will produce a result expressed as a quotient and a remainder.  The remainder 
obtained from the first division becomes the units-place numeral for the number in the new radix.  
Take the quotient from the first division, and divide it once more by the new radix.  The 
remainder from the second division becomes the second-place numeral in the new radix, and the 
quotient  is divided once more by the value of the new radix.  This process continues until the 
quotient of a division becomes zero.  Any remainder still left over at this point becomes the 
leftmost numeral of the number written in the new radix. 

 
Consider the number  194110  converted to radix 7.  The sequence of operations is: 
 

TABLE 6:  Conversion of a Decimal Number to Radix-7 
Step # Operation Result 

1 1941/7 Quotient = 277;  Remainder = 2 
2 277/7 Quotient = 39;  Remainder = 4 
3 39/7 Quotient = 5;  Remainder = 4 
4 5/7 Quotient = 0;  Remainder = 5 
5 Stop here:  no quotient remaining  

Value of Number in Base 7: 5,4427  =  194110 
 
Check if this answer is correct by converting 5,4427 back to decimal, using the method shown 
earlier. 
 
 

Interconversion of Integers between Any Pair of Radices: 
 

It is important to be able to convert a number from any arbitrary radix to any other radix.  
This is generally difficult to do, since the arithmetic has to be carried out in the starting radix, 
and the rules for division in the general case of radix r are different from the rules of decimal 
arithmetic that we are used to from daily living.  The easiest way to accomplish this goal, 
therefore, is to convert first to decimal and then to the target radix.  Conversion to decimal is 
straightforward, as was shown above, and requires exclusively operations that are performed in 
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decimal.  Likewise, conversion from decimal to any other radix can take place using decimal 
arithmetic (successive division by the target radix), and are therefore also easy to carry out.  
Therefore, in general to convert from radix r1 to radix r2, just convert first from radix r1 to 
decimal, and then from decimal to radix r2. 

 
 
 

Conversion of Fractional Numbers from Other Radices to Decimal 
 
In general, conversion of a fractional number from some other radix to decimal is just a 

straightforward extension of the conversion algorithm for integers.  That is, first the decimal 
place values for the different numeral positions for the source radix are calculated, which once 
done can serve for the conversion of as many numbers as needed from the same source radix to 
decimal.  This calculation is accomplished starting from the radix point (which for decimal 
numbers is called the decimal point) and proceeding outwards.  Then the separate contribution 
to the number of each numeral extending rightwards from the radix point must be determined by 
multiplying the place value expressed in decimal by that numeral.  Finally, the sum of the 
contributions of all numerals of the original number must be taken.   

 
For example, consider the conversion to decimal of the source number  0.21222203. 

The place values counting rightwards from the radix point work out for radix 3 to: 
TABLE 7:  Place Values of 

Radix-3 Fractional Numerals 
Place Value 

-1 3-1 = 0.333333333+ 
-2 3-2 = 0.111111111+ 
-3 3-3 = 0.037037037+ 
-4 3-4 = 0.012345679+ 
-5 3-5 = 0.004115226+ 
-6 3-6 = 0.001371742+ 
-7 3-7 = 0.000457237+ 
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The value of the number  0.2,122,2203  in decimal thus works out to: 
TABLE 8:  Decimal Value of a Radix-3 Fractional Number 

Place Numeral Value of the 
Numeral 

-1 2 2 x 0.333333333+ = 0.666666666+ 
-2 1 1 x 0.111111111+ = 0.111111111+ 
-3 2 2 x 0.037037037+ = 0.074074074+ 
-4 2 2 x 0.012345679+ = 0.024691358+ 
-5 2 2 x 0.004115226+ = 0.008230452+ 
-6 2 2 x 0.001371742+ = 0.002743484+ 
-7 0 0 x 0.000457237+ = 0.000000000 

Sum in Decimal: 0.887517145+ 
The ‘+’ signs indicate that there are more digits, but that the 
calculated number is purposely being truncated at an arbitrarily 
chosen level of precision. 

 
Please note that for the general case of a rational number, which will be expressed in the form of 
numerals on both sides of the radix point, it is necessary to calculate the place values of the 
various numerals going in both directions from the radix point.  Several worked examples are 
given in the “Review Questions on Digital Number Representation”. 

 
 

Conversion of Fractional Numbers from Decimal to Other Radices 
 
To convert a fractional decimal number to another radix, instead of performing division it 

is necessary instead to multiply the fractional number successively by the radix.  Each 
multiplication, in general, results in a product that has both an integer part and a fractional part.  
The integer part resulting from the first multiplication becomes the first numeral to the right of 
the radix point for the number in the new radix.  Only the fractional part of the first product is 
multiplied again by the value of the destination radix to give the second product.  Again, the 
integer portion of this product becomes the next numeral to the right of the radix point for the 
number represented in the new radix.  The fractional part of the product is stripped off and 
multiplied once more by the value of the destination radix to give the next product.  This process 
continues until the desired level of precision is reached.  For example, to convert the number  
0.88751714510  to base 3, the successive multiplications yield: 
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TABLE 9:  Conversion of a Fractional Decimal Number to Radix-3 

Multiplicand Multiplier Product Fractional Part Integer 
Part 

0.887517145 3 2.662551435 .662551435 2 
0.662551435 3 1.987654305 .987654305 1 
0.987654305 3 2.962962915 .962962915 2 
0.962962915 3 2.888888745 .888888745 2 
0.888888745 3 2.666666235 .666666235 2 
0.666666235 3 1.999998705 .999998705 1 
0.999998705 3 2.999996115 .999996115 2 
0.999996115 3 2.999988345 .999988345 2 
0.999988345 3 2.999965035 .999965035 2 

Radix 3 Number:  0.2122212223 
 
Notice that we had started out up above with the number  0.21222203.  which we first 
converted up above to the decimal number  0.88751714510  and then just now converted back 
to radix 3.  Can you come up with an explanation of why we ended up with a number that is 
slightly different from that with which we had started out?  
 
 

Interconversion of Fractional Numbers between Any Pair of Radices: 
 

It is important for fractional numbers, too, to be able to convert a number from any 
arbitrary source radix to any other destination radix.  As for the integers, so, too for the fractions 
this is generally difficult to do, since the arithmetic has to be carried out in the starting radix, and 
the rules for both multiplication and addition in the general case of radix r are different from the 
rules for multiplication and addition in the decimal arithmetic that we are used to from daily 
living.  The easiest way to accomplish our goal, therefore, is to convert first to decimal and then 
to the target radix.  Conversion to decimal is straightforward, as was shown above, and requires 
exclusively operations that are performed in decimal.  Likewise, conversion from decimal to any 
other radix can take place using decimal arithmetic (successive multiplication by the target 
radix), and are therefore also easy to carry out.  Therefore, in general to convert from radix r1 to 
radix r2, just convert first from radix r1 to decimal, and then from decimal to radix r2. 

 
 

Interconversion of Mixed Numbers between Any Pair of Radices 
 
It is necessary to be able to convert the general case of rational numbers from any starting 

radix to any destination radix.  To accomplish this, simply divide the number at the radix point 
into its two principal components:  the integer part and the fractional part.  Follow the procedure 
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already shown for the conversion of integer numbers on the integer portion of the number, and 
the procedure for the conversion of fractional numbers on the fractional portion of the number, 
and then reassemble the number in the destination radix from its two components.  For several 
worked examples, please see the “Review Questions on Digital Number Representation”. 
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Binary Numbers 
 
In digital computers, numbers are universally represented in some variant of binary form, 

that is, as a sequence of 0’s and 1’s.  Each 0 or 1 is referred to as a binary digit or bit.  For a 
scheme in which n bits are used to represent each number, each bit can have a value of either 0 
or 1, and therefore a total of 2n different numbers can be represented.  There are several different 
forms of binary number representation.  The various forms differ from each other in two ways:  
in the range of numbers represented, and in the scheme by which a given bit sequence is mapped 
to a specific number within the range.  There is a very special aspect of representation of number 
within a digital computer that needs to be borne in mind.  When we are representing numbers 
with paper-and-pencil notation, if we run out of range within a given number of numeral 
positions, it is usually a fairly trivial matter to add as many numerals as may be required for the 
size of the number that we must represent.  In digital computers, however, we must normally 
face the circumstance that we are limited by the computer hardware in terms of the number of 
bits that we can allocate to the representation of a number.  If the number that we must represent 
is out of range, then we might have to do some fancy footwork in software to provide the 
functional equivalent of use of a larger number of hardware bits than are available. 

 
We shall mainly consider various binary schemes for the representation of integers.  The 

most important of these are Non-Explicitly-Signed (“Unsigned”) Representation, Signed-
Magnitude Representation, Ones’-Complement Representation, Two’s-Complement 
Representation, and Excess-N Representation.  Of these, the simplest to comprehend is Unsigned 
Number representation, and that is where we shall begin. 

 
 

Unsigned Number Representation 
 
In the Unsigned Number form of binary number representation, all numbers are treated as 

non-negative integers (that is, the numbers represented are all either positive integers or zero).  
This is equivalent to the general scheme for representation of integer numbers described above, 
and is the absolutely simplest scheme of binary number representation.   

 
For an unsigned number composed of  n  bits, a total of 2n different numbers can be 

represented, and the range of numbers represented in this way extends from 0 up to a maximum 
value of  [2n -1].  Sometimes, it is necessary to look at this issue from the opposite perspective:  
If we know that we must represent some range of numbers from  0  up to  N,  then how many 
bits,  n,  are required to represent them?  The answer is  n  =  (log2N),  where the pair of 
symbols     denotes the ceiling function.  This is the smallest integer less than or equal to the 
value of the term enclosed by the two symbols. Thus, for example, if we are required to represent 
487 different numbers, (log2487)  =  9, and therefore nine bits are required.  The reason for this 
is that eight bits would be too few, being able to represent only 256 different numbers.  While 
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nine bits can represent as many as 512 different numbers, which is more than the 487 necessary, 
nevertheless since we can only have an integral number of bits, the smallest integer greater than 
eight is necessary, and this comes out, of course, to nine. 

 
In all of the binary integer representation schemes other than unsigned numbers, not only 

positive but also negative numbers are represented.  These schemes all differ from each other in 
terms of how are the negative numbers represented as well as in the exact range numbers 
represented. 

 
 

Signed-Magnitude Representation 
 
In Signed-Magnitude representation, the leftmost bit is reserved as a sign bit, and the 

remaining bits signify the magnitude of the number.  For the sign bit, a 0 represents positive sign 
and a 1 represents negative sign.  Consider as an example the following two numbers: 

 
a = 010110112 

 
b = 110110112 

 
The seven bits on the right side of both numbers, i.e., the magnitude bits, are identical.  Only the 
leftmost bit (the zero bit) is different.  Examining the magnitude bits of either number, the units 
bit and the 2’s bit are both 1, the 4’s bit is a 0, the 8’s bit and the 16’s bit are both 1, the 32’s bit 
is a 0, and the 64’s bit is a 1.  Hence the magnitude of both numbers is:  1 + 2 + 8 + 16 + 64 = 91.  
Because of the difference in the sign bits, a = +91  and  b = -91.   

 
Overall, in Signed-Magnitude representation, those numbers ranging from zero to [2n -1 -

1] are represented identically to the way they are represented in Unsigned-Number 
representation.  The remaining bit sequences, which in Unsigned-Number representation are used 
for numbers whose values range from 2n - 1 to 2n, are co-opted and are used instead to represent 
negative numbers.  Note that each non-negative number represented has a corresponding 
negative number whose representation is identical in all bit positions except the sign bit.  This 
means that Signed-Magnitude has two representations for zero.  In 8-bit Signed-Magnitude these 
are  00000000 and 10000000.  These are referred to as “positive zero” and “negative zero” 
respectively. 

 
 

Ones’-Complement Representation 
 
In Ones’-Complement representation, to represent the negative of a number one subtracts 

the positive value of the number from a special number consisting of all 1’s.  Hence, the term 
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Ones’-Complement (with the apostrophe after the s in “Ones”).  Let us examine how the 
negative of 91 is represented in Ones’-Complement: 

 
All 1’s (binary representation of 2n - 1 = 25510): 11111111 

Binary representation of +9110: 01011011 
Ones’-Complement representation of -9110: 10100100 

 
Notice that in subtracting the binary representation of +9110 from the number consisting of all 1’s 
(which for eight bits represents 25510 in Unsigned-Number representation), in every bit position 
where the representation of +9110 has a 0, the representation of -9110 has a 1.  Likewise, in every 
bit position where the representation of +9110 has a 1, the representation of -9110 has a 0.  Thus, 
the Ones’-Complement representation of a negative number consists of the bit-wise inversion 
(hence the term “Complement”) of the representation of the positive number of equivalent 
magnitude.  This scheme is radically different from the Signed-Magnitude representation, in 
which all bits except for the sign bit are identical between the representation of any pair of 
positive and negative numbers whose magnitudes are equal.   
 

So far, we have described how to obtain the Ones’-Complement representation of a given 
number.  Now, let us consider the opposite problem:  Given a binary representation of a number 
that we know to be in Ones’-Complement form, how do we determine the value of the number 
represented?  The procedure is first to examine the sign bit.  If this is a 0 (signifying that a 
positive number is represented), then merely compute the magnitude of the positive number in 
the usual way by adding up the place values of all bit positions having 1’s.  If the sign bit is a 1, 
that indicates that a negative number is represented.  In that case, take the Ones’-Complement of 
the negative number to obtain the representation of its magnitude, and then determine the 
magnitude of this number as before.  There are several worked examples of conversion between 
decimal and Ones’-Complement representation in “Review Questions on Digital Number 
Representation”. 

 
Overall, in Ones’-Complement representation, those numbers ranging from zero to [2n -1 -

1] are represented identically to the way they are represented in Unsigned-Number and in signed-
Magnitude representations.  Numbers whose magnitudes lie between 2n -1 and 2n - 1 are not 
represented at all.  The bit sequences that are used in Unsigned-Number representation for these 
numbers are co-opted in Ones’-Complement, and are used instead to represent negative numbers.  
Ones’-Complement, as well as Signed-Magnitude, has two representations of zero, a positive 
zero and a negative zero.  The positive zeroes are identically represented in both schemes by a bit 
string consisting of zeroes in all bit positions.  However, the negative zero representation differs 
between the two systems.  In Signed-Magnitude it consists of  10000000, but in Ones’-
Complement it consists of  11111111i. 

 
 

                                                 
i  Check for yourself, based upon the principles for representation of negative numbers in Ones’-

Complement that have been explained, to see why this is so. 
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Two’s-Complement Representation 
 
In Two’s-Complement representation, the set of bit sequences that in Unsigned-Number 

representation is utilized to represent numbers in the range of 2n -1 up to [2n - 1] is assigned to 
negative numbers in a closely-related but slightly different way from how this is accomplished in 
Ones’-Complement.  In Two’s-Complement this is accomplished by subtracting the positive 
number representing the magnitude of the number, whose negative representation is desired, 
from 2n rather than from [2n -1].  To accomplish this feat conceptually, it is necessary to add an 
extra bit to the subtrahend (the number from which is to be subtracted the magnitude of the 
number whose negative representation is desired).  This is best understood from an example such 
as the following for 8-bit numbers:  

 
Binary representation of 2n  = 25610 (requires a 9th bit): 100000000

Binary representation of +9110:  01011011
Two’s-Complement representation of -9110:  10100101

 
Note that the Two’s-Complement representation of a positive number is almost but not quite 
identical to the Ones’-Complement representation of the same number.  In fact, carrying out the 
subtraction as shown in the illustration is cumbersome and difficult to implement in digital 
computers.  Therefore, in practice the process of “doing” Two’s-Complementation in a digital 
computer is carried out in two steps:  first “complementing”  (that is, taking the Ones’-
Complement of) the number and then incrementing the Ones’-Complement. 

 
Overall, in Two’s-Complement representation, those numbers ranging from zero to [2n -1 -

1] are represented identically to the way they are represented in Unsigned-Number and in signed-
Magnitude representations.  Numbers whose magnitudes lie between 2n -1 and 2n - 1, as in the 
other two schemes discussed so far that accommodate the representation of negative numbers, 
are not represented at all.  The bit sequences that are used in Unsigned-Number representation 
for these numbers are also co-opted in Twos’-Complement, and are used instead to represent 
negative numbers.  Two’s-Complement, in contrast both to Signed-Magnitude and to Ones’-
Complement, has only one representation of zero, which is equal to the positive zero of the other 
two schemes.  The bit string consisting of all 1’s, which in Ones’-Complement represents 
negative zero, in Two’s-Complement represents the number [−2n-1], which is not represented 
either in Signed-Magnitude or in Ones’-Complement..  Thus, in 8-bit Two’s-Complement the bit 
string 11111111 represents -12810.  Note that +128 has no representation at all in 8-bit Two’s-
Complementj. 

 
Please try hour hand at interconverting between decimal notation of a number and binary 

representation in Two’s-Complement form.  There are several worked problems appearing in 
“Review Questions on Digital Number Representation”. 

 
                                                 

j  Can you explain why Two’s-Complement representation has this asymmetry in representation of positive 
and negative numbers, while both Signed-Magnitude and Ones’-Complement are completely symmetrical?  
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Excess-N Representation 
 
The final scheme of binary number representation that will be covered here is called 

Excess-N representation.  This scheme is important in Computer Science because it is often used 
for the representation of exponents within Floating-Point numbers.  In an Excess-N 
representation, a decimal number is represented in binary notation.  It is necessary to specify a 
value for N, but this is usually equal to 2n - 1 for representation in an n-bit field.  The value of N 
must be added to the decimal value of the number to be represented, and then the Unsigned-
Number representation of the sum is what is stored.  This is much easier to understand from 
illustration than from explanation.  Consider an 8-bit field used to store numbers in Excess-128 
notation.  To represent the number -9110: 

Number to be represented: -9110 
Add the value of N : -91 + 128 = +37 
Unsigned-Magnitude 8-bit representation of [Number + N]: 00100101 
 
To convert in the opposite direction, first calculate the Unsigned-Magnitude value of the 

bit string representing the number, and then subtract the value of N.  The result is the value of the 
number represented. 

 
Overall, in Excess-N representation, assuming that the value of N is 2n - 1,  those numbers 

are represented that range from −2n -1 to [+2n - 1 − 1], which is the same range as for Two’s-
Complement.  However, not one of the numbers in the entire range is represented identically to 
the way it is represented in any of the other binary notations that are covered in this tutorial.  
Numbers whose magnitudes lie between 2n -1 and 2n - 1, as in the other three schemes discussed 
so far that accommodate the representation of negative numbers, are also in Excess-N not 
represented at all. 

 
 

Summary of Binary Number Representation 
 

Several schemes have been discussed for the representation of integers in binary notation.  
The following table summarizes these schemes.  In the leftmost column, “Hexadecimal Value of 
Number”, the actual value (not the representation) of the number is shown in hexadecimal.  
Hexadecimal numbers have not yet been explained.  The reader is advised to ignore this column 
for now, but to return to this table and re-examine the leftmost column after hexadecimal 
numbers have been covered. 

 
TABLE 10:  Comparison of Various Representational Schemata in use for Four-Bit Numbers 
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Binary Representations Hexadecimal 
Value of 
Number 

Decimal 
Value of 
Number Unsigned

Number 
Signed- 

Magnitude 
Ones’- 

Complement 
Two’s- 

Complement Excess-8 

-8H -8 N/R N/R N/R 1000 0000 
-7H -7 N/R 1111 1000 1001 0001 
-6H -6 N/R 1110 1001 1010 0010 
-5H -5 N/R 1101 1010 1011 0011 
-4H -4 N/R 1100 1011 1100 0100 
-3H -3 N/R 1011 1100 1101 0101 
-2H -2 N/R 1010 1101 1110 0110 
-1H -1 N/R 1001 1110 1111 0111 
-0H -0 N/R 1000 1111 N/R N/R 
+0H 0 0000 0000 0000 0000 1000 
+1H 1 0001 0001 0001 0001 1001 
+2H 2 0010 0010 0010 0010 1010 
+3H 3 0011 0011 0011 0011 1011 
+4H 4 0100 0100 0100 0100 1100 
+5H 5 0101 0101 0101 0101 1101 
+6H 6 0110 0110 0110 0110 1110 
+7H 7 0111 0111 0111 0111 1111 
+8H 8 1000 N/R N/R N/R N/R 
+9H 9 1001 N/R N/R N/R N/R 
+AH 10 1010 N/R N/R N/R N/R 
+BH 11 1011 N/R N/R N/R N/R 
+CH 12 1100 N/R N/R N/R N/R 
+DH 13 1101 N/R N/R N/R N/R 
+EH 14 1110 N/R N/R N/R N/R 
+FH 15 1111 N/R N/R N/R N/R 

N/R means that the specified number is Not Represented in the particular representation scheme 
applicable to the current column. 

 
Points to Ponder: 

1. What is the number of substantive entries in each column of the table? 
2. Do different columns have different numbers of entries, or are they all equal? 
3. What determines the maximum possible number of substantive entries in a column? 
4. Of the various number representation schemes shown, which is the best to use for the 

representation of integers?  Explain/justify your answer. 
5. Describe the relationship between the contents of the adjacent columns of binary numbers for:  

(a) the natural numbers; and  (b) the non-positive numbers. 
 

 
Please examine this table very carefully to be certain that you understand the various forms of 
number representation.  Note that the principles that govern the various schemes of number 
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representation apply equally to bit strings of width two or greater without upper limit.  In ancient 
times (for Computer Science, “ancient times” means ten or more years ago), computers were 
manufactured by different companies with a great variety of “word sizes”, that is, of the lengths 
of bit strings used to represent numbers inside the machine.  Today the word size is universally 
some multiple of eight bits:  either 8 or 16 or 32 or 64 or 128.  The Computer Scientist needs to 
be thoroughly familiar with the place values for the bits of binary numbers represented in 
Unsigned-Number notation, as follows: 
 

Table 11:  Powers of Two 
Bit 

Position 
# 

Power 
of 
2 

 
Place Value 

 

 
Nominal 

Value 

 
Approximate 

Value 
0 20 1 
1 21 2 
2 22 4 
3 23 8 
4 24 16 
5 25 32 
6 26 64 
7 27 128 
8 28 256 
9 29 512 

  

10 210 1,024 1 k 1 thousand 
11 211 2,048 2 k 2 thousand 
12 212 4,096 4 k 4 thousand 
13 213 8,192 8 k 8 thousand 

 
20 220 1,048,576 1 M (Meg) 1 million 
24 224 16,777,216 16 M (Meg) 16 million 

Table 11 (continued):  Powers of Two 
30 230 1,073,741,824 1 G (Gig) 1 billion 
32 232 4,294,967,296 4 G (Gig) 4 billion 
36 236 68,719,476,736 64 G (Gig) 64 billion 

 
40 240 1,099,511,627,776 1 T (Tera) 1 trillion 

 
50 250 1,125,899,906,842,624 1 P (Peta) 1 quadrillion 

To compute the place value of any bit position, remember the basic exponential identity: 
 

X(y + z}  ≡  Xy  ×  Xz 
 
For binary numbers, the identity becomes: 
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2(y + z}  ≡  2y  ×  2z 
 
What this means is that if we want to determine the place value of, for example, bit 47 (the 48th 
bit position), that works out to: 
 

248  =  28  ×  240  =  256 Tera  =  256  ×  (1,024)4  =  281,474,976,710,656. 
 
 
 

Display and Description of the Contents of Memory Locations and Registers 
Using Octal and Hexadecimal Notation 

 
As has already been noted above, either octal notation (radix 8) or hexadecimal notation 

(radix 16) can be used as an alternative to the traditional decimal notation.  For the purpose of 
general number notation, both octal and hexadecimal can be used for a variety of purposes.  
These include the representation of positive and negative numbers, of integers, and of fractional 
numbers, that is, for numbers whose absolute value is greater than or equal to 0.00 and less than 
or equal to 1.00.  They also include the representation of mixed numbers, that is, general rational 
numbers of unrestricted size, which includes numbers that are purely integers, numbers that are 
purely fractional, and numbers having both an integer part and a fractional part.  For these 
representations, the scheme for either octal or hexadecimal numbers is just a special case of the 
general positional number representational scheme that was described above and that is usable 
for any radix.  Such a representation includes either a minus sign or a plus sign to indicate the 
sign of the number (a positive number being assumed if neither symbol is present).  It also 
includes a radix point (octal point or hexadecimal point) to mark the separation between the 
integer and fractional parts of the number, zero or more octal or hexadecimal digits situated to 
the left of the radix point representing the integer part of the number, and zero or more octal or 
hexadecimal digits situated to the right of the radix point representing the fractional part.  If the 
number does not have a fractional part, then the radix point may be present by implication only, 
rather than being shown explicitly. 

 
There is, however, a very important additional usage of either octal or hexadecimal 

notation which may have no direct relation at all to the value of the number or other datum 
represented.  In this usage, a string of octal or hexadecimal digits is used merely as a means of 
portraying the contents of a memory location or of a register, irrespective of both the kind of data 
represented there and the value portrayed by those contents.  In modern computers, the width of 
a memory word or of a register measured in bits is always an integer multiple of four.  Therefore, 
hexadecimal notation is universally used for this purpose.  For example, in a computer having 
32-bit memory words, the content of one word might be represented as the hexadecimal bit 
string: 

 
ABCDE000 
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Note that the hexadecimal representation has no sign.  In this case, a sign is truly not present, as 
distinguished from an implicit sign sometimes forming part of the representation of a numeric 
value.  Such an implicit sign is implied in the value of the number represented, even though it is 
not shown.  Here, however, there really is no sign, because the hexadecimal digits are being used 
not to represent value but merely to indicate content.  In fact, what this means is that the binary 
content of the memory word is: 
 

Hexadecimal: A B C D E 0 0 0 
Binary: 1010 1011 1100 1101 1110 0000 0000 0000 

 
 
This content might possibly represent an integer (Non-Explicitly Signed, Ones’-Complement, 
Two’s-Complement, Signed-Magnitude, Excess-N, or any other representational scheme for 
integers).  Alternatively, it might represent a fixed-point binary number of any of the same 
schemes already enumeratedk.  Furthermore, it might represent all or part of a floating-point 
                                                 

k Note that the location of the implied radix point for a fixed-point non-explicitly-signed number may or 
may not happen to coincide with the boundary between two of the hexadecimal digits used to represent the content 
of the memory location or register.  In the example shown above, possible locations for the implied binary point are: 

.10101011110011011110000000000000 
1.0101011110011011110000000000000 
10.101011110011011110000000000000 
101.01011110011011110000000000000 
1010.1011110011011110000000000000 
10101.011110011011110000000000000 
101010.11110011011110000000000000 
1010101.1110011011110000000000000 
10101011.110011011110000000000000 
101010111.10011011110000000000000 
1010101111.0011011110000000000000 
10101011110.011011110000000000000 
101010111100.11011110000000000000 
1010101111001.1011110000000000000 
10101011110011.011110000000000000 
101010111100110.11110000000000000 
1010101111001101.1110000000000000 
10101011110011011.110000000000000 
101010111100110111.10000000000000 
1010101111001101111.0000000000000 
10101011110011011110.000000000000 
101010111100110111100.00000000000 
1010101111001101111000.0000000000 
10101011110011011110000.000000000 
101010111100110111100000.00000000 
1010101111001101111000000.0000000 
10101011110011011110000000.000000 

(continued on bottom of next page) 
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number (not yet discussed; discussion of floating-point numbers appears below).  There are 
numerous additional possibilities, all having nothing to do with numbers.  Thus, the string of 32 
bits might represent four 8-bit ASCII characters, four EBCDIC characters, two Unicode 
characters, a bit vector of length 32, a machine instruction, or either part or all of some 
programmer-defined data structure.  We are merely borrowing the hexadecimal digits in order to 
describe the underlying content of the memory word or of the register more economically and 
with reduced possibility of error than we could with a string of zeroes and ones. 

Some years ago, when several computer manufacturers produced machines having 12-bit, 
24-bit 36-bit or other word width or register width that was a multiple of three bits as well as of 
four, several manufactures, most notably Digital Computer Corporation, chose to represent the 
content of their memory words and registers with strings of octal digits rather than hexadecimal.  
This was only slightly easier for programmers and system managers to get used to than 
hexadecimal, since the octal digits are a proper subset of the decimal digits, whereas the 
hexadecimal digits are a superset of the decimal.  Therefore, the use of octal strings to describe 
the contents of memory words and of registers is of historical importance only, but has no 
practical value to the modern computer scientist. 
 
 
 

                                                                                                                                                             
 

101010111100110111100000000.00000 
1010101111001101111000000000.0000 
10101011110011011110000000000.000 
101010111100110111100000000000.00 
1010101111001101111000000000000.0 
10101011110011011110000000000000. 

(continued on bottom of next page) 
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Binary Addition for Integer and other Fixed-Point Numbers 
 

Addition of binary numbers is closely analogous to the addition of decimal numbers.  
Unlike manual addition, where an entire column of numbers might be added in the course of a 
single compound operation, addition of numbers in a digital computer is almost always carried 
out on a pair of numbers at a time.  By arbitrary convention, the first number of the pair, which is 
written above the other number  is known as the augend.  The second number, written 
underneath, is known as the addend.  In primitive computers, just as for manual addition of 
decimal numbers, the addition of binary integers or fixed-point numbers is also carried out digit 
by digit, starting from the right extremity of the two numbers and proceeding leftwards one digit 
at a time.  A logic circuit implementing such binary addition via underlying electronics is called 
a Ripple-Carry Adder.  The fundamental operation of the Ripple-Carry Adder therefore consists 
of the addition of a single bit of augend and of addend.  The output consists of not just one but 
two bits, one representing the sum and the other representing the carry-out from the current bit 
position, which is also the carry-in to the next bit position to the left.  For all bits other than the 
rightmost one, it is therefore necessary to cope with as many as three input bits.  One bit comes 
from the augend, one from the addend, and the third originates in the carry out from the addition 
of the previous bit one position to the right of the current bit.  Since there are, in general, three 
bits of input, there are therefore eight possible situations that the electronic bit-wise adder circuit 
must be able to cope with.  These are: 
 

TABLE 12:  Single-Bit Addition 
Carry-In Bitl: 1 1 1 1 0 0 0 0 

Bit from Augend: 1 1 0 0 1 1 0 0 INPUT: 
Bit from Addend: 1 0 1 0 1 0 1 0 

SUM: 1 0 0 1 0 1 1 0 OUTPUT: Carry-Outm 1 1 1 0 1 0 0 0 
 

When addition is carried out in a digital computer, there is one possible problem that we 
must be prepared to recognize whenever it occurs, and to handle whenever necessary.  That is the 
problem of overflow.  This problem almost never crops up when performing addition manually, 
because when we add numbers manually using pencil and paper, if the sum requires more digits 
to represent it than are present in the augend and in the addend, we are almost always able to 
expand the width allotted to the sum by as many digits as necessary to accommodate the size of 
the number that we must represent.  However, in a digital computer we are always faced with a 
limit on how many numbers can be represented in a register or memory location having a fixed 
number of bits, as well as which particular numbers are represented within the width of the 
storage location, using whatever scheme of representation is applicable at the moment.  For 
example, the Intel 4004, which was the very first microprocessor, had registers that were only 
                                                 

l This bit originates from the carry-out from addition of the bit immediately to the right of the current bit 
position. 

m This bit will become the carry-in to the addition of the next bit to the left of the current bit position. 



Representation of Numbers and Performance of Arithmetic in Digital Computers 
 
 

 
 

Page 36  
 

15 Aug 1999revised 21 Apr 2005 
© 2005 Charles Abzug 

four bits wide.  The Intel 8088, which was used in the first IBM PC, had registers that were eight 
bits wide.  By the time the Intel Pentium was introduced, the register width had expanded to 32 
bits.  Because of the fixed width of the registers in any processor, when we are using a digital 
computer to add two numbers, it may turn out that the correct arithmetic sum of the augend and 
the addend lies outside of the range of values representable within the constraints of the register 
where the sum must be stored.  The term overflow is particularly apt; it stems from the analogy 
of pouring into a container more water than the container is capable of holding. The excess spills 
out over, i.e., it overflows the container’s top edge.   

 
TABLE 13:  Examples of Overflow 

 
 

Non-Explicitly-Signed Numbers 
Carry-In Bits: 1 0 0 1 0 0  

Augend Register: 0 1 0 0 1 0 Value of Augend = (+)18 
Addend Register: 1 1 1 0 1 0 Value of Addend = (+)48 

Sum Register: 0 0 1 1 0 0 Value of Sum-Register Content = (+)12 
TRUE SUM = (+)66 

 
Ones’-Complement Numbers 

Carry-In Bits: 1 1 1 1 1 0  
Augend Register: 0 0 1 1 0 1 Value of Augend = +13 
Addend Register: 0 1 1 1 1 1 Value of Addend = +31 

Sum Register: 1 0 1 1 0 0 Value of Sum-Register Content = —19 
TRUE SUM = +44 

 
Two’s-Complement Numbers: 

Carry-In Bits: 1 1 1 1 1 0  
Augend Register: 0 0 1 1 0 1 Value of Augend = +13 
Addend Register: 0 1 1 1 1 1 Value of Addend = +31 

Sum Register: 1 0 1 1 0 0 Value of Sum-Register Content = —20 
TRUE SUM = +44 

 
Signed-Magnitude Numbers: 

Carry-In Bits:  0 1 1 1 0  
Augend Register: 1 0 1 1 0 1 Value of Augend = —13 
Addend Register: 1 1 1 1 1 1 Value of Addend = —31 

Sum Register: 1 1 1 1 0 0 Value of Sum-Register Content = —28 
TRUE SUM = —44 

 
Universal Characteristic of Overflow:  The value of the content of the sum 

register is not the true arithmetic sum of the Augend and the Addend. 
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We can add the numbers manually, and then compare the true arithmetic sum with the 

value that appears in the sum register after applying the binary rules of addition to the binary 
representations of the augend and the addend.  Thus, manually we can easily recognize when an 
overflow occurs.  Manual detection of the presence of overflow is particularly easy for Ones’-
Complement and Two’s-Complement numbers.  In both of these cases, an overflow occurs upon 
the addition of two numbers of same sign, if the content of the sum register is of the opposite 
sign.   However, for the computer a criterion must be established for each form of representation 
that the computer’s processor can use most easily to determine whether or not an overflow has 
occurred.  For Non-Explicitly-Signed Numbers, the criterion used by the computer is the 
presence of a carry-out from the addition of the left-most bit.  For both Ones’-Complement and 
Two’s-Complement numbers, the computer processor recognizes the presence of an overflow 
when the carry-in to the last bit differs from the carry-out.  For Signed-Magnitude Numbers, an 
overflow may be detected when the augend and addend are of identical sign of there is a carry-
out from the second bit from the left, i.e., the leftmost magnitude bit. 
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Floating Point Number Representation 
 

For mixed numbers (that is, numbers having both an integer component and a fractional 
component), there is an alternative to the fixed-point representation described above that allows 
for a greatly enhanced range of numbers to be represented.  This is called Floating-Point 
Number Representation, and is based upon a scheme of number notation developed in the 
nineteenth and twentieth centuries and used by astronomers, astrophysicists, chemists, physicists, 
biologists, and other scientists  to denote numbers either of very large or of very small size.  One 
example of such a number is Avogadro’s Number, which is the number of molecules of a 
chemical compound present in one mole or one gram-molecular weight of the compound, and is 
named after Amadeo Avogadro, a chemist who lived from 1776 to 1856.  The value of 
Avogadro’s Number is 6.02214199 * 1023.  This form of notation is much easier both to write 
and to check than is the integer representation of the number, which is 
602,214,199,000,000,000,000,000.  Avogadro’s Number is an example of a very large number.  
Two examples of very small numbers are the mass of the electron, which is 9.10939 * 10—31 
kilograms (.000000000000000000000000000000910939 kilograms), and the charge of the 
electron, which is —1.60217733 * 10—19 Coulombs (—.000000000000000000160217733 
Coulombs).  The basic form of notation employed in the Normalized Scientific Notation of 
Numbers is: 
 

+ D.fffffffffffff .  .  . * 10+eeee .  .  ,. 
 
 

where: 
 

D consists of a single decimal digit other than zero (1..9), 
 

ffffffffff .  .  . consists of a string of some number of fractional decimal digits (0..9), and 
 

eeee .  .  .  consists of some number of digits of integer exponent. 
 
 
The number to the left of the multiplication sign, comprised of either a plus sign or a minus sign 
followed by a single integer digit and any number of fractional digits, is called the (normalized) 
mantissa, the number 10 immediately to the right of the multiplication sign is the radix, and the 
signed integer written as a superscript following the 10 is the exponent.  
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Schematically, Scientific Notation of Numbers consists of: 
 
 

(Sign of Mantissa) * (Magnitude of Mantissa) * (Radix = 10)(Sign of the Exponent) * (Magnitude of Exponent) 

 
 
Note that the radix for the Scientific Notation of Numbers is always 10, and that despite the fact 
that the radix never varies from 10, nevertheless the well-entrenched custom is to specify the 
radix of 10 explicitly in the notation of the number.  As we shall shortly see, this practice is in 
marked contrast to what is done in the computerized scheme of Floating-Point Number 
Representation.   
 

Conceptually, Floating-Point Number Representation is very similar to the Scientific 
Notation of Numbers.  The latter consists of the adaptation of scientific number notation to the 
digital computer environment.  Certain details of Floating-Point Representation are markedly 
different, however, from those of Scientific Notation.  Most importantly, there is not just one 
form of Floating-Point Representation, but more than a dozen schemes have been employed in 
various computers.  Overall, all schemes of Floating-Point Representation are similar, and 
consist of: 
 
 

(Sign Bit for Mantissa) * (Significand) * (Implicit Radix) (Ssigned-Integer Exponent) 

 
 
The most striking differences between Floating-Point Representation and Scientific Notation 
are in the radix.  Instead of the explicitly-noted universal solitary scientific radix of 10, the 
Floating-Point radix can be either 2 or 8 or 16, and it is never explicitly noted, but rather is 
built-in to the electronic circuitry of the computer.  The programmer must constantly bear in 
mind what radix is implied in a particular floating-point representational scheme, and must 
construct his/her programs accordingly.  The sign of the mantissa is indicated via a specific bit.  
This is 0 if the mantissa is positive, and 1 if negative.  The mantissa is recorded as a fixed-point 
(mixed) number.  The floating-point number is almost always normalized, which means that the 
number is adjusted so that the left-most digit of the fixed-point mantissa is non-zero, with 
compensation for any leftward or rightward movement of the digits of the mantissa being 
accomplished by adjustment of the exponent.  There is always a limitation on how many bits 
may be used to record the magnitude of the mantissa, and this results in a restriction in the 
precision of the recorded Floating-Point number.  In some Floating-Point schemes the entire 
value of the mantissa must be recorded up to the limit of precision imposed by the number of bits 
available to record the mantissa.  However, there is a small but nevertheless significant 
advantage gained by using radix 2.  In a normalized Floating-Point number of radix 2, since the 
leftmost bit is not a zero, therefore it is not necessary to represent this bit explicitly, but instead it 
may be elided, that is, its value may be built-in to the processor hardware so that one additional 
bit is available for augmenting the recorded precision of the mantissa.  Since it might not be 
possible to record all bits of the mantissa up to the level of precision desired, and since in any 



Representation of Numbers and Performance of Arithmetic in Digital Computers 
 
 

 
 

Page 40  
 

15 Aug 1999revised 21 Apr 2005 
© 2005 Charles Abzug 

case the elided bit is not explicitly represented, therefore the field in the number representation 
that ex explicitly reserved for recording the value of the mantissa is referred to not as the 
mantissa field, but rather as the significand. 
 

Regarding the exponent, we usually like to be able to make available a range of values of 
exponent which is at least approximately symmetrical with respect to positive and negative 
values.  If n bits are available for the recording of the exponent, almost all Floating-Point 
Number schemes use either an  Excess-2n-1  or an  (Excess-2n-1-1)  representation of exponents.   

 
In the past, each computer manufacturer decided for itself for implementation within its  

own product line how many schemes for Floating-Point Number Representation to use and 
which schemes to implement.  Relatively recently, a task group was formed under the overall 
guidelines inherent in the method.  More recently, the Institute for Electrical and Electronics 
Engineers (IEEE) promulgated Standard 754 for Floating-Point Number Representation.  This 
actually consists of two standards in one package, one for use in representing 32-bit floating-
point numbers, and the other for 64-bit:  It will take several more years until all other, proprietary 
representations outlive their usefulness and are retired in favor of the new standard. 
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Single-Precision:

Double-Precision:  High-Order Word

Double-Precision:  Low-Order Word

Integer bit elidedExcess-127
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Sign Bit
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Floating-Point Representation:
IEEE Standard 754
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