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What is Deep Learning 

Machine Learning 

Deep 

Learning 

Deep Learning (DL) has emerged around the 

‘10 as a general tool to solve recognition 

problems in: 

● computer vision 

● speech recognition 

● robotics 

● discovering new medicines 

● understanding natural language 

● understanding documents 

● ranking  

● … and many other applications! 

Feature Learning 

AI 



Overview 
 

● History 

● Preliminaries: logistic classification 

● Training 

● Deep networks 

● Regularization 

● Architectures 

○ Convolutional networks 

○ Embeddings 

○ Recurrent models 



History 





Everything can be optimized in Computer Science 

Given a problem to solve P, it can be formalized as {P,C,F} 

P := the problem formulation 

C = {c1,c1,...,cn} := set of configurations, each one of them representing a possible solution to P 

f:C→R := function which provides a goodness measure of the configuration w.r.t. the problem to 

be solved 

Casting the problem via minimization means to maximize or minimize the 

function f in the C space, independently on the implied meaning of P  

   



Minimization: to be used always? 

Problem P1: sort numbers x1,x2,...,xN in increasing order 

In this case, minimization could be left apart 

In facts, there is at least one algorithm (e.g., quicksort) which brings directly to the best (in sense 

of the function f) configuration  

Problem P2: foresee the stocks’ trend 

Much more difficult to formalize into an algorithm 

Minimization comes to help [Yong et al. 2015] 

[Yong et al. 2015] Hu, Yong, et al. "Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review." 

Applied Soft Computing 36 (2015): 534-551. 



Inside the minimization approach 

The main goal of an optimization approach is that of exploring the configuration 

space C looking for the best configuration given the function f (obviously 

avoiding the brute force way!) 

The set of configurations C give a space to explore (very often, a manifold) 

Optimizing means to explore the manifold by iterative approaches (e.g., the 

gradient descent family of strategies) 

The more the manifold is complex (non concave, multimodal), the more often 

local minima are met 



Neural Networks  [1943 - McCulloch & Pitts] 

 

● Optimization approaches which scale very well with data 

● We are talking about artificial neurons and layered computation  



Neural Networks - Neurons 
 

NN are composed by artificial neurons (1943 - McCulloch & Pitts). 

Each neuron has: 

● dendrites (inputs) 

● a nucleus/soma/perceptron (transfer fuction + activation function) 

● an axon (output) 

 



Neural Networks - Neurons (2) 
 

The information flow is unidirectional: 

● The neuron get inputs (electric potentials) 

from the dendrites, that weight them (wi’s) 

● In the nucleus, the weighted inputs are 

summed together (the transfer Σ of the 

whole information coming from the dendrites) 

● In the nucleus, the summation flows into an 

activation function, which may inhibit, 

diminish or amplify it  

● The output of the activation function is 

transmitted through the axon  





Krizhevsky’s 

AlexNet 

Neural Networks - the renaissance 

1980 1990 2000 2010 2020 

Le Cun’s 

LeNet-5 

Fukushima’s 

Neocognitron 

... 

What happened? 

http://people.csail.mit.edu/torralba/research/drawCNN/drawNet.html 



Neural Networks and Deep Learning 

GPUs Data 
Neural 

Networks 

Deep 

Neural 

Networks 



Supervised Classification 
 

● Traditional kind of problem the NN do 

solve 

○ Regression 

○ Ranking 

○ Reinforcement Learning 

○ Detection 

Labels {‘a’, ‘b’, ‘c’, ‘d’, ‘e’} 



Preliminaries: logistic classification 



 

● It assigns a score y to the input x 

through a linear model (W,b) 

● The score helps to identify the class 

label that wins 

Logistic Classifier 

xW + b = y 
1xF FxC 1xC 1xC 

To be trained via a 

training procedure 

x = input or feature vector; F = number of features; W = weights matrix;  

C = number of classes b = biases; y = output or logits/scores vector 

 



Logistic Classifier - the score is not enough 

xW + b = y 
2.0 

1.0 

0.1 

s(y) 
0.7 

0.2 

0.1 

scores probabilities 

s(y) is the SOFTMAX function 



 

● Converts scores into probability distributions 

○ ℝ → (0,1) 

○ Open codomain! 

● The softmax function highlights the largest 

values and suppress values which are 

significantly below the maximum value 

 

Softmax function 
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● → There is only one correct label for each input sample 

● → There is the need to evaluate the classification result 

● OHE encodes labels for a C-class problem in RC, 

indicating the c-th class label with 1, the rest with 0’s 

● OHE needs sparse representation which is inefficient 

especially in the case C is very big (thousands or millions 

of classes...!) 

 

One-Hot Encoding (OHE) 

s(y) 

our results g.t. labels 
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Cross-Entropy 
 

GOAL: computes the distance between two probability 

vectors 

 

● Non symmetric function 

 

 

0.7 

0.2 
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s(y) L 

= 0.36 D(s,L) 
→ 0 high similarity 

 

→ ∞ low similarity 

● The log(·) makes the training faster to converge 

than the MSE function (Σ(s(y)-l)2) 



Résumé 

2.0 

1.0 

0.1 
scores 

0.7 

0.2 

0.1 
probabilities 

1.0 

0.0 

0.0 
1-hot labels input 

xW + b s(y) D(s,L) 

x y s(y) L 

linear model softmax cross-entropy 

Multinomial Logistic Classification 
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Training 



Gradient Descent 

 

 

θ = set of parameters 

 

GOAL: search for the nearest local minimum of a function F 

 

IDEA: iterate on the parameter set proportionally to the negative of the function gradient 

 

 

 

 

such that 



Gradient Descent 
 

● GOAL: minimize a loss function 
 

● Needs to compute the entire training set 

performance of our linear model, that consists 

in N inputs (which is, in general, very big) 

● Needs to minimize a loss function, which 

depends on W (big matrix) and b 

D(s,L) 
→ 0 

 good 

 

→ ∞ 

 bad 

 

N = number of input vectors; α: learning rate value 

Loss = average cross-entropy 

wi 

wj 

learning step 



Stochastic Gradient Descent (SGD) 
 

● IDEA: use a random subset (batch) of the data (of a 

given size) to compute an approximation of the 

gradient of the loss function 
Iterative implementation of the GD algorithm 

At each step, a new batch is extracted 

○ Pros: 

■ simple but sufficiently effective 

■ fast (depending on batch size) 

■ scale the problem with data and model 

size 

○ Cons: 

■ needs more iterations to converge 

■ bad approximation of the loss 

■ suffers from local minima 

■ requires data preprocessing to avoid 

numerical instability 

wi 

wj 

… but tricks to ameliorate SGD are 

present! 



 

● GOAL: improve the convergence of the 

optimizer exploiting the accumulated 

knowledge from previous steps 

 

● IDEA: add a fraction of the previous update 

vector to the current update vector 

 

SGD trick 1: momentum 

wi 

wj 

 

M = momentum; β: friction value (usually 0.9) 

faster convergence and oscillation reduction 



 

● GOAL: make the optimization more robust and 

accurate over time 

 

● IDEA: apply a decay function to the learning 

rate or reduce it when the loss function 

reaches a plateau 

 

 

SGD trick 2: learning-rate decay 

time 

α 

wi 

wj 



 

● GOAL: avoid numerical instability 

 

The values involved in the calculation of the gradient 

descent never get too big or too small 

 

● IDEA: remove the mean and normalize over 

the variance of the i-th feature of the input 

vector x  

 

z-normalization (whitening) 

 

 

SGD trick 3: z-normalization 

 

http://cs231n.github.io/ 

http://cs231n.github.io/
http://cs231n.github.io/


 

A random initialization of the weights and the zero-

init of the biases is critical to get a good starting 

point for the training phase and the convergence of 

the SGD algorithm. 

SGD trick 4: initialization 

equal probability 

of the weights 

(no prior) 



Gradient Descent: graphical representation (2D) 

 

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html 
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Gradient Descent: graphical representation (3D) 

 

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html 
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SGD: tuning 

SGD: H. Robinds and S. Monro, “A stochastic approximation method,” Annals of Mathematical Statistics, vol. 22, pp. 400–407, 1951.  

AdaGrad: J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online leaning and stochastic optimization,” in COLT, 2010. 

 

SGD 

Many hyperparameters: 

● initial learning rate 

● learning rate decay 

● momentum 

● batch size 

● weight initialization 

 

AdaGrad 

SGD modification which implicitly applies momentum 

and learning rate decay. It uses fewer parameters: 

● batch size 

● weight initialization 


