

Thanks to: Deep Learning by Google - Take machine learning to the next level

Deep Neural Networks

 E
x
a
m

p
le

 o
f In

c
e
p
tio

n
is

m

 h
ttp

://w
w

w
.b

o
re

d
p

a
n
d

a
.c

o
m

/in
c
e
p

tio
n
is

m
-n

e
u

ra
l-n

e
tw

o
rk

-d
e
e

p
-d

re
a
m

-a
rt/

https://www.udacity.com/course/deep-learning--ud730
https://www.udacity.com/course/deep-learning--ud730
https://www.udacity.com/course/deep-learning--ud730
https://www.udacity.com/course/deep-learning--ud730
https://www.udacity.com/course/deep-learning--ud730

What is Deep Learning

Machine Learning

Deep

Learning

Deep Learning (DL) has emerged around the

‘10 as a general tool to solve recognition

problems in:

● computer vision

● speech recognition

● robotics

● discovering new medicines

● understanding natural language

● understanding documents

● ranking

● … and many other applications!

Feature Learning

AI

Overview

● History

● Preliminaries: logistic classification

● Training

● Deep networks

● Regularization

● Architectures

○ Convolutional networks

○ Embeddings

○ Recurrent models

History

Everything can be optimized in Computer Science

Given a problem to solve P, it can be formalized as {P,C,F}

P := the problem formulation

C = {c1,c1,...,cn} := set of configurations, each one of them representing a possible solution to P

f:C→R := function which provides a goodness measure of the configuration w.r.t. the problem to

be solved

Casting the problem via minimization means to maximize or minimize the

function f in the C space, independently on the implied meaning of P

Minimization: to be used always?

Problem P1: sort numbers x1,x2,...,xN in increasing order

In this case, minimization could be left apart

In facts, there is at least one algorithm (e.g., quicksort) which brings directly to the best (in sense

of the function f) configuration

Problem P2: foresee the stocks’ trend

Much more difficult to formalize into an algorithm

Minimization comes to help [Yong et al. 2015]

[Yong et al. 2015] Hu, Yong, et al. "Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review."

Applied Soft Computing 36 (2015): 534-551.

Inside the minimization approach

The main goal of an optimization approach is that of exploring the configuration

space C looking for the best configuration given the function f (obviously

avoiding the brute force way!)

The set of configurations C give a space to explore (very often, a manifold)

Optimizing means to explore the manifold by iterative approaches (e.g., the

gradient descent family of strategies)

The more the manifold is complex (non concave, multimodal), the more often

local minima are met

Neural Networks [1943 - McCulloch & Pitts]

● Optimization approaches which scale very well with data

● We are talking about artificial neurons and layered computation

Neural Networks - Neurons

NN are composed by artificial neurons (1943 - McCulloch & Pitts).

Each neuron has:

● dendrites (inputs)

● a nucleus/soma/perceptron (transfer fuction + activation function)

● an axon (output)

Neural Networks - Neurons (2)

The information flow is unidirectional:

● The neuron get inputs (electric potentials)

from the dendrites, that weight them (wi’s)

● In the nucleus, the weighted inputs are

summed together (the transfer Σ of the

whole information coming from the dendrites)

● In the nucleus, the summation flows into an

activation function, which may inhibit,

diminish or amplify it

● The output of the activation function is

transmitted through the axon

Krizhevsky’s

AlexNet

Neural Networks - the renaissance

1980 1990 2000 2010 2020

Le Cun’s

LeNet-5

Fukushima’s

Neocognitron

...

What happened?

http://people.csail.mit.edu/torralba/research/drawCNN/drawNet.html

Neural Networks and Deep Learning

GPUs Data
Neural

Networks

Deep

Neural

Networks

Supervised Classification

● Traditional kind of problem the NN do

solve

○ Regression

○ Ranking

○ Reinforcement Learning

○ Detection

Labels {‘a’, ‘b’, ‘c’, ‘d’, ‘e’}

Preliminaries: logistic classification

● It assigns a score y to the input x

through a linear model (W,b)

● The score helps to identify the class

label that wins

Logistic Classifier

xW + b = y
1xF FxC 1xC 1xC

To be trained via a

training procedure

x = input or feature vector; F = number of features; W = weights matrix;

C = number of classes b = biases; y = output or logits/scores vector

Logistic Classifier - the score is not enough

xW + b = y
2.0

1.0

0.1

s(y)
0.7

0.2

0.1

scores probabilities

s(y) is the SOFTMAX function

● Converts scores into probability distributions

○ ℝ → (0,1)

○ Open codomain!

● The softmax function highlights the largest

values and suppress values which are

significantly below the maximum value

Softmax function

2.0

1.0

0.1
scores

0.7

0.2

0.1
probabilities

0.1 1.0 2.0

1.1

2.7

7.4

● → There is only one correct label for each input sample

● → There is the need to evaluate the classification result

● OHE encodes labels for a C-class problem in RC,

indicating the c-th class label with 1, the rest with 0’s

● OHE needs sparse representation which is inefficient

especially in the case C is very big (thousands or millions

of classes...!)

One-Hot Encoding (OHE)

s(y)

our results g.t. labels

1.0

0.0

0.0

0.7

0.2

0.1

Which distance

measure?

?

Cross-Entropy

GOAL: computes the distance between two probability

vectors

● Non symmetric function

0.7

0.2

0.1

1.0

0.0

0.0

s(y) L

= 0.36 D(s,L)
→ 0 high similarity

→ ∞ low similarity

● The log(·) makes the training faster to converge

than the MSE function (Σ(s(y)-l)2)

Résumé

2.0

1.0

0.1
scores

0.7

0.2

0.1
probabilities

1.0

0.0

0.0
1-hot labels input

xW + b s(y) D(s,L)

x y s(y) L

linear model softmax cross-entropy

Multinomial Logistic Classification

D(s(xW+b), L)

x0

x1

x2

Training

Gradient Descent

θ = set of parameters

GOAL: search for the nearest local minimum of a function F

IDEA: iterate on the parameter set proportionally to the negative of the function gradient

such that

Gradient Descent

● GOAL: minimize a loss function

● Needs to compute the entire training set

performance of our linear model, that consists

in N inputs (which is, in general, very big)

● Needs to minimize a loss function, which

depends on W (big matrix) and b

D(s,L)
→ 0

 good

→ ∞

 bad

N = number of input vectors; α: learning rate value

Loss = average cross-entropy

wi

wj

learning step

Stochastic Gradient Descent (SGD)

● IDEA: use a random subset (batch) of the data (of a

given size) to compute an approximation of the

gradient of the loss function
Iterative implementation of the GD algorithm

At each step, a new batch is extracted

○ Pros:

■ simple but sufficiently effective

■ fast (depending on batch size)

■ scale the problem with data and model

size

○ Cons:

■ needs more iterations to converge

■ bad approximation of the loss

■ suffers from local minima

■ requires data preprocessing to avoid

numerical instability

wi

wj

… but tricks to ameliorate SGD are

present!

● GOAL: improve the convergence of the

optimizer exploiting the accumulated

knowledge from previous steps

● IDEA: add a fraction of the previous update

vector to the current update vector

SGD trick 1: momentum

wi

wj

M = momentum; β: friction value (usually 0.9)

faster convergence and oscillation reduction

● GOAL: make the optimization more robust and

accurate over time

● IDEA: apply a decay function to the learning

rate or reduce it when the loss function

reaches a plateau

SGD trick 2: learning-rate decay

time

α

wi

wj

● GOAL: avoid numerical instability

The values involved in the calculation of the gradient

descent never get too big or too small

● IDEA: remove the mean and normalize over

the variance of the i-th feature of the input

vector x

z-normalization (whitening)

SGD trick 3: z-normalization

http://cs231n.github.io/

http://cs231n.github.io/
http://cs231n.github.io/

A random initialization of the weights and the zero-

init of the biases is critical to get a good starting

point for the training phase and the convergence of

the SGD algorithm.

SGD trick 4: initialization

equal probability

of the weights

(no prior)

Gradient Descent: graphical representation (2D)

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Gradient Descent: graphical representation (3D)

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

SGD: tuning

SGD: H. Robinds and S. Monro, “A stochastic approximation method,” Annals of Mathematical Statistics, vol. 22, pp. 400–407, 1951.

AdaGrad: J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online leaning and stochastic optimization,” in COLT, 2010.

SGD

Many hyperparameters:

● initial learning rate

● learning rate decay

● momentum

● batch size

● weight initialization

AdaGrad

SGD modification which implicitly applies momentum

and learning rate decay. It uses fewer parameters:

● batch size

● weight initialization

