

# Progetti laboratorio SPA

Laboratorio di Sistemi per la Progettazione Automatica A.A. 2005/2006 Nicola Bombieri

# (EDALab

- Ogni progetto deve essere sviluppato nei seguenti passi:
  - 1. Realizzazione modulo IP in codice VHDL a livello RT.
  - 2. Realizzazione testbench per la verifica preliminare.
  - 3. Sintesi del codice prodotto verso il livello Gate.
  - 4. Verifica del codice sintetizzato.
  - 5. Documentazione.
- Punti extra:
  - Descrizione del modulo generato in SystemC (se non esistente).
  - Verifica del codice sintetizzato con SMV

# 1. Realizzazione modulo IP in VHDL:

- Il modulo IP deve essere descritto a livello RT utilizzando costrutti VHDL sintetizzabili, seguendo gli stili di progettazione presentati a lezione.
- E' consigliato ma non obbligatorio l'uso del tool di design presentato a lezione.
- Il codice generato deve essere opportunamente commentato in inglese.
- Le specifiche del modulo ed eventuali chiarimenti sull'interfaccia di comunicazione da sviluppare sono rilasciati al primo incontro (prenotato possibilmente per email).

#### (EDALab

# 2. Realizzazione testbench per la verifica preliminare:

- Deve essere realizzato un modulo da collegare all'IP per la generazione di stimoli in ingresso.
- Il modulo generato e il modulo IP devono essere istanziati e collegati opportunamente in un modulo top-level.
- L'analisi delle porte d'uscita deve essere realizzato con il tool Modelsim presentato a lezione.

# 3. Sintesi del codice prodotto:

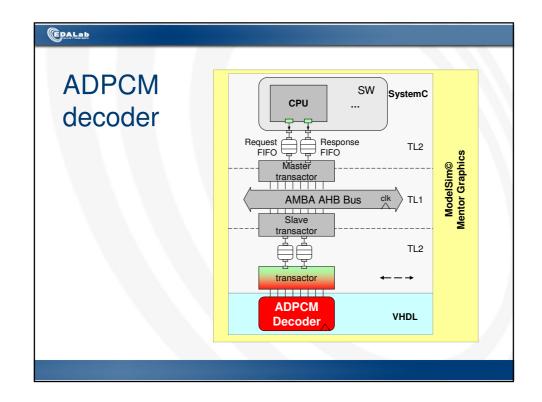
- Il codice prodotto a livello RT deve essere sintetizzato a livello Gate, utilizzando il tool di sintesi Leonardo presentato a lezione.
- Deve essere utilizzata la libreria minc.lib per la sintesi, reperibile in http://profs.sci.univr.it/~bombieri/HDL/SPALab/lib synth/

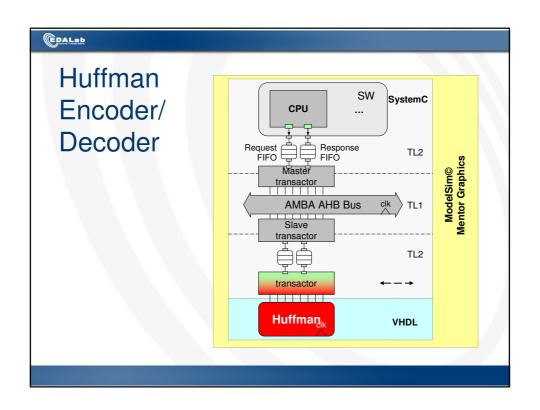
# 4. Verifica del codice sintetizzato:

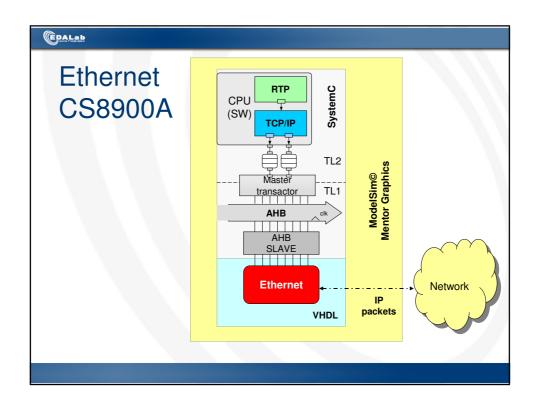
 Il codice sintetizzato deve essere sottoposto ad una verifica preliminare di correttezza, utilizzando il testbench prodotto a livello RT.

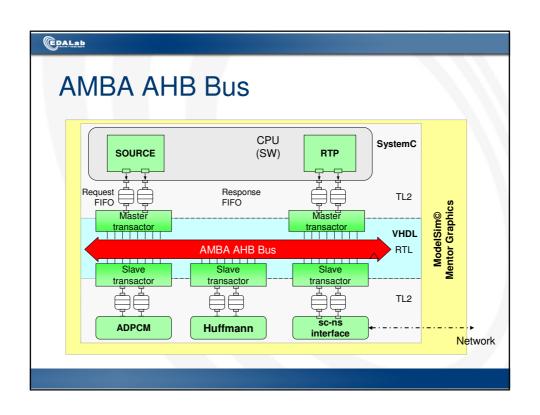
#### (EDALab

# 5. Documentazione:


- L'elaborato deve essere presentato con un documento descrittivo (5 pagine) contenente:
  - Schema riassuntivo.
  - Descrizione delle funzionalità del modulo implementato.
  - Caratteristiche dell'interfaccia usata (nome e tipo porte I/O, eventuale throughput, etc.).
  - Descrizione e motivazione delle strutture dati, segnali, e tipi adottati (più significativi).
  - Problemi riscontrati durante la realizzazione del progetto e soluzioni adottate.
  - · Risultati ottenuti.


- Punto extra 1: descrizione del modulo generato in SystemC (se non esistente).
  - Lo sviluppo del punto extra deve essere concordato con il docente.
  - Il modulo generato in vhdl, deve essere descritto in SystemC
    TLM, utilizzando le librerie TLM OSCI fornite dal docente.
  - In questo contesto, può essere generato un solo testbench in SystemC ed utilizzato per verificare il modulo IP in SystemC, VHDL RTL e VHDL Gate level.
- Punto extra 2: verifica del codice sintetizzato con smv:
  - Il codice sintetizzato può essere verificato formalmente utilizzando il tool smv (McMillan version) esprimendo proprietà CTL, come presentato a lezione.


#### (EDALab


- · Modalità presentazione:
  - Deve essere consegnato un file
    <nomeprogetto.tar.gz> contenente la seguente struttura:
    - docs
      - pdf: documenti in pdf;
      - src: sorgenti documentazione (tex, doc, etc);
    - · software
      - src: file sorgenti (.vhd, etc.)
      - work: eventuali file per la compilazione (Makefile, etc.)
      - <nometool>: file generati per o prodotti dal tool usato (.do, minc.lib, etc).

- · Elenco elaborati:
  - Decoder ADPCM (1 gruppo + 1 gruppo)
  - Encoder Huffman (1 gruppo + 1 gruppo)
  - Decoder Huffman (1 gruppo + 1 gruppo)
  - Ethenret CS8900A (2 gruppi + 2 gruppi)
  - AMBA AHB Bus (2 gruppi + 2 gruppi)
- Una descrizione sommaria dei moduli e del contesto di applicazione è presentata nelle seguenti slide.







