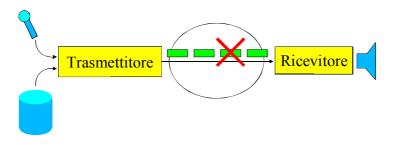


Universita' di Verona Dipartimento di Informatica

Qualità del Servizio per applicazioni multimediali

Davide Quaglia a.a. 2006/2007


1

Sommario

- Perdita di pacchetti
- Errori di trasmissione
- Ritardo medio end-to-end
- Jitter
- Modelli di canale
- Modelli di traffico

Perdita di pacchetti

Def: certi pacchetti non arrivano al decodificatore

3

Perdita di pacchetti (2)

- Cause
 - Congestione della rete
 - overflow della coda del router
 - no ritrassmissioni per contenere i ritardi (UDP)
 - Ritardo molto elevato e timeout del ricevitore
 - Errori sui bit rilevati ma non corretti

Perdita di pacchetti (3)

Rilevazione

- numero progressivo nell'header del pacchetto multimediale
- checksum o CRC per rilevare (non corregg.) errori sui bit

Misura

Packet loss rate (PLR) su una certa finestra temporale

$$PLR = \frac{\text{numero pacchetti persi}}{\text{numero pacchetti spediti}}$$

- Finestra temporale piccola --> valore istantaneo
- Finestra temporale grande --> valore medio

5

Perdita di pacchetti (4)

Effetti

- generazione di pause di silenzio (voce, audio)
- congelamento del video
- degrado della qualità a causa della sostituzione dei campioni mancanti con loro stime a partire dai campioni vicini ricevuti correttamente (concealment)

Errori di trasmissione

- Def: certi bit cambiano valore e tale evento non viene rilevato dal ricevitore
- Cause (soprattutto nei canali radio)
 - interferenza tra nodi
 - attenuazione del segnale per distanza, ostacoli
- Misura
 - Bit error rate (BER) su una certa finestra temporale

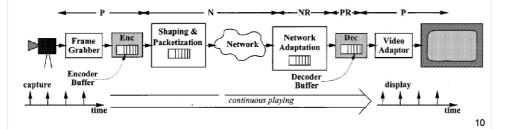
$$BER = \frac{\text{numero di bit errati}}{\text{numero totale di bit}}$$

- Finestra temporale piccola --> valore istantaneo
- Finestra temporale grande --> valore medio

7

Errori di trasmissione (2)

- Effetti
 - degrado della qualità a causa dell'errata decodifica
 - pericolo di crash del decodificatore se questo è implementato in maniera non robusta


Ritardo end-to-end

- Def: tempo intercorrente tra l'istante in cui la grandezza fisica (luce, suono) viene campionata e l'istante in cui il corrispondente campione viene riprodotto al ricevitore
- Al fine di una riproduzione fluida il ritardo end-toend dovrebbe essere costante
- Ci interessa:
 - la variazione del ritardo (sempre)
 - il ritardo end-to-end (per applicazioni interattive)

9

Ritardo end-to-end (2)

- Componenti
 - compressione (ritardo algoritmico + tempo di elaboraz.)
 - accodamento prima della trasmissione
 - propagazione
 - accodamento ed elaborazione nei router
 - accodamento prima della decompressione
 - decompressione (tempo di elaborazione)

Variazione del ritardo end-to-end

- Al ricevitore non è possibile conoscere il ritardo end-to-end in maniera assoluta a causa della mancanza di un clock comune tra TX e RX
- Stima dalla distanza temporale tra i pacchetti
 - R_i istante di arrivo del pacchetto i-esimo
 - T intervallo tra la riproduzione di 2 pacchetti consecutivi

$$D_i = R_i - R_{i-1} - T$$

- idealmente vorremmo che $D_i = 0 \ \forall i$
- in pratica: valor medio di D, è circa nullo

11

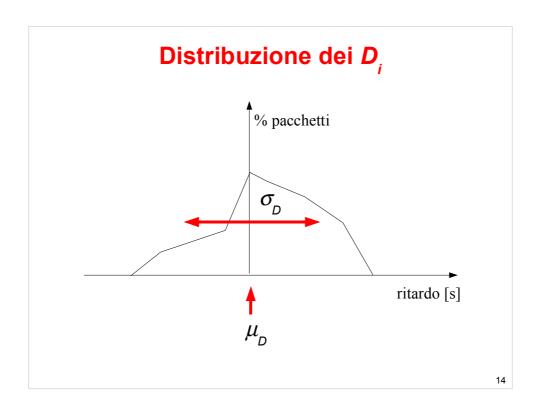
Valor medio di D,

- Calcolo esatto
 - Sia {D_i} l'insieme degli scostamenti misurati su N pacchetti

$$\mu_D = \frac{\sum_{1}^{N} D_i}{N} \approx 0$$

Stima effettuata "al volo" al ricevitore

$$\bar{D}_i = \alpha D_i + (1 - \alpha) \bar{D}_{i-1} \qquad 0 \le \alpha \le 1 \qquad \alpha = \frac{1}{8}$$

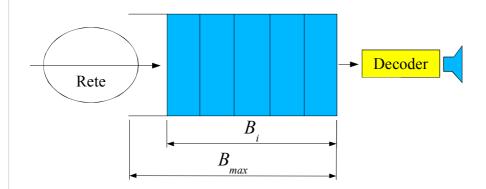

Variazione di D_i

- Calcolo esatto (deviazione standard)
 - Sia {D_i} l'insieme dei ritardi misurati su N pacchetti

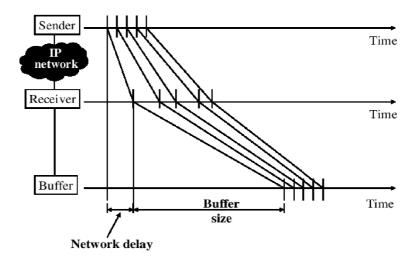
$$\sigma_{D} = \sqrt{\frac{\sum_{1}^{N} (D_{i} - \mu_{D})^{2}}{N}} \approx \sqrt{\frac{\sum_{1}^{N} D_{i}^{2}}{N}}$$

Stima effettuata "al volo" dal ricevitore

$$J_i = \alpha |D_i| + (1 - \alpha) J_{i-1}$$
 $0 \le \alpha \le 1$ $\alpha = \frac{1}{16}$


Jitter

- Def: variazione del ritardo end-to-end
- Cause: variazione nel tempo delle condizioni del canale di comunicazione
 - variazioni del traffico totale nella rete
 - variazioni della qualità del segnale radio
 - movimento del trasmettire e/o ricevitore
 - presenza di ostacoli
 - attenuazione del segnale con la distanza
 - movimento di altri nodi che vanno ad interferire con trasmettitore e/o ricevitore
- Effetti
 - ritardo elevato (vedi slide precedenti) e timeout
 - arrivo "a valanga" dei pacchetti


15

Buffer anti-jitter

- Coda di pacchetti al ricevitore
- Trasforma le variazioni di ritardo in un ritardo fisso
 - Aumenta il ritardo end-to-end (compromesso)

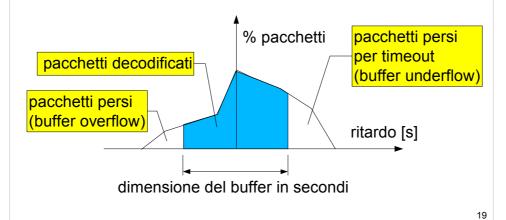
17

Buffer anti-jitter (3)

- All'istante di decodifica del pacchetto i-esimo
 - Se vale la relazione

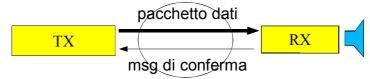
$$D_i = R_i - R_{i-1} - T \ge B_i$$

- allora il pacchetto è considerato perso per timeout e svuotamento del buffer (buffer underflow)
- altrimenti se


$$B_i - D_i > B_{max}$$

- allora il pacchetto è considerato perso per riempimento del buffer (buffer overflow)
- altrimenti il pacchetto è decodificato

Buffer anti-jitter (4)


• L'occupazione del buffer all'istante i-esimo

$$B_{i+1} = min(B_{max}, max(0, B_i - D_i))$$

Round trip time

- Tempo intercorrente tra l'istante di trasmissione di un pacchetto dati e la ricezione di un messaggio di conferma (acknowledge).
- Viene calcolato al TX
- Il messaggio di conferma può essere messo in un
 - pacchetto specifico
 - pacchetto informativo sulle statistiche di ricezione
 - pacchetto multimediale trasmesso nella direzione opposta (applicazioni interattive)

Stima del ritardo end-to-end tramite round trip time

- Metodo di stima del ritardo di propagazione nella rete mediante il calcolo del round trip time
 - Viene fatto al TX (a differenza del metodo del D)
 - Il messaggio di conferma dal RX deve riportare il ritardo nel RX

 $\delta = \frac{\text{ritardo lordo} - \text{ritardo nel RX}}{\delta}$

21

Stima del ritardo tramite round trip time (2)

- Possibile errore di stima se i pacchetti fanno percorsi diversi nelle due direzioni
 - Es: satellite per il download + linea terrestre per l'upload
- In realtà quello che interessa nelle applicazioni interattive è proprio il round trip time

Modelli di traffico

23

Parametri caratterizzanti

- Bitrate
 - Bitrate istantaneo
 - Bitrate medio
 - Bitrate di picco
- Throughput e goodput
- Inter-packet gap
- Burstiness
- Packet size
- Packet arrival time
- Packet arrival rate

Bitrate

- Istantaneo B(t)
 - Numero di bit che passano sul canale nell'unita' di tempo
- Dato un intervallo T di osservazione
 - Bitrate medio

$$\frac{1}{T} \int_0^T B(t) \, dt$$

Bitrate di picco

$$max_T(B(t))$$

25

Throughput e Goodput

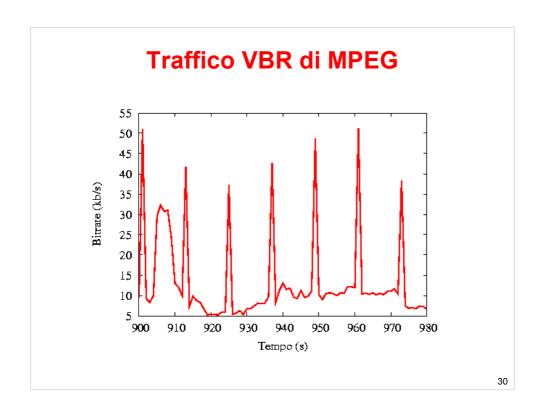
- Throughput
 - quantità totale di bit che arrivano/attraversano un nodo della rete nell'unità di tempo
- Goodput
 - quantità utile di bit che arrivano un nodo della rete nell'unità di tempo
 - non tiene conto dei pacchetti errati o duplicati

Goodput minore/uguale throughput

Altri parametri

- Inter-packet gap
 - distanza temporale tra 2 pacchetti successivi
- Burstiness
 - lunghezza media (su un intervallo di osservazione) delle sequenze di pacchetti aventi inter-packet gap nullo
- Packet size
 - dimensione in byte del pacchetto
- Packet arrival time
 - istante di arrivo di un pacchetto al ricevitore
- Packet arrival rate
 - numero medio (su un intervallo di osservazione) di pacchetti che arrivano al RX nell'unità di tempo

27


Calcolo della burstiness: esempio

lunghezza media del burst =
$$\frac{(3+3+1+1+1)}{5}$$
$$.=\frac{9}{5}=1.8$$

Tipi di modelli di traffico

- Flussi Constant Bit Rate (CBR)
 - bitrate istantaneo costante e uguale al bitrate medio
 - Esempio:
 - conversazione telefonica tradizionale (64kb/s)
- Flussi ON/OFF
 - fase ON --> CBR
 - VoIP con soppressione del silenzio
- Flussi Variable Bit Rate (VBR)
 - bitrate istantaneo variabile nel tempo
 - caratterizzato da bitrate medio e bitrate di picco
 - Esempio:
 - traffico dati su una linea dialup
 - flusso di bit prodotto da un codificatore video MPEG

Modelli di canale

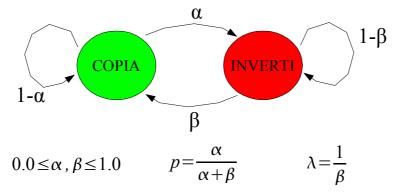
31

Parametri caratterizzanti

- Errori sul bit
 - probabilità di errore
 - sequenze (burst) di errori
- Perdita di pacchetti
 - probabilità di perdita
 - sequenze (burst) di pacchetti persi

Probabilità di errore sul bit

- Sia p_{01} la probabilità che un bit cambi da 0 a 1 durante la trasmissione e p_{10} la probabilità che un bit cambi da 1 a 0
 - Potenziale dipendenza dal tipo di simbolo
 - Potenziale dipendenza statistica tra l'evento riguardante un simbolo e quello riguardante il successivo (memoria)


33

Canale binario simmetrico senza memoria

- Se p₀₁=p₁₀=p e non c'è dipendenza statistica dal bit precedente allora si ha un modello di canale binario simmetrico senza memoria
- Pseudo-codice di simulazione

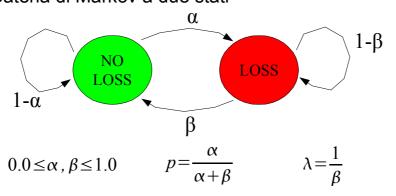
Canale binario simmetrico con memoria

- $p_{01} = p_{10} = p$ dipendente dal bit precedente
- presenza di burst di errori di lunghezza media λ
- Catena di Markov a due stati

35

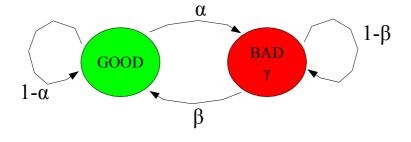
Perdita di pacchetti

- Sia p la probabilità che un pacchetto non venga decodificato
- Potenziale dipendenza statistica tra eventi riguardanti pacchetti consecutivi (memoria)


Canale con perdita senza memoria

- Gli eventi di perdita sono statisticamente indipendenti
- Pseudo-codice di simulazione

37


Canale con perdita con memoria

- eventi di perdita statisticamente dipendenti
- presenza di burst di pacchetti persi di lunghezza media λ
- Catena di Markov a due stati

Modello di Gilbert-Elliot

- Modello con memoria
- Catena di Markov gerarchica
- Nello stato GOOD: nessun errore (o perdita)
- Nello stato BAD: errori (o perdite) indipendenti con probabilità γ

