Entropy Rate of a Markov Chain

For a stationary Markov chain the entropy rate is given by:
H() =HG)=limHX, X, 5,000 X))
=lmH(X, [ X,;)=H(X;|X,)

Where the conditional entropy is computed using the given stationary
distribution. Recall that the stationary distribution M is the solution of the

equations:
e Z'ui F’ij for all j.
i

We explicitly express the conditional entropy in the following slide.

Conditional Entropy Rate for a SMC

Theorem (Conditional Entropy rate of a MC): Let {X.} be a SMC with stationary
distribution P and transition matrix P. Let X; ~H. Then the entropy rate is:

H(x)= _Z/uipij log Pij
Proof: !

H(x)=H(X,[X,)= ZM(Z IOQ

Example (Two state MC): The entropy rate of the two state Markov chain in the
previous example is:

HE)=H (K X) = 2 H@)

H
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If the Markov chain is irreducible and aperiodic, it has unique stationary
distribution on the states, and any initial distribution tends to the stationary
distribution as n grows.




Example: ER of Random Walk

As an example of stochastic process lets take the example of a random walk on a connected
graph. Consider a graph with m nodes with weight \X/ijZO on the edge joining node i with
node j. A particle walk randomly from node to node in this graph.

The random walk is X is a sequence of vertices of the graph. Given X =i, the next vertex j
is choosen from among the nodes connected to node i with a probability proportional to the
weight of the edge connecting i to j.

Thus,

ER of a Random Walk

In this case the stationary distribution has a surprisingly simple form, which we
will guess and verify. The stationary distribution for this MC assigns probability to
node i proportional to the total weight of the edges emanating from node i. Let:

W, =>"W,
i
Be the total weight of edges emanating from node i and let
W = ZWij
i
Be the sum of weights of all the edges. Then Zwi =2W. We now guess that the

stationary distribution is: i

ﬂi:ZW




ER of Random Walk

We check that JP=p:
W; W

2.1R 2W Wl
Thus, the stationary probab1hty of state i is proportional to the weight of edges
emanating from node i. This stationary distribution has an interesting property of
locality: It depends only on the total weight and the weight of edges connected to
the node and therefore it does not change if the weights on some other parts of
the graph are changed while keeping the total weight constant.

=H;

The entropy rate can be computed as follows:

H(y)=H(X,| Xz):_ZﬂiZPij log Pij
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If all the edges have equal weight, , the stationary distribution puts weight E,/2E
on node i, where E, is the number of edges emanating from node i and E is the
total number of edges in the graph. In this case the entropy rate of the random

walk is: E, E, E

H(x) = 10g(2E) - H[ZEZE ZEJ

Apparently the entropy rate, which is the average transition entropy, depends
only on the entropy of the stationary distribution and the total number of edges




Example

Random walk on a chessboard. Let’s king move at random on a 8x8 chessboard.
The king has eight moves in the interior, five moves at the edges and three
moves at the corners. Using this and the preceding results, the stationary
probabilities ate, respectively, 8/420, 5/420 and 3/420, and the entropy rate is
0.92log8. The factor of 0.92 is due to edge effects; we would have an entropy rate
of log8 on an infinite chessboard. Find the entropy of the other pieces for
exercize!

It is easy to see that a stationary random walk on a graph is time reversible; that
is, the probability of any sequence of states is the same forward or backward:

Pr{X, =%, X; = X,.. Xy =X, F= Pr{X; =%, X, =%5,...X; = X}
The converse is also true, that is any time reversible Markov chain can be
represented as a random walk on an undirected weighted graph.




