

l numeri di Fibonacci

Studio dell'espansione di una popolazione di conigli su un'isola deserta.

Ipotesi:

- una coppia di conigli genera una coppia di coniglietti ogni anno
- i conigli si riproducono a partire dal secondo anno di vita
- 3. i conigli sono immortali

I numeri di Fibonacci

\mathbf{F}_{n} = # coppie di conigli all'anno n

- $\mathbf{F}_1 = \mathbf{1}$ si parte con una coppia
- $\mathbf{F}_2 = 1$ la coppia è troppo giovane per riprodursi
- $\mathbf{F}_3 = 2$ nasce la seconda coppia di conigli
- $\mathbf{F}_4 = 3$ nasce un'altra coppia di conigli
- $F_5 = 5$ nascono i primi nipoti della coppia iniziale
- ____

4

I numeri di Fibonacci

In generale, all'anno n sono presenti tutte le coppie di conigli dell'anno precedente (\mathbf{F}_{n-1})

tutte le coppie di coniglietti nate nell'ultimo anno, che sono tante quante le coppie fertili dell'anno precedente, cioè tante quante le coppie presenti due anni prima (\mathbf{F}_{n-2}) .

I numeri di Fibonacci

Relazione di ricorrenza: Relazione di Fibonacci

$$F_n = 1$$
 $n = 1, 2$
 $F_n = F_{n-1} + F_{n-2}$ $n > 2$

Problema algoritmico: come calcolare F_n?

Formula di Binet

$$F_{n} = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{n}$$

Asintoticamente: $F_n \sim 0.45 (1.618)^n$

Un algoritmo numerico

```
fib1(n)

if (n \le 2) return 1;

else return \frac{1}{\sqrt{5}} \left( \frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left( \frac{1-\sqrt{5}}{2} \right)^n
```

Svantaggi:

- l'algoritmo lavora con numeri reali, rappresentati nei calcolatori con precisione limitata
- corriamo il rischio di fornire risposte non corrette a causa degli errori di arrotondamento.

Un algoritmo ricorsivo

```
fib2(n)
  if (n ≤ 2) return 1;
  else return fib2(n-1) + fib2(n-2)
```

Svantaggi:

- Codice elegante ma molto dispendioso: calcola ripetutamente la soluzione dello stesso sottoproblema.
- Costo in tempo esponenziale:

$$T(n) = T(n-1) + T(n-2) + O(1)$$

- relazione "tipo Fibonacci"
- \rightarrow T(n) ≥ F_n ~ 0.45 (1.618)ⁿ

Osservazioni

- Questo esempio evidenzia uno dei peggiori svantaggi della ricorsione.
- Spesso eleganza e semplicità di una formulazione ricorsiva possono andare a scapito dell'efficienza:
 - è possibile ripetere inutilmente gli stessi calcoli, provocando una disastrosa complessità superpolinomiale.

Un algoritmo iterativo

Idea: risolviamo ogni sottoproblema una sola volta, memorizziamo la soluzione e la utilizziamo nel seguito invece di ricalcolarla.

Sia F un array di n interi:

```
fib3(n)
  Fib[0] = 0;
  Fib[1] = 1;
  for (i = 2; i \le n; i++) {
    Fib[i] = Fib[i-1] + Fib[i-2];
  }
  return Fib[n];
```

Costo: $\Theta(n)$

Svantaggio: richiede spazio di memoria $\Theta(n)$

Un algoritmo più efficiente in spazio

```
fib4(n)
  if (n ≤ 2) return 1;
  a = 1;
  b = 1;
  for (i = 3; i ≤ n; i++) {
     c = a + b;
     a = b;
     b = c;
}
return b
```

Costo: tempo $\Theta(n)$ e spazio $\Theta(1)$

4

Un algoritmo più efficiente in tempo

• È possibile calcolare F_n in tempo $\Theta(\log n)$ e spazio $\Theta(1)$ (si vedano i riferimenti bibliografici).

Riferimenti bibliografici

- Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano.
 Algoritmi e strutture dati.
 McGraw-Hill 2004.
- Fabrizio Luccio.
 La struttura degli Algoritmi.
 Boringhieri 1982.