
1

Data Compression

Data Compression
Data compression can be achieved by assigning short descriptions to the most
frequent outcomes of the data source.

We first define the notion of an instantaneous code and then prove the
important Kraft inequality, which asserts that the exponentiated codeword length
assignments must look like a probability mass function. Elementary calculus then
shows that the expected description length must be greater than or equal to the
entropy, the first main result.

2

Examples of Codes
Definition A source code C for a random variable X is a mapping from X, the
range of X, to D∗, the set of finite-length strings of symbols from a D-ary
alphabet. Let C(x) denote the codeword corresponding to x and let l(x) denote
the length of C(x).

For example, C(red) = 00, C(blue) = 11 is a source code for X = {red, blue} with
alphabet D = {0, 1}.

Definition The expected length L(C) of a source code C(x) for a random
variable X with probability mass function p(x) is given by:

where l(x) is the length of the codeword associated with x. Without loss of
generality, we can assume that the D-ary alphabet is D = {0, 1, . . . , D − 1}.

∑
∈

=
χx

xlxpCL)()()(

Example 1
Let X be a random variable with the following distribution and codeword
assignment:
Pr(X = 1) = 1/2, codeword C(1) = 0
Pr(X = 2) = 1/4, codeword C(2) = 10
Pr(X = 3) = 1/8, codeword C(3) = 110
Pr(X = 4) = 1/8, codeword C(4) = 111.

The entropy H(X) of X is 1.75 bits, and the expected length L(C) = El(X) of this
code is also 1.75 bits. Here we have a code that has the same average length as
the entropy. We note that any sequence of bits can be uniquely decoded into a
sequence of symbols of X. For example, the bit string 0110111100110 is decoded
as 134213.

3

Example 2
Consider another simple example of a code for a random variable:
Pr(X = 1) = 1/3, codeword C(1) = 0
Pr(X = 2) = 1/3, codeword C(2) = 10
Pr(X = 3) = 1/3, codeword C(3) = 11.
The code is uniquely decodable. However, in this case the entropy is log 3 = 1.58
bits and the average length of the encoding is 1.66 bits. Here El(X) > H(X).

Example: Morse Code
The Morse code is a reasonably efficient code for the English alphabet using an
alphabet of four symbols: a dot, a dash, a letter space, and a word space. Short
sequences represent frequent letters (e.g., a single dot represents E) and long
sequences represent infrequent letters (e.g., Q is represented by
“dash,dash,dot,dash”). This is not the optimal representation for the alphabet in
four symbols. In fact, many possible codewords are not utilized because the
codewords for letters do not contain spaces except for a letter space at the end of
every codeword, and no space can follow another space. It is an interesting
problem to calculate the number of sequences that can be constructed under
these constraints. The problem was solved by Shannon in his original 1948 paper.

4

Nonsingularity
We now define increasingly more stringent conditions on codes. Let xn denote
(x1, x2, . . . , xn).

Definition A code is said to be nonsingular if every element of the range of X
maps into a different string in D∗; that is, x1 ≠ x2 ⇒ C(x1) ≠ C(x2).
Nonsingularity suffices for an unambiguous description of a single value of X.
But we usually wish to send a sequence of values of X. In such cases we can
ensure decodability by adding a special symbol (a “comma”) between any two
codewords. But this is an inefficient use of the special symbol; we can do better
by developing the idea of selfpunctuating or instantaneous codes. Motivated by
the necessity to send sequences of symbols X, we define the extension of a code
as follows:

Code Extension
Definition The extension C∗ of a code C is the mapping from finitelength strings
of X to finite-length strings of D, defined by:

where C(x1)C(x2) · · · C(xn) indicates concatenation of the corresponding
codewords.

Example: If C(x1) = 00 and C(x2) = 11, then C(x1x2) = 0011.

)()....()(),...,(2121 nn xCxCxCxxxC =

5

Unique Decodability
Definition A code is called uniquely decodable if its extension is nonsingular. In
other words, any encoded string in a uniquely decodable code has only one
possible source string producing it. However, one may have to look at the entire
string to determine even the first symbol in the corresponding source string.

Definition A code is called a prefix code or an instantaneous code if no codeword is a
prefix of any other codeword.

An instantaneous code can be decoded without reference to future codewords
since the end of a codeword is immediately recognizable. Hence, for an
instantaneous code, the symbol xi can be decoded as soon as we come to the end
of the codeword corresponding to it. We need not wait to see the codewords that
come later. An instantaneous code is a selfpunctuating code; we can look down the
sequence of code symbols and add the commas to separate the codewords
without looking at later symbols. For example, the binary string 01011111010
produced by the code of Example 1 is parsed as 0,10,111,110,10.

The nesting of these definitions is shown in Figure. To illustrate the differences
between the various kinds of codes, consider the examples of codeword
assignments C(x) to x ∈ X in Table.

For the nonsingular code, the code string 010 has
three possible source sequences: 2 or 14 or 31, and
hence the code is not uniquely decodable.

6

Comments
To see that it is uniquely decodable, take any code string and start from the
beginning. If the first two bits are 00 or 10, they can be decoded immediately. If
the first two bits are 11, we must look at the following bits. If the next bit is a 1,
the first source symbol is a 3. If the length of the string of 0’s immediately
following the 11 is odd, the first codeword must be 110 and the first source
symbol must be 4; if the length of the string of 0’s is even, the first source symbol
is a 3. By repeating this argument, we can see that this code is uniquely
decodable. Sardinas and Patterson have devised a finite test for unique
decodability, which involves forming sets of possible suffixes to the codewords
and eliminating them systematically. The fact that the last code in the Table is
instantaneous is obvious since no codeword is a prefix of any other.

Kraft Inequality
We wish to construct instantaneous codes of minimum expected length to
describe a given source. It is clear that we cannot assign short codewords to all
source symbols and still be prefix-free. The set of codeword lengths possible for
instantaneous codes is limited by the following inequality.

Theorem (Kraft inequality) For any instantaneous code (prefix code) over an
alphabet of size D, the codeword lengths l1, l2, . . . , lm must satisfy the inequality

Conversely, given a set of codeword lengths that satisfy this inequality, there
exists an instantaneous code with these word lengths.

1≤∑ −

i

liD

7

Proof of Kraft Inequality
Proof: Consider a D-ary tree in which each node has D children. Let the
branches of the tree represent the symbols of the codeword. For example, the D
branches arising from the root node represent the D possible values of the first
symbol of the codeword. Then each codeword is represented by a leaf on the
tree. The path from the root traces out the symbols of the codeword. A binary
example of such a tree is shown in Figure. The prefix condition on the
codewords implies that no codeword is an ancestor of any other codeword on
the tree. Hence, each codeword eliminates its descendants as possible codewords.

Proof of Kraft Inequality
Let lmax be the length of the longest codeword of the set of codewords. Consider
all nodes of the tree at level lmax. Some of them are codewords, some are
descendants of codewords, and some are neither. A codeword at level li has
Dlmax−li descendants at level lmax. Each of these descendant sets must be disjoint.
Also, the total number of nodes in these sets must be less than or equal to Dlmax .
Hence, summing over all the codewords, we have:

Which is the Kraft inequality.

maxmax l

i

ll DD i ≤∑ −

8

Extended Kraft Inequality
Conversely, given any set of codeword lengths l1, l2, . . . , lm that satisfy the Kraft
inequality, we can always construct a tree like the one in Figure. Label the first
node (lexicographically) of depth l1 as codeword 1, and remove its descendants
from the tree. Then label the first remaining node of depth l2 as codeword 2, and
so on. Proceeding this way, we construct a prefix code with the specified l1, l2, . . .
, lm.

We now show that an infinite prefix code also satisfies the Kraft inequality.

Extended Kraft Inequality
Theorem (Extended Kraft Inequality) For any countably infinite set of codewords
that form a prefix code, the codeword lengths satisfy the extended Kraft
inequality,

Conversely, given any l1, l2, . . . satisfying the extended Kraft inequality, we can
construct a prefix code with these codeword lengths.

Proof: Let the D-ary alphabet be {0, 1, . . .,D − 1}. Consider the ith codeword
y1y2 · · · yli. Let 0.y1y2 · · · yli be the real number given by the D-ary expansion

1
1

≤∑
∞

=

−

i

liD

∑
=

−=
i

i

l

j

j
jl Dyyyy

1
210

9

Proof of Extended Kraft Inequality
This codeword corresponds to the interval:

the set of all real numbers whose D-ary expansion begins with 0.y1y2 · · · yli . This
is a subinterval of the unit interval [0, 1]. By the prefix condition, these intervals
are disjoint. Hence, the sum of their lengths has to be less than or equal to 1.
This proves that

Just as in the finite case, we can reverse the proof to construct the code for a
given l1, l2, . . . that satisfies the Kraft inequality. First, reorder the indexing so
that l1 ≤ l2 ≤ Then simply assign the intervals in order from the low end of
the unit interval. For example, if we wish to construct a binary code with l1 = 1, l2
= 2, . . . , we assign the intervals [0, 1/2), [1/2, 1/4), . . . to the symbols, with
corresponding codewords 0, 10,. . . .

)1....0,....0[2121 iii lll D
yyyyyy +

1
1

≤∑
∞

=

−

i

liD

Optimal Codes
We proved that any codeword set that satisfies the prefix condition has to satisfy
the Kraft inequality and that the Kraft inequality is a sufficient condition for the
existence of a codeword set with the specified set of codeword lengths. We now
consider the problem of finding the prefix code with the minimum expected
length.

This is equivalent to finding the set of lengths l1, l2, . . . , lm satisfying the Kraft
inequality and whose expected length L= is less than the expected length
of any other prefix code. This is a standard optimization problem.
Minimize:

over all integers l1, l2, . . . , lm satisfying

∑ ii pl

∑= ii plL

∑ ≤− 1ilD

10

Optimal Codes
We neglect the integer constraint on li and assume equality in the constraint.
Hence, we can write the constrained minimization using Lagrange multipliers as
the minimization of

Differentiating with respect to li , we obtain

Setting the derivative to 0, we obtain

Substituting this in the constraint to find λ, we find λ = 1/(loge D), and hence

yielding optimal code lengths

∑ ∑ −+=)(il
ii DlpJ λ

DDp
l
J

e
l

i
i

i log−−=
∂
∂ λ

D
pD

e

ili

logλ
=−

il
i Dp −=

iDi pl log* −=

Optimal Code Length
This noninteger choice of codeword lengths yields expected codeword length

But since the li must be integers, we will not always be able to set the codeword
lengths in this way. Instead, we should choose a set of codeword lengths li
“close” to the optimal set. We verify that l∗i = −logD pi is a global minimum by
the proof of the following theorem.

Theorem The expected length L of any instantaneous D-ary code for a random
variable X is greater than or equal to the entropy HD(X). That is,

with equality if and only if D−li = pi .

)(log** XHpplpL DiDiii ∑∑ =−==

)(XHL D≥

11

Expected Code Length
Proof: We can write the difference between the expected length and the
entropy as

Letting ri= and we obtain:

by the nonnegativity of relative entropy and the fact (Kraft inequality) that c ≤ 1.
Hence, L ≥ H with equality if and only if pi = D−li (i.e., if and only if −logD pi is an
integer for all i).

iDi
l

Di

i
DiiiD

ppDp

p
pplXHL

i ∑∑

∑∑
+−=

−=−

− loglog

1log)(

lj

j
l DD i

−− ∑/ liDc −∑=

01log)||(

loglog

≥+=

−=− ∑

c
rpD

c
r
ppHL

D

D
i

i
Di

Expected Code Length
Definition A probability distribution is called D-adic if each of the probabilities is
equal to D−n for some n. Thus, we have equality in the theorem if and only if the
distribution of X is D-adic.

The preceding proof also indicates a procedure for finding an optimal code: Find
the D-adic distribution that is closest (in the relative entropy sense) to the
distribution of X. This distribution provides the set of codeword lengths.
Construct the code by choosing the first available node as in the proof of the
Kraft inequality. We then have an optimal code for X. However, this procedure
is not easy, since the search for the closest D-adic distribution is not obvious. In
the next part we give a good suboptimal procedure (Shannon–Fano coding). We
will see later a simple procedure to find the optimal code (Huffman coding).

12

Bounds on the Optimal Code Length

We now demonstrate a code that achieves an expected description length L
within 1 bit of the lower bound; that is,

Recall the concept of optimal codes: We wish to minimize L = pi li subject to
the constraint that l1, l2, . . . , lm are integers and D−li ≤ 1. We proved that the
optimal codeword lengths can be found by finding the D-adic probability
distribution closest to the distribution of X in relative entropy, that is, by finding
the D-adic r (ri = D−li / j D−lj) minimizing

The choice of word lengths li = logD1/pi yields L = H. Since logD1/pi may not
equal an integer, we round it up to give integer word-length assignments,

1)()(+<≤ XHLXH
∑

∑

() 0log)||(≥−=− ∑ − il
D DrpDHL

⎥
⎥

⎤
⎢
⎢

⎡
=

i
Di p

l 1log

Bounds on the Optimal Code Length

where the quantity x is the smallest integer ≥ x. These lengths satisfy the Kraft
inequality since

From the choice of li, we can see that these codeword lengths satisfy

Multiplying by pi and summing over i, we obtain

⎡ ⎤

1
1log

1log

==≤ ∑∑∑
−⎥

⎥

⎤
⎢
⎢

⎡
−

i
pp pDD ii

11log1log +≤≤
i

Di
i

D p
l

p

1)()(+<≤ XHLXH DD

