Image formation and fundamentals

Digital Image Acquisition Sensor array

a b c d e

Output (digitized) image

- When photons strike, electron-hole pairs are generated on sensor sites.
- Electrons generated are collected over a certain period of time.
- The number of electrons are converted to pixel values. (Pixel is short for *picture element*.)

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

151 mm

22.7 mm 40 mm 30 mm

Slide 5	
VM1	 radianza: energia che viene emessa dall'elemento di superficie irradianza: energia che colpisce la camera e dipende da lo spettro della luce, la riflettanza della superficie (che cambia lo spettro) e la sensibilità spettrale del sensore swan; 14/01/2004

Digital Image Acquisition

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Two types of discretization:

- 1. There are finite number of pixels. (sampling \rightarrow Spatial resolution)
- The amplitude of pixel is represented by a finite number of bits. (Quantization → Gray-scale resolution)

used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

Digital Image Acquisition

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

- **256x256** Found on very cheap cameras, this resolution is so low that the picture quality is almost always unacceptable. This is 65,000 total pixels.
- **640x480** This is the low end on most "real" cameras. This resolution is ideal for e-mailing pictures or posting pictures on a Web site.
- **1216x912** This is a "megapixel" image size -- 1,109,000 total pixels -- good for printing pictures.
- 1600x1200 With almost 2 million total pixels, this is "high resolution." You can print a 4x5 inch print taken at this resolution with the same quality that you would get from a photo lab.
- 2240x1680 Found on 4 megapixel cameras -- the current standard -- this allows even larger printed photos, with good quality for prints up to 16x20 inches.
- **4064x2704** A top-of-the-line digital camera with 11.1 megapixels takes pictures at this resolution. At this setting, you can create 13.5x9 inch prints with no loss of picture quality.

Basics: graylevel images

	100	100	200	90
	50	0	50	200
	100	200	100	50
	100	0	200	100

Images : Matrices of numbers Image processing : Operations among numbers bit depth : number of bits/pixel *N* bit/pixel : 2^{N-1} shades of gray (typically N=8)

Matrix Representation of Images

• A digital image can be written as a matrix

$$x[n_1, n_2] = \begin{bmatrix} x[0,0] & x[0,1] & \cdots & x[0, N-1] \\ x[1,0] & x[1,1] & \cdots & x[1, N-1] \\ \vdots & \vdots & \ddots & \vdots \\ x[M-1,0] & \cdots & \cdots & x[M-1, N-1] \end{bmatrix}_{MxN}$$

Digital images acquisition

- Analog camera+A/D converter
- Digital cameras
 - CCDs (Charge Coupled Devices)
 - CMOS technology
- In both cases: optics
 - lenses, diaphrams

Matrices of photo sensors collecting photons of given wavelength

Features of the capture devices:

- Size and number of photosites
- Noise
- Transfer function of the optical filter

- Each colored pixel corresponds to a *vector* of three values {C1,C2,C3}
- The characteristics of the components depend on the chosen *colorspace* (RGB, YUV, CIELab,..)

Digital Color Images

• $x_R[n_1, n_2]$ • $x_G[n_1, n_2]$ • $x_B[n_1, n_2]$

Color channels

Green

Red

Blue

The physical perspective

The perceptual perspective

Simultaneous contrast

Color

Color Displays

Polarize to control the amount of light passed.

Color imaging

- Color reproduction
 - Printing, rendering
- Digital photography
 - High dynamic range images
 - Mosaicking
 - Compensation for differences in illuminant (CAT: chromatic adaptation transforms)
- Post-processing
 - Image enhancement
- Coding
 - Quantization based on color CFSs (contrast sensitivity function)
 - Downsampling of chromatic channels with respect to luminance

Some definitions

- Digital images
 - Sampling+quantization
- Sampling
 - Determines the graylevel value of each pixel
 - Pixel = picture element
- Quantization
 - Reduces the resolution in the graylevel value to that set by the machine precision
- Images are stored as matrices of unisigned chars

Resolution

- Sensor resolution (CCD): Dots Per Inch (DPI)
 - Number of individual dots that can be placed within the span of one linear inch (2.54 cm)
- Image resolution
 - Pixel resolution: NxM
 - Spatial resolution: Pixels Per Inch (PPI)
 - Spectral resolution: bandwidth of each spectral component of the image
 - Color images: 3 components (R,G,B channels)
 - Multispectral images: many components (ex. SAR images)
 - Radiometric resolution: Bits Per Pixel (bpp)
 - Graylevel images: 8, 12, 16 bpp
 - Color images: 24bpp (8 bpp/channel)
 - Temporal resolution: for movies, number of frames/sec
 - Typically 25 Hz (=25 frames/sec)

Slide 25

VM2 da book Shapiro swan; 10/04/2003

Example: pixel resolution

Image Resolution

Don't confuse image size and resolution.

FIGURE 2.20 (a) 1024×1024 , 8-bit image. (b) 512×512 image resampled into 1024×1024 pixels by row and column duplication. (c) through (f) 256×256 , 128×128 , 64×64 , and 32×32 images resampled into 1024×1024 pixels.

Bit Depth – Grayscale Resolution

8 bits

6 bits

a b c d

FIGURE 2.21 (a) 452 × 374, 256-level image. (b)–(d) Image displayed in 128, 64, and 32 gray levels, while keeping the spatial resolution constant.

7 bits

5 bits

28

Bit Depth – Grayscale Resolution

^{e f} ^{g h} 4 bits

FIGURE 2.21

(Continued) (e)–(h) Image displayed in 16, 8, 4, and 2 gray levels. (Original courtesy of Dr. David R. Pickens, Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center.)

2 bits

File format

- Many image formats (about 44)
- BMP, lossless
- TIFF, lossless/lossy
- GIF (Graphics Interchange Format)
 - Lossless, 256 colors, copyright protected
- JPEG (Joint Photographic Expert Group)
 - Lossless and lossy compression
 - 8 bits per color (red, green, blue) for a 24-bit total
- PNG (Portable Network Graphics)
 - Freewere
 - supports truecolor (16 million colours)

Sampling in 2D

Nyquist theorem (1D)

At least 2 sample/period are needed to represent a periodic signal

$$T_s \leq \frac{1}{2} \frac{2\pi}{\omega_{\max}}$$

$$\omega_{s} = \frac{2\pi}{T_{s}} \ge 2\omega_{\max}$$

Delta pulse

- 1D Dirac pulse $\begin{cases} \delta(x) = 1 \text{ if } x=0\\ \delta(x) = 0 \text{ else} \end{cases}$
- 2D Dirac pulse $\begin{cases} \delta(x,y) = 1 \text{ if } x=0 \text{ and } y=0 \\ \delta(x,y) = 0 \text{ else} \end{cases}$ which corresponds to : $\delta(x,y) = \delta(x) \delta(y)$

Dirac brush

• 1D sampling: Dirac comb (or Shah function)

2D sampling : Dirac « brush »

Brush

Brush = product of 2 extended combs

Nyquist theorem

• Sampling in p-dimensions

$$s_T(\vec{x}) = \sum_{k \in Z^p} \delta(\vec{x} - kT)$$
$$f_T(\vec{x}) = f(\vec{x}) s_T(\vec{x})$$

2D Fourier domain

• Nyquist theorem

Resampling

- Change of the sampling rate
 - Increase of sampling rate: Interpolation or upsampling
 - Blurring, low visual resolution
 - Decrease of sampling rate: Rate reduction or downsampling
 - Aliasing and/or loss of spatial details

Upsampling

Upsampling

bilinear

Upsampling bicubic

Quantization

Quantization

Signal before (blue) and after quantization (red) Q

Equivalent noise: $n=f_{q}-f$ additive noise model: $f_{q}=f+n$

Quantization

5 levels

10 levels

50 levels

Distortion measure

• Distortion measure

$$D = E\left[\left(f_{Q} - f\right)^{2}\right] = \sum_{k=0}^{K} \int_{t_{k}}^{t_{k+1}} (f_{Q} - f)^{2} p(f) df$$

- The distortion is measured as the expectation of the mean square error (MSE) difference between the original and quantized signals.
- Lack of correlation with perceived image quality
 - Even though this is a very natural way for the quantification of the quantization artifacts, it is not representative of the *visual annoyance* due to the majority of common artifacts.
- Visual models are used to define perception-based image quality assessment metrics

Example

- The PSNR does not allow to distinguish among different types of distortions leading to the same RMS error between images
- The MSE between images (b) and (c) is the same, so it is the PSNR. However, the visual annoyance of the artifacts is different

