
2

Bolchini ·Ferrandi ·Fummi

Overview

ä Design structure organization
ä Packages
ä Configurations
ä Libraries

ä Design modeling
ä Simulation aspects
ä Synthesis annotations

ä Verification
ä Mixed level simulation
ä Test bench

3

Bolchini ·Ferrandi ·Fummi

Language Elements

äModularity is the principle of partitioning

the hardware design and associated VHDL

description into smaller units, into many

files that can be separately compiled and

verified

äVHDL supports five kinds of design units that

can be independently handled (compiled)

4

Bolchini ·Ferrandi ·Fummi

Design Units

äPrimary Unit à a library unit which can
exist in a design library
äPackage declaration

äEntity

äConfiguration

äPrimary Units provide the definition of the
interface of the system being designed, with
the outside world

5

Bolchini ·Ferrandi ·Fummi

Design Units

äSecondary Unit à a library unit that defines

the body associated with a primary unit that

has already been analyzed into the same

design library

äPackage body (associated with a Package)

äArchitecture (associated with an Entity)

6

Bolchini ·Ferrandi ·Fummi

Package Declaration

ä type

ä subtype

ä constant

ä file

ä alias

ä component

ä attribute

ä function

ä procedure

ä It is a Primary Library Unit
äDeclarations include any of the following:

äA use clause is necessary to access the
package elements from other design units

7

Bolchini ·Ferrandi ·Fummi

Entity

ä It is a Primary Library Unit

äDefines the component (name) and its

interface in terms of inputs, outputs and the

types of signals

äAllows the definition of parametric aspects

by means of the generic clause

8

Bolchini ·Ferrandi ·Fummi

Configuration

ä It is a Primary Library Unit

ä Defines the binding of each component to an
entity , and each entity to an architecture

ä If not used, default binding will occur:
ä For each unbound instance of every component, an

entity matching name, port names and types will be
selected

ä The last analyzed architecture will be selected, if
several are available

9

Bolchini ·Ferrandi ·Fummi

Secondary Library Units

ä They are expression of the primary units
ä Package body

ä code performed by the subprograms

ä Architecture

ä different approaches

ä different details

ä different specification

ä different abstraction

separate compilation

10

Bolchini ·Ferrandi ·Fummi

Library

ä It can be used in:
ä Entity

ä Package

ä Configuration

ä It is valid only for:
ä the primary unit immediately following it

ä any of its secondary units

to be repeated for any primary unit

LIBRARY lib_name, another_lib_name;

11

Bolchini ·Ferrandi ·Fummi

Library

ä Each tool provides a way to map the library
logical name to its physical position:
ä shell variables
ä file system links
ä configuration file

ä Default libraries have been compiled by the tools
vendor

ä Libraries WORK and STD are never declared

LIBRARY work;
LIBRARY std;
USE std.standard.ALL;

implicitly assumed

12

Bolchini ·Ferrandi ·Fummi

Library Scope

äSave design efforts by reusing objects

äHardware components (design entities):
äEntity declaration

äArchitecture body

äConfiguration

äSoftware items (types, procedures, …):
äPackage declaration

äPackage body

13

Bolchini ·Ferrandi ·Fummi

Beh. GCD Exemplification

ENTITY gcd IS
PORT (clock, reset : IN bit;

xi,yi : IN INTEGER;
ou : OUT INTEGER

);
END gcd;
ARCHITECTURE behavioral OF gcd IS
BEGIN

PROCESS
VARIABLE x, y,temp : INTEGER;

BEGIN
WAIT UNTIL clock = '1';
x := xi;
y := yi;
WHILE (x > 0) LOOP

IF (x <= y) THEN
temp := y;
y := x;
x := temp;

END IF;
x := x - y;

END LOOP;
ou <= y;

END PROCESS;
END behavioral;

14

Bolchini ·Ferrandi ·Fummi

Beh. GCD Exemplification

äSize modularity:
äpackage definition

PACKAGE gcd_pack IS
CONSTANT SIZE : INTEGER := 8;

END gcd_pack;

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_arith.ALL;
USE WORK.gcd_pack.ALL;
ENTITY gcd IS

PORT (clock, reset : IN STD_LOGIC;
xi,yi : IN UNSIGNED (SIZE-1 DOWNTO 0);
ou : OUT UNSIGNED (SIZE-1 DOWNTO 0)

);
END gcd;

even if the
package is in
the same file

15

Bolchini ·Ferrandi ·Fummi

Beh. GCD Exemplification

äPackage definition alternatives:
äsame file of the design entity

äonly if definitions concern one design entity
+ simple managing (compilation, backup, ...)

− useless recompilations

äseparate file
ädefinitions shared between multiple design entities

+ modularity, avoid useless recompilations

− compilation order to be respected

16

Bolchini ·Ferrandi ·Fummi

Signal/Variable Type

ä integer , boolean à higher abstraction
levels
+ easy simulation

− no complete synthesis control

ä bit , bit_vector à lower abstraction
levels
+ difficult simulation

− complete synthesis control

17

Bolchini ·Ferrandi ·Fummi

Signal/Variable Type

ä Bit versus std_logic

ä faster simulation / inaccurate results

LIBRARY STD;

äslower simulation / more information
LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.std_logic_arith.ALL;

automatically
linked

std_logic and
std_logic_vector
definition

std_logic_vector
operations
definition

18

Bolchini ·Ferrandi ·Fummi

Signal/Variable Type

äSigned versus unsigned

äbit_vector and std_logic_vector are

considered by default representing signed

number (2-complement representation)

äunsigned operation required unsigned type

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.std_logic_arith.ALL;

unsigned type
and operations
definition

why?

19

Bolchini ·Ferrandi ·Fummi

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_arith.ALL;
USE WORK.gcd_pack.ALL;
ENTITY gcd IS

PORT (clock, reset : IN STD_LOGIC;
xi,yi : IN UNSIGNED (SIZE-1 DOWNTO 0);
ou : OUT UNSIGNED (SIZE-1 DOWNTO 0));

END gcd;

äOperations are correct if bit vectors are
considered without sign

WHILE (x > 0) LOOP
IF (x <= y) THEN

Beh. GCD Exemplification

äAlgorithm works with positive numbers only:

20

Bolchini ·Ferrandi ·Fummi

Size Customization

äSignal variable size can be defined during
component instantiation:
äuse GENERIC keyword

ädefault values assigned if component not
instantiated

+ reuse of the same component in a different
contest

− no synthesis rules compliant (all used synthesis
tools accept it)

21

Bolchini ·Ferrandi ·Fummi

ENTITY gcd IS
GENERIC (SIZE : INTEGER := 8);
PORT (clock, reset : IN STD_LOGIC;

xi,yi : IN UNSIGNED (SIZE-1 DOWNTO 0);
ou : OUT UNSIGNED (SIZE-1 DOWNTO 0));

END gcd;

äComponent definition
COMPONENT gcd_comp

GENERIC (SIZE : INTEGER := 8);
PORT (clock, reset : IN STD_LOGIC;

xi,yi : IN UNSIGNED (SIZE-1 DOWNTO 0);
ou : OUT UNSIGNED (SIZE-1 DOWNTO 0));

END COMPONENT;

Where is
component
definition?

Beh. GCD Exemplification

äEntity modification:

22

Bolchini ·Ferrandi ·Fummi

ARCHITECTURE structural OF ...
...
FOR gcd8, gcd16: gcd_comp USE ENTITY gcd (behavioral);
...

äComponent instantiation
BEGIN

gcd8: gcd_comp
PORT MAP (clock, reset, x1_8, x2_8, o1_8);

gcd16: gcd_comp
GENERIC MAP (16)
PORT MAP (clock, reset, x1_16, x2_16, o1_16);

END structural;

Not mandatory if
component name equal to
design-entity name

Default generic value

Beh. GCD Exemplification

äComponent/design-entity binding:

23

Bolchini ·Ferrandi ·Fummi

Behavioral Description Style

äUseful for:
äspecification analysis

ä rapid prototyping

äwork-group design

äapproximated simulation

äUseless for
äautomatic synthesis (up to now)

äexact simulation

24

Bolchini ·Ferrandi ·Fummi

Behavioral simulation

äOutput is generated in the same time the
clock is asserted and new values are ready

äWhat’s the signal type?

25

Bolchini ·Ferrandi ·Fummi

RTL Description Style

äUseful for:
äautomatic synthesis

äcomplete control of the synthesis results

äacceptable estimation of structural properties

ä test bench generation and reuse

äDrawbacks
ämodeling of details concerning the chosen

architecture
äe.g. states of the FSM

26

Bolchini ·Ferrandi ·Fummi

RTL GCD Exemplification

ARCHITECTURE behavioral OF gcd IS
BEGIN

PROCESS
VARIABLE x, y,temp : unsigned (size-1 DOWNTO 0);

BEGIN
WAIT UNTIL clock = '1';
x := xi;
y := yi;
WHILE (x > 0) LOOP

IF (x <= y) THEN
temp:=y;
y := x;
x:=temp;

END IF;
x := x - y;

END LOOP;
ou <= y;
END PROCESS;

END behavioral;

S1

S0

S2

S3

27

Bolchini ·Ferrandi ·Fummi

Finite State Machine Description

äCharacteristics:
äan explicit finite set of states is identified

äat each clock cycle a new state is selected

äat each clock cycle outputs are evaluated

äa reset signal put the FSM in the reset state

äVHDL consideration:
äa sequence of operations required a sequential

description style (e.g. a process)

28

Bolchini ·Ferrandi ·Fummi

Finite State Machine Description

äSynthesis tool considerations:
ä there are some templates to describe FSMs

which are recognized by synthesis tools

äeach template produces different gate-level
implementations

äFSM versus FSMD:
äcomplex operations can be inserted into each

transition instead of direct input/output
mapping

29

Bolchini ·Ferrandi ·Fummi

RTL GCD Exemplification

äClock synchronization:
äbehavioral style:
PROCESS

VARIABLE x, y, temp : INTEGER;
BEGIN

WAIT UNTIL clock = '1';

äRTL style:
PROCESS(clock, reset)

VARIABLE x, y, temp : UNSIGNED (SIZE-1 DOWNTO 0);
BEGIN

IF (clock'EVENT AND clock = '1') THEN
IF (reset = '1') THEN

reset state
ELSE

next-state evolution
END IF;

END IF;
END PROCESS;

30

Bolchini ·Ferrandi ·Fummi

RTL GCD Exemplification

äStates enumeration:
PACKAGE gcd_pack IS

CONSTANT SIZE : INTEGER := 8;
TYPE state_code IS (S0, S1, S2, S3);

END gcd_pack;
...
PROCESS(clock, reset)

VARIABLE x, y, temp : UNSIGNED (SIZE-1 DOWNTO 0);
VARIABLE state : state_code;

BEGIN
IF (clock'EVENT AND clock = '1') THEN

IF (reset = '1') THEN
state := S0;

äSymbolic states or coded states?

31

Bolchini ·Ferrandi ·Fummi

RTL GCD Exemplification

äStates evolution:
IF (clock'EVENT AND clock = '1') THEN

IF (reset = '1') THEN
state := S0;

ELSE
CASE state IS
WHEN S0 =>

state := S1;
WHEN S1 =>

IF (condition) THEN
state := S2;

ELSE
state := S3;

END IF;
WHEN S2 =>

state := S1;
WHEN S3 =>

...
 END CASE;

END IF;
END IF;

Equivalent to behavioral
(WHILE x > 0) LOOP

behavioral LOOP exit

32

Bolchini ·Ferrandi ·Fummi

RTL GCD Exemplification

äBehavioral condition:
WHILE (x > 0) LOOP

äRTL condition:
Integer values

IF (x > 0) THEN Wrong comparison
UNSIGNED / integer

IF (x > conv_unsigned(0, SIZE)) THEN

Converts integer to a
vector of std_logic
values of size SIZE

Defined in package
std_logic_arith

33

Bolchini ·Ferrandi ·Fummi

RTL GCD Exemplification

äSignal initialization:
äBehavioral level

äOU is initialized to the default level

äRTL level
äsignals initialization implies or not memory

elements (see synthesis lecture)

IF (reset = '1') THEN
state := S0;
ou <= (others => ’0’);

ELSE

Independent on signal size

34

Bolchini ·Ferrandi ·Fummi

RTL Simulation

äOutput generation required some clock
cycles

35

Bolchini ·Ferrandi ·Fummi

Synthesis Annotation

äFSMD model is difficult to be automatically
synthesized:

äsynthesis tool does not automatically isolate the

FSM from the data-path

ä “Ad-hoc” synthesis algorithms for FSMs

cannot be applied à low optimization level

ämanual separation of FSM from Data-path

36

Bolchini ·Ferrandi ·Fummi

Synthesis Annotation

ä Identification of control/condition signals

ä Instantiation of two components (FSM + Data-Path)

PRIMARY INPUTS

CLOCK

CONTROL
UNIT
(FSM)

ELABORATION
UNIT

(Data-path)

RESET

PRIMARY OUTPUTS

CONTROL SIGNALS

CONDITION SIGNALS

FSMD

37

Bolchini ·Ferrandi ·Fummi

Condition signals

...
CASE state IS

...
WHEN S1 =>

IF (x > conv_unsigned(0, SIZE))) THEN
state := S2;

ELSE
state := S3;

END IF;

...
WHEN S1 =>

IF (x_cond = ’1’) THEN
state := S2;

ELSE
state := S3;

END IF;

FSMD
condition
(some bits)

FSM
condition
(1 bit size)

38

Bolchini ·Ferrandi ·Fummi

Control signals

...
CASE state IS

...
WHEN S2 =>

x := x -y;

...
WHEN S2 =>

sub_control <= ’1’;

FSMD
operation
(some bits)

FSM
control
(1 bit size)

ä control signals must be asserted only in such states
where the operation must be executed

ä control signal must be set to ’0’ in all other states

39

Bolchini ·Ferrandi ·Fummi

Mixed Level Verification

äVerification of the RT level description

äComparison specification/implementation

äHypotheses:

äbehavioral level specification is correct

ä timing aspects are not considered

äan acceptable amount of input vectors

guarantee the correctness of the implementation

40

Bolchini ·Ferrandi ·Fummi

Mixed Level Verification

äStrategy:

ENTITY compare IS

BEGIN END;

ARCHITECTURE test OF compare

BEGIN

Inputs generation

Outputs comparison

ENTITY gcd IS
...
BEGIN END;
ARCHITECTURE rtl OF gcd
BEGIN
...

ENTITY gcd IS
...
BEGIN END;
ARCHITECTURE behavioral OF gcd
BEGIN
...

41

Bolchini ·Ferrandi ·Fummi

Mixed Level Verification

ä Inputs generation:
äa process without sensitivity list with one or

more wait statements for each test vector
vectors_generator: PROCESS
BEGIN

reset <= ’0’;
xi_rtl <= conv_unsigned(5, SIZE));
xi_beh <= conv_unsigned(5, SIZE));
yi_rtl <= conv_unsigned(1, SIZE));
yi_beh <= conv_unsigned(1, SIZE));
wait for 1000 ns;
...

Assumption: RTL module has completed the computation

42

Bolchini ·Ferrandi ·Fummi

Mixed Level Verification

ä Inputs generation:
ä the clock signal can be generated by using an

“ad-hoc” process
ARCHITECTURE test OF compare

 SIGNAL clock : STD_LOGIC;
BEGIN

 ...
clock_generator: PROCESS
BEGIN

clock <= ’0’;
wait for 25 ns;
clock <= ’1’;
wait for 25 ns;

END PROCESS;
...

43

Bolchini ·Ferrandi ·Fummi

Mixed Level Verification

äOutputs comparison:
ä the correct specification output is compared to

the possibly wrong implementation output
vectors_generator: PROCESS

VARIABLE o_rtl, o_beh: UNSIGNED (SIZE-1 DOWNTO 0);
BEGIN

...
wait for 1000 ns;
o_rtl := ou_rtl;
o_beh := ou_beh;
ASSERT o_rtl = o_beh

REPORT ”outputs mismatch ..."
SEVERITY error;

...

simulation ends

44

Bolchini ·Ferrandi ·Fummi

Mixed Level Verification

äMultiple test vectors application:
äbuild a textual file with pairs of inputs (e.g., 5 1)

ä read pairs of inputs and apply them
vectors_generator: PROCESS

VARIABLE in_line : LINE;
VARIABLE x1, x2 : INTEGER;

BEGIN
reset <= ’0’;
WHILE NOT (endfile(data_in)) LOOP

READLINE (data_in, in_line);
READ (in_line, x1); READ (in_line, x2);
xi_rtl <= conv_unsigned(x1, SIZE));
xi_beh <= conv_unsigned(x1, SIZE));
yi_rtl <= conv_unsigned(x2, SIZE));
yi_beh <= conv_unsigned(x2, SIZE));
...

