
60

Bolchini · Ferrandi · Fummi

Process “style 4”

➤ Processes with a sensitivity list including a clock
signal, and eventually an asynchronous reset
signal. An if statement constitutes the process,
sensitive to the clock (and reset) events.

Process (ck_name [, reset_name])
begin

[if (reset_name = value) then
… reset behavior

els]if (ck_name = value and ck_name'event) then
… clocked behavior

end if;
end process;

61

Bolchini · Ferrandi · Fummi

Specifying FSMs

➤ Selection of:
➤ Moore or Mealy style

➤ Reset or not

➤ Synchronous/asynchronous reset

➤ Buffers position

➤ Data type definition for State elements

62

Bolchini · Ferrandi · Fummi

FSMs in VHDL - Examples

➤ Two problems:
➤ Coin handler for can disposal

➤ Accepts coins of 50, 100, Selection button

➤ When at 150 allows selection and no change

➤ When at 200 allows selection and change

➤ Bit sequence recognizer
➤ Recognizes concatenated sequences

➤ …0110…

➤ …1110…

➤ When recognized, output at 1.

63

Bolchini · Ferrandi · Fummi

FSMs in VHDL - Coin Handler - 1

➤ Coin handler

s0

s1 s2

s3 s4

50

50

50

100

100

100

sel

sel

No enable
No change

Enable
No change

Enable
Change

**

*

*
�

▲

�

▲

64

Bolchini · Ferrandi · Fummi

FSMs in VHDL - Coin Handler - 2

PACKAGE CH_pack IS

type CHstate is (s0, s1, s2, s3, s4)

END CH_pack;

ENTITY CoinHandler is

PORT(clk, res: in bit;

 Pin: in bit_vector(1 downto 0);

 --01: 50, 10: 100, 11:sel

 Enab, Change: out bit)

END CoinHandler;

65

Bolchini · Ferrandi · Fummi

FSMs in VHDL - Coin Handler - 3

ARCHITECTURE fsm OF CoinHandler IS

signal pstate: CHstate := s0;

signal nstate: CHstate := s0;

BEGIN

StateEvol: process(clk, res)

BEGIN

IF (clk’EVENT and clk = ‘1’) THEN
IF (res = ‘0’) THEN

 pstate <= s0;

ELSE

 pstate <= nstate;

END IF;

 END IF;

END PROCESS StateEvol;

Reset active low

Synchronous
reset signal

66

Bolchini · Ferrandi · Fummi

FSMs in VHDL - Coin Handler - 4

NSL: process(pstate, Pin)
BEGIN
 CASE pstate IS

WHEN ‘s0’ => IF Pin = “01” THEN
 nstate <= s1;
 ELSIF Pin = “10” THEN
 nstate <= s3;
 ELSE
 nstate <= pstate;
 END IF;

WHEN ‘s1’ => IF Pin = “01” THEN
 nstate <= s2;
 …

67

Bolchini · Ferrandi · Fummi

FSMs in VHDL - Coin Handler - 5

WHEN ‘s4’ => IF Pin = “11” THEN
 nstate <= s0;
 ELSE
 nstate <= pstate;
 END IF;

WHEN OTHERS => nstate <= s0;
 END CASE;
END PROCESS NSL;

68

Bolchini · Ferrandi · Fummi

FSMs in VHDL - Coin Handler - 6

OL: Process(pstate)
BEGIN
 CASE pstate IS

WHEN s0|s1|s3 => Enab = ‘0’;
 Change = ‘0’;

WHEN s2 => Enab = ‘1’;
Change = ‘0’;

WHEN s4 => Enab = ‘1’;
Change = ‘1’;

WHEN OTHERS => Enab = ‘0’;
 Change = ‘0’;

 END CASE;
END Process OL;

END fsm;

69

Bolchini · Ferrandi · Fummi

FSMs in VHDL - Recognizer - 1

a b c

d
0/1

0/1

1/0

1/0

1/01/0

0/0

0/0

70

Bolchini · Ferrandi · Fummi

FSMs in VHDL - Recognizer - 2

PACKAGE RecognPack IS
type Rstate is (a, b, c, d);

END RecognPack;

ENTITY Recognizer is
PORT(clk: in bit;
 PI: in bit;
 Z: out bit)

END Recognizer ;

71

Bolchini · Ferrandi · Fummi

FSMs in VHDL - Recognizer - 3

ARCHITECTURE ThreeProc OF Recognizer IS
signal pstate, nstate: Rstate := a;

BEGIN
NextState: PROCESS
BEGIN
 WAIT UNTIL clk = ‘1’ AND clk’EVENT
 CASE pstate IS

WHEN a => IF PI = ‘1’ THEN
nstate <= b;

ELSE
nstate <= a;

END IF;
WHEN b => IF PI = ‘1’ THEN

nstate <= c;
ELSE

nstate <= a;
END IF;

72

Bolchini · Ferrandi · Fummi

FSMs in VHDL - Recognizer - 4

WHEN c => IF PI = ‘1’ THEN

nstate <= d;

ELSE

nstate <= a;

END IF;

WHEN d => IF PI = ‘1’ THEN

nstate <= c;
ELSE

nstate <= a;

END IF;

 WHEN OTHERS => nstate <= a;

 END CASE;

END PROCESS NextState;

73

Bolchini · Ferrandi · Fummi

FSMs in VHDL - Recognizer - 5

Output: PROCESS(pstate, PI)
BEGIN
 CASE pstate IS

WHEN a => Z <= ‘0’;
WHEN b => Z <= ‘0’;
WHEN c => IF PI = ‘1’ THEN

Z <= ‘0’;
ELSE

Z <= ‘1’;
END IF;

WHEN d => IF PI = ‘1’ THEN
Z <= ‘0’;

ELSE
Z <= ‘1’;

END IF;
WHEN OTHERS => Z <= ‘0’;

 END CASE;
END PROCESS;

74

Bolchini · Ferrandi · Fummi

FSMs in VHDL - Recognizer - 6

StateEvol: Process
begin

WAIT UNTIL clk'EVENT and clk = '1';
pstate <= nstate;

end process;
 end ThreeProc;

75

Bolchini · Ferrandi · Fummi

FSMs in VHDL - Recognizer - 7

76

Bolchini · Ferrandi · Fummi

FSMs in VHDL - Recognizer - 8

77

Bolchini · Ferrandi · Fummi

FSMs in VHDL - Recognizer - 9

78

Bolchini · Ferrandi · Fummi

Sequential elements - summary

➤ Latch inference
➤ No specified assignment for a conditional

branch
➤ It is not possible to model latches using

variables

➤ Clock inference
CLK = ‘1’ AND clk’EVENT

➤ type: Bit, Boolean, Std_ulogic, Std_logic
➤ No ELSE clause in the IF statement checking

the clock edge

79

Bolchini · Ferrandi · Fummi

Signals: wires or memory?

➤ Latches are inferred when signals are
not assigned in all conditional branch.

➤ Latches are inferred each time an
assignment is made before a wait until
statement

➤ Memory (not latches) is inferred on
variables anytime it is necessary to store
data for subsequent simulation steps.

80

Bolchini · Ferrandi · Fummi

Synthesis guidelines

➤ Data Flow statements translate into
combinational logic

➤ Sequential logic is specified in a PROCESS
statement that includes a Clock signal.

➤ Explicit State Machines contain one WAIT
UNTIL CLOCK'EDGE in a process, with a
CASE statement describing the FSM.

➤ Implicit State Machines contain multiple
WAIT UNTIL CLOCK'EDGE in a process
without a sensitivity list.

