
Simple Scalar v 4.0

A brief introduction



Architectural simulator

• Definition: a software that reproduces the 
behavior of a computer system.

• A simulator is:
• Faster in reproducing computer system behavior
• Flexible and easier to develop
• Easy system instrumentation
• Easy validation considering a future hw prototype
• Permits more design space exploration



Architectural simulator

• Overall structure



Simple Scalar toolset

• The SimpleScalar toolset is not merely an 
hardware simulator, but a set of tools that 
constitutes a complete simulation 
environment

• Main elements:
• Processor and devices behavioral models
• Supports for many ISA and I/O interfaces
• Portable to modern computer platforms
• Rich simulation environment



Simple Scalar toolset

Environment 
Tools



Simple Scalar toolset

• Miscellanea:
• Developed at UM, UW-Madison, UT-Austin
• Over ten year of development
• Widely deployed in academy and industry
• Docs and sources free available

• www.simplescalar.com
• http://www.simplescalar.com/v4test.html

http://www.simplescalar.com/
http://www.simplescalar.com/v4test.html


Main advantages
• Extensible

• Source included for everything: compiler, libraries, simulators
• Widely encoded, user-extensible instruction format

• Portable
• At the host, virtual target runs on most Unix-like boxes
• At the target, simulators can support multiple ISA’s

• Detailed
• Execution driven simulators
• Supports wrong path execution, control and data speculation, etc...
• Many sample simulators included

• Performance (on P4-1.7GHz)
• Sim-Fast: 10+ MIPS
• Sim-OutOrder: 350+ KIPS



Simple Scalar environment

• Crosscompiler (GNU Tools)
• Libraries ported to SimpleScalar
• Third parts add-ons
• Simple Scalar Simulators



Simulator architecture
• Programming style

• All “.c” files have an accompanying “.h” file with same base
• “.h” files define public interfaces “exported” by module

• Mostly stable, documented with comments, studying 
these files

• “.c” files implement the exported interfaces

• Simulator modules
• sim-*.c files, each implements a complete simulator core

• Reusable S/W components facilitate “rolling your own”
• System components
• Simulation components
• Add-on “really useful” components



Simulator Architecture

Syscalls, devices, 
I/O traces

PISA, Alpha, 
StrongARM, 
PPC, x86

Provides event
simulation services

Perf core 
implements 
machine

Applications and OS
that run on simulator



Simulator Architecture
Abstraction levels



Instruction set definition

• The instruction set architecture is described in a single 
file

• This file is used to build decoders, dependency 
analyzers, functional components, disassemblers, 
appendices, etc.

• Example:



Simulator I/O
• To realize a useful simulator it is necessary to introduce an 

input/output interface:
• I/O is supported using system calls technique
• Ultrix syscalls are taken as inspiration example

• The system calls algo plays something like this:
• Syscall found in target application or OS
• Decode syscall
• Copy syscall argument (if present) into simulator memory
• Perform syscall on host system
• Copy syscall result (if present) into simulator memory
• Target application or OS can go on…



Simple Scalar simulators
• Simple Scalar environment provides seven simulators to 

satisfy every possible request and necessity:
– Sim-fast
– Sim-safe
– Sim-profile
– Sim-cache and sim-cheetah
– Sim-outorder and sim-mase

• Simple Scalar simulators varies in performance, 
complexity, detail level and functionalities

• Every simulator is designed for a specific task but can be 
easily modified to satisfy specific requests



Simple Scalar simulators



Simulators components
Standard modules

• bpred.[hc] - branch predictors
• cache.[hc] - cache module
• eventq.[hc] - event queue module
• libcheetah/ - Cheetah cache simulator library
• ptrace.[hc] - pipetrace module
• res.[hc] - resource manager module
• sim.h - simulator main code interface definitions
• textprof.pl - text segment profile view (Perl 

Script)
• pipeview.pl - pipetrace view (Perl script)
• dlite.[hc] - DLite!, the lightweight debugger



Simulators components
Standard modules

• eio.[hc] - external I/O tracing module
• loader.[hc] - program loader
• memory.[hc] - flat memory space module
• regs.[hc] - register module
• machine.[hc] - target and ISA-dependent 

routines
• machine.def - SimpleScalar ISA definition
• symbol.[hc] - symbol table module
• syscall.[hc] - proxy system call implementation



Simulators components
Standard modules

• eval.[hc] - generic expression evaluator
• libexo/ - EXO(-skeletal) persistent data structure 

library
• misc.[hc] - everything miscellaneous
• options.[hc] - options package
• range.[hc] - range expression package
• stats.[hc] - statistics package



Simple Scalar evolution

• The simple and 
earlier simulator: 
sim-fast

• Very few options 
supported



Simple Scalar evolution

• Sim-cache
• Memory simulation
• More feature than sim-fast
• Profiling functions

Core
Simulator

Virtual
Memory

Instruction
Cache

Data
Cache



Simple Scalar evolution
Sim-Outorder



Simple Scalar evolution

• MASE: latest evolution.
• Starting from sim-outorder have been 

added:
• Micro-functional performance model

– Higher accuracy of the performance model
• Checker and oracle

– Checker improve validation support
– Oracle allows for perfect studies

• Speculative state management
– Simplify aggressive speculation

• Callback interface
– Provides a more sophisticated memory simulation


	Simple Scalar v 4.0
	Architectural simulator
	Architectural simulator
	Simple Scalar toolset
	Simple Scalar toolset
	Simple Scalar toolset
	Main advantages
	Simple Scalar environment
	Simulator architecture
	Simulator Architecture
	Simulator ArchitectureAbstraction levels
	Instruction set definition
	Simulator I/O
	Simple Scalar simulators
	Simple Scalar simulators
	Simulators componentsStandard modules
	Simulators componentsStandard modules
	Simulators componentsStandard modules
	Simple Scalar evolution
	Simple Scalar evolution
	Simple Scalar evolutionSim-Outorder
	Simple Scalar evolution

