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Didactic material 

•  Textbook 
–  Signal Processing and Linear Systems, B.P. Lathi, CRC Press 

•  Other books 
–  Signals and Systems, Richard Baraniuk’s lecture notes, available on line 
–  Digital Signal Processing (4th Edition) (Hardcover), John G. Proakis, Dimitris K 

Manolakis  
–  Teoria dei segnali analogici, M. Luise, G.M. Vitetta, A.A. D’Amico, McGraw-Hill 
–  Signal processing and linear systems, Schaun's outline of digital signal 

processing 

•  All textbooks are available at the library 

•  Handwritten notes will be available on demand 
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Signals&Systems 

System 

Input signal Output signal 

time 

amplitude 

frequency 

|amplitude| Linear time invariant 
systems (LTIS) 

LTIS perform any kind 
of processing on the 

input data to generate 
output data 
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Contents 

Signals 

•  Signal classification and 
representation 

–  Types of signals 
–  Sampling theory 
–  Quantization 

•  Signal analysis 
–  Fourier Transform 

§  Continuous time, Fourier series, 
Discrete Time Fourier Transforms, 
Windowed FT 

–  Spectral Analysis 

Systems 

•  Linear Time-Invariant Systems 
–  Time and frequency domain analysis 
–  Impulse response 
–  Stability criteria 

•  Digital filters 
–  Finite Impulse Response (FIR) 

•  Mathematical tools 
–  Laplace Transform 

§  Basics 

–  Z-Transform 
§  Basics 

 

Applications in the domain of Bioinformatics 
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What is a signal? 

•  A signal is a set of information of data 
–  Any kind of physical variable subject to variations represents a signal 
–  Both the independent variable and the physical variable can be either scalars or 

vectors 
§  Independent variable: time (t), space (x, x=[x1,x2], x=[x1,x2,x3]) 
§  Signal: 
§  Electrochardiography signal (EEG) 1D, voice 1D, music 1D 
§  Images (2D), video sequences (2D+time), volumetric data (3D) 
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Example: 1D biological signals: ECG 

6 



Gloria Menegaz 

Example: 1D biological signals: EEG 
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1D biological signals: DNA sequencing 

GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATG…… 
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Example: 2D biological signals: MI MRI 

CT 

US 
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Example: 2D biological signals: microarrays 
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Signals as functions 

•  Continuous functions of real independent variables 
–  1D: f=f(x) 
–  2D: f=f(x,y) x,y 
–  Real world signals (audio, ECG, images) 

•  Real valued functions of discrete variables 
–  1D: f=f[k] 
–  2D: f=f[i,j] 
–  Sampled signals 

•  Discrete functions of discrete variables 
–  1D: fd=fd[k] 
–  2D: fd=fd[i,j] 
–  Sampled and quantized signals 

11 



Gloria Menegaz 

Images as functions 

•  Gray scale images: 2D functions 
–  Domain of the functions: set of (x,y) values for which f(x,y) is defined : 2D lattice 

[i,j] defining the pixel locations 
–  Set of values taken by the function : gray levels 

•  Digital images can be seen as functions defined over a discrete domain {i,j: 
0<i<I, 0<j<J} 

–  I,J: number of rows (columns) of the matrix corresponding to the image 
–  f=f[i,j]: gray level in position [i,j] 
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Example 1: δ function 
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Example 2: Gaussian 
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Example 3: Natural image 
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Example 3: Natural image 
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What is a system? 

•  Systems process signals to  
–  Extract information (DNA sequence analysis) 
–  Enable transmission over channels with limited capacity (JPEG, JPEG2000, 

MPEG coding) 
–  Improve security over networks (encryption, watermarking) 
–  Support the formulation of diagnosis and treatment planning (medical imaging) 
–  ……. 

System 
input output 

closed-loop 

The function linking the output 
of the system with the input 
signal is called transfer function 
and it is typically indicated with 
the symbol h(•)  
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Classification of signals 

•  Continuous time – Discrete time 

•  Analog – Digital (numerical) 

•  Periodic – Aperiodic 

•  Energy – Power 

•  Deterministic – Random (probabilistic) 

•  Note 
–  Such classes are not disjoint, so there are digital signals that are periodic of 

power type and others that are aperiodic of power type etc. 
–  Any combination of single features from the different classes is possible  
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Continuous time – discrete time 

•  Continuous time signal: a signal that is specified for every real value of the 
independent variable 

–  The independent variable is continuous, that is it takes any value on the real axis 
–  The domain of the function representing the signal has the cardinality of real 

numbers 
§  Signal ↔ f=f(t) 
§  Independent variable ↔ time (t), position (x) 
§  For continuous-time signals:  t ∈ 

time 

amplitude 
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Continuous time – discrete time 

•  Discrete time signal: a signal that is specified  only for discrete values of the 
independent variable 

–  It is usually generated by sampling so it will only have values at equally spaced 
intervals along the time axis 

–  The domain of the function representing the signal has the cardinality of integer 
numbers 

§  Signal ↔ f=f[n], also called “sequence” 
§  Independent variable ↔ n 
§  For discrete-time functions:  t∈Z

time (discrete) 

amplitude 
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Analog - Digital 

•  Analog signal: signal whose amplitude can take on any value in a 
continuous range 

–  The amplitude of the function f(t) (or f(x)) has the cardinality of real numbers 
§  The difference between analog and digital is similar to the difference between 

continuous-time and discrete-time. In this case, however, the difference is with respect 
to the value of the function (y-axis)  

–  Analog corresponds to a continuous y-axis, while digital corresponds to a 
discrete y-axis 

 
 
 
 

•  Here we call digital what we have called quantized in the EI class 

•  An analog signal can be both continuous time and discrete time 
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Analog - Digital 

•  Digital signal: a signal is one whose amplitude can take on only a finite 
number of values (thus it is quantized) 

–  The amplitude of the function f() can take only a finite number of values 
–  A digital signal whose amplitude can take only M different values is said to be M-

ary 
§  Binary signals are a special case for M=2 

time 
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Example 

–  Continuous time analog 

–  Continuous time digital (or quantized) 
§  binary sequence, where the values of the function can only be one or zero. 
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Example 

•  Discrete time analog 

•  Discrete time digital 
§  binary sequence, where the values of the function can only be one or zero. 
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Summary 

Signal amplitude/ 

Time or space 
Real Integer 

Real 
Analog  

Continuous-time  

Digital  

Continuous-time 

Integer 
Analog 

Discrete-time 

Digital 

Discrete time 
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Note 

•  In the image processing class we have defined as digital those signals that 
are both quantized and discrete time. It is a more restricted definition. 

•  The definition used here is as in the Lathi book. 
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Periodic - Aperiodic 

•  A signal f(t) is periodic if there exists a positive constant T0 such that 

–  The smallest value of T0 which satisfies such relation is said the period of the 
function f(t) 

–  A periodic signal remains unchanged when time-shifted of integer multiples of the 
period 

–  Therefore, by definition, it starts at minus infinity and lasts forever 

–  Periodic signals can be generated by periodical extension 

0( ) ( )f t T f t t+ = ∀

t t
n n

−∞ ≤ ≤ +∞ ∈

−∞ ≤ ≤ +∞ ∈

°
Z
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Examples 

•  Periodic signal with period T0 

•  Aperiodic signal 
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Causal and non-Causal signals 

•  Causal signals are signals that are 
zero for all negative time (or spatial 
positions), while  

•  Anticausal are signals that are zero for 
all positive time (or spatial positions).  

•  Noncausal signals are signals that 
have nonzero values in both positive 
and negative time 
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Causal and non-causal signals 

•  Causal signals 

•  Anticausals signals 

•  Non-causal signals 

( ) 0 0f t t= <

( ) 0 0f t t= ≥

1 10 : ( ) 0t f t∃ < =
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Even and Odd signals 

•  An even signal is any signal f such that f (t) = f (-t). Even signals can be 
easily spotted as they are symmetric around the vertical axis.  

•  An odd signal, on the other hand, is a signal f such that f (t)= - (f (-t)) 
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Decomposition in even and odd components 

•  Any signal can be written as a combination of an even and an odd signals 
–  Even and odd components 

( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )

1 1
2 2
1    even component
2
1    odd component
2

e

o

e o

f t f t f t f t f t

f t f t f t

f t f t f t

f t f t f t

= + − + − −

= + −

= − −

= +
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Example 
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Example 

•  Proof 
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Some properties of even and odd functions 

•  even function x odd function = odd function 

•  odd function x odd function = even function 

•  even function x even function = even function 

•  Area 

( ) ( )

( )

0

2

0

a a

e e
a
a

e
a

f t dt f t dt

f t dt

−

−

=

=

∫ ∫

∫
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Deterministic - Probabilistic 

•  Deterministic signal: a signal whose 
physical description in known 
completely 

•  A deterministic signal is a signal in 
which each value of the signal is fixed 
and can be determined by a 
mathematical expression, rule, or 
table.  

•  Because of this the future values of the 
signal can be calculated from past 
values with complete confidence. 

–  There is no uncertainty about its 
amplitude values 

–  Examples: signals defined through a 
mathematical function or graph 

•  Probabilistic (or random) signals: the 
amplitude values cannot be predicted 
precisely but are known only in terms 
of probabilistic descriptors 

•  The future values of a random signal 
cannot be accurately predicted and 
can usually only be guessed based on 
the averages of sets of signals 

–  They are realization of a stochastic 
process for which a model could be 
available 

–  Examples: EEG, evocated potentials, 
noise in CCD capture devices for digital 
cameras 
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Example 

•  Deterministic signal 

•  Random signal 
time 
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Finite and Infinite length signals 

•  A finite length signal is non-zero over a finite set of values of the 
independent variable 

•  An infinite length signal is non zero over an infinite set of values of the 
independent variable 

–  For instance, a sinusoid f(t)=sin(ωt) is an infinite length signal 

( ) 1 2

1 2

, :
,

f f t t t t t
t t
= ∀ ≤ ≤

> −∞ < +∞
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Size of a signal: Norms 

•  "Size" indicates largeness or strength.  

•  We will use the mathematical concept of the norm to quantify this notion for 
both continuous-time and discrete-time signals. 

•  The energy is represented by the area under the curve (of the squared 
signal) 

time 
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Energy 

•  Signal energy 

•  Generalized energy : Lp norm 
–  For p=2 we get the energy (L2 norm) 

2

2

( )

( )

f

f

E f t dt

E f t dt

+∞

−∞

+∞

−∞

=

=

∫

∫

( ) ( )( )( )
1/

1

pp
f t f t dt

p

=

≤ < +∞

∫
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Power 

•  Power 
–  The power is the time average (mean) of the squared signal amplitude, that is the 

mean-squared value of f(t) 
 

/ 2
2

/ 2

/ 2
2

/ 2

1lim ( )

1lim ( )

T

f T
T
T

f T
T
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Power - Energy 

•  The square root of the power is the root mean square (rms) value 
–  This is a very important quantity as it is the most widespread measure of 

similarity/dissimilarity among signals 
–  It is the basis for the definition of the Signal to Noise Ratio (SNR) 

–  It is such that a constant signal whose amplitude is =rms holds the same power 
content of the signal itself 

•  There exists signals for which neither the energy nor the power are finite 

t 

f 
ramp 

0 

1020log signal

noise

P
SNR

P
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠
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Energy and Power signals 

•  A signal with finite energy is an energy signal 
–  Necessary condition for a signal to be of energy type is that the amplitude goes 

to zero as the independent variable tends to infinity 

•  A signal with finite and different from zero power is a power signal 
–  The mean of an entity averaged over an infinite interval exists if either the entity 

is periodic or it has some statistical regularity 
–  A power signal has infinite energy and an energy signal has zero power 
–  There exist signals that are neither power nor energy, such as the ramp 

•  All practical signals have finite energy and thus are energy signals 
–  It is impossible to generate a real power signal because this would have infinite 

duration and infinite energy, which is not doable. 
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Useful signal operations: shifting, scaling, inversion 

•  Shifting: consider a signal f(t) and the same signal delayed/anticipated by T 
seconds f(t) 

t 
f(t+T) 

t 

f(t-T) 

t 

T 

T 

T>0 

anticipated 

delayed 
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Useful signal operations: shifting, scaling, inversion 

•  (Time) Scaling: compression or expansion of a signal in time 
f(t) 

t f(2t) 

t f(t/2) 

t 

compression 

expansion 

( ) ( )2t f tϕ =

( ) ( )/ 2t f tϕ =
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•  Scaling: generalization 

Useful signal operations: shifting, scaling, inversion 

( ) ( )

( )

1
  compressed version

 dilated (or expanded) version

Viceversa for 1

a
t f at

tt f
a
a

ϕ

ϕ

>

= →

⎛ ⎞= →⎜ ⎟
⎝ ⎠

<
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•  (Time) inversion: mirror image of f(t) about the vertical axis 

Useful signal operations: shifting, scaling, inversion 

( ) ( )t f tϕ = −

f(t) 

f(-t) 

0 

0 
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•  Combined operations: f(t) → f(at-b) 

•  Two possible sequences of operations 

1.  Time shift f(t) by to obtain f(t-b). Now time scale the shifted signal f(t-b) by a to 
obtain f(at-b). 

2.  Time scale f(t) by a to obtain f(at). Now time shift f(at) by b/a to obtain f(at-b).  
•  Note that you have to replace t by (t-b/a) to obtain f(at-b) from f(at) when replacing t by 

the translated argument (namely t-b/a)) 

Useful signal operations: shifting, scaling, inversion 
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Useful functions 

•  Unit step function 
–  Useful for representing causal signals 

( )
1 0
0 0
t

u t
t
≥⎧

= ⎨
<⎩

( ) ( ) ( )2 4f t u t u t= − − −
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Useful functions 

•  Continuous and discrete time unit step functions 

u(t) u[k] 
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Useful functions 

•  Ramp function (continuous time) 
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Useful functions 

•  Unit impulse function 

( )

( )

0 0

1

t t

t dt

δ

δ
+∞

−∞

= ≠

=∫

t 0 

δ(t) 

-ε/2 ε/2 t 

ε→0 1/ε 
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Properties of the unit impulse function 

•  Multiplication of a function by impulse 

•  Sampling property of the unit function 

–  The area under the curve obtained by the product of the unit impulse function 
shifted by T and ϕ(t) is the value of the function ϕ(t) for t=T 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0t t t
t t T T t T

φ δ φ δ

φ δ φ δ

=

− = −

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0 0t t dt t dt t dt

t t T dt T

φ δ φ δ φ δ φ

φ δ φ

+∞ +∞ +∞

−∞ −∞ −∞

+∞

−∞

= = =

− =

∫ ∫ ∫

∫
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Properties of the unit impulse function 

•  The unit step function is the integral of the unit impulse function 

–  Thus 

( )

( ) ( )
t

du t
dt

t dt u t

δ

δ
−∞

=

=∫

( ) ( )
0 0
1 0

t t
t dt u t

t
δ

−∞

<⎧
= = ⎨

≥⎩
∫
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Properties of the unit impulse function 

•  Discrete time impulse function 
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Useful functions 

•  Continuous time complex exponential 

•  Euler’s relations 

•  Discrete time complex exponential 
–  k=nT 

( ) j tf t Ae ω=
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Useful functions 

•  Exponential function est 
–  Generalization of the function ejωt 
 

s jσ ω= +
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The exponential function 

s=σ s=jω 

s=σ+jω s=σ+jω 
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Complex frequency plan 

σ 

jω 

left half plan 
exponentially 

decreasing signals 

right half plan 
exponentially 

increasing signals 

signals of constant amplitude 

monotonically 
increasing/decreasing 
exponentials 
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Systems 

•  A system is characterized by  
–  inputs 
–  outputs 
–  rules of operation (mathematical model of the system) 

inputs outputs 

f1(t) 
f2(t) 

fn(t) 

y1(t) 
y2(t) 

yn(t) 
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Systems 

•  Study of systems: mathematical modeling, analysis, design 
–  Analysis: how to determine the system output given the input and the system 

mathematical model 
–  design or synthesis: how to design a system that will produce the desired set of 

outputs for given inputs 

•  SISO: single input single output   -    MIMO: multiple input multiple output 

inputs outputs 

f1(t) 
f2(t) 

fn(t) 

y1(t) 
y2(t) 

yn(t) 

inputs outputs 

f1(t) y1(t) 
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Response of a linear system 

•  Total response = Zero-input response + Zero-state response 
–  The output of a system for t≥0 is the result of two independent causes: the initial 

conditions of the system (or system state) at t=0 and the input f(t) for t≥0. 
–  Because of linearity, the total response is the sum of the responses due to those 

two causes 
–  The zero-input response is only due to the initial conditions and the zero-state 

response is only due to the input signal 
–  This is called decomposition property 

•  Real systems are locally linear 
–  Respond linearly to small signals and non-linearly to large signals 

y 

f 

y 

f 

causal, linear causal, non linear 

f0 f1 f2 

locally linear 
around f0 
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Review: Linear Systems 

•  We define a system as a unit that converts an input function into an output 
function  

System operator or Transfer function Independent 
variable 
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Linear Time Invariant Discrete Time Systems 

A/D D/A LTIS (H) 
xc(t) x[n] y[n] yr(t) 

( ) ( ) ( )
( ) ( ) ( )

( ) | | /
( )

0 | | /

j j j

r c

Y e H e X e
Y j H j X j

H j T
H j

T

ω ω ω

π

π

=

Ω = Ω Ω

Ω Ω <⎧
Ω = ⎨

Ω ≥⎩

THEN 
 The overall continuous time system is 
equivalent to a LTIS whose frequency 

response is H. 

IF 
•  The input signal is bandlimited 

•  The Nyquist condition for sampling is met 
•  The digital system is linear and time 

invariant 
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Overview of Linear Systems 

Then the system H is called a linear system. 

where  fi(x) is an arbitrary input in the class of all inputs 
{f(x)}, and gi(x) is the corresponding output. 

•  Let 

•  If 

•  A linear system has the properties of additivity and homogeneity.  
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Linear Systems 

for all  fi(x) ∈{f(x)} and for all x0.  

•  The system H is called shift invariant if 

•  This means that offsetting the independent variable of the input by x0 
causes the same offset in the independent variable of the output. Hence, 

the input-output relationship remains the same.  
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Linear Systems 

•  The operator H is said to be causal, and hence the system described by 
H is a causal system, if there is no output before there is an input.  In 

other words, 

•  A linear system H is said to be stable if its response to any bounded input 
is bounded.  That is, if 

where K and c are constants. 
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δ(a) 

a 
x 

δ(x-a) 

•  A unit impulse function, denoted δ(a), is defined by the expression 

•  The response of a system to a unit impulse function is called the impulse 
response of the system. 

                                  h(x) = H[δ(x)] 
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Linear Systems 

•  If H is a linear shift-invariant system, then we can find its response to any 
input signal f(x) as follows: 

•  This expression is called the convolution integral.  It states that the response 
of a linear, fixed-parameter system is completely characterized by the 

convolution of the input with the system impulse response.   
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Linear Systems 

[ ]* [ ] [ ] [ ]
m

f n h n f m h n m
∞

=−∞

= −∑

•  Convolution of two functions of a continuous variable is defined as 

•  In the discrete case 

( )* ( ) ( ) ( )f x h x f h x dα α α
∞

−∞

= −∫
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1 2

1 2 1 2 1 2 1 1 2 2[ , ]* [ , ] [ , ] [ , ]
m m

f n n h n n f m m h n m n m
∞ ∞

=−∞ =−∞

= − −∑ ∑

1 2[ , ]h n n is a linear filter. 

•  In the 2D discrete case 
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Illustration of the folding, displacement, and multiplication 
steps needed to perform two-dimensional convolution 

f(α,β) g(α,β) 

f(α,β)g(x - α ,y - β)	

g(x - α ,y - β) 

α α 

α 
α 

β	
 β	


β	

β	


A B 
 (a)  (b) 

x	

y 

y

x	

B 

Volume = f(x,y) * g(x,y)	


 (c)  (d) 
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Matrix perspective 

a b c 

d e f 

g h i 

c b a 

f e d 

i h g 

i h g 

f e d 

c b a 

step 1 

step 2 
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Convolution Example 

From C. Rasmussen, U. of Delaware 

1 -1 -1 

1 2 -1 

1 1 1 
2 2 2 3 

2 1 3 3 

2 2 1 2 

1 3 2 2 

Rotate 

1 -1 -1 

1 2 -1 

1 1 1 

h 

f 
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Convolution Example 

Step 1 

3 

2 

1 

2 

2 

1 

3 

2 

3 2 

2 1 

2 2 

3 2 5 

3 

2 

1 

2 

2 

1 

3 

2 

3 2 

2 1 

2 2 

3 2 

1 -2 -1 

2 4 -1 

1 1 1 

f 
f*h 

h 1 -1 -1 

1 2 -1 

1 1 1 
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4 5 

3 

2 

1 

2 

2 

1 

3 

2 

3 2 

2 1 

2 2 

3 2 

3 

2 

1 

2 

2 

1 

3 

2 

3 2 

2 1 

2 2 

3 2 

3 -1 -2 

2 4 -2 

1 1 1 

f f*h 

h 

1 -1 -1 

1 2 -1 

1 1 1 



78 

Convolution Example 

3 

2 

1 

2 

2 
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