

Time Granularity and
Temporal Indeterminacy in

Modeling and Querying
Temporally-Oriented

Object-Oriented Databases

Carlo Combi

Laboratory of Artificial Intelligence
Dipartimento di Matematica e Informatica

Universita’ degli Studi di Udine
via delle Scienze 206, 33100 Udine - Italy -

email: combi@dimi.uniud.it

a

Talk Overview

• Introduction

• The object-oriented temporal data model GCH-OODM

(Granular Clinical History - Object Oriented Data

Model)

• The query language GCH-OSQL (Granular Clinical

History - Object Structured Query Language)

• An application to a clinical database

• Final outlines

1

Motivation:
the temporal clinical

information

1) "In 1990 the patient took a calcium-antagonist for three

months"

2) "The patient had abdominal pain from 5 p.m. to 7 p.m.,

March 27, 1989"

3) "At 4:45 p.m., October 15, 1990, the patient suffered from

myocardial infarction"

4) "On November 30, 1991, in the afternoon the physician

got a blood pressure of 120/80 from the patient"

5) "At 4:30 p.m., October 26, 1991, the patient's renal colic

ended, it lasted five days"

6) "The patient suffered from an episode of tachycardia

lasting for 150 seconds on October, 26 1991, at 3:22 p.m."

2

Goals

• Modeling temporal granularity and temporal

indeterminacy

• Supporting time granularity in querying the database

• Managing uncertainty in temporal relationships

3

GCH-OODM
Granular Clinical History-

Object Oriented Data Model

GCH-OODM is an object-oriented data model, extended

to consider and manage the valid time of information

• Basic Concepts:

♦ Objects and Classes (Types)

⇒state (attributes)

⇒interface (methods)

• GCH-OODM supports:

♦ data abstraction and encapsulation

♦ object identity

♦ single inheritance

♦ complex objects

♦ persistence

4

GCH-OODM Types

• The usual types: char, char*, int, real, array, list, set, ...

• the type bool3

• the type granularity

 - {SUP, yy, mm, dd, hh, min, ss, INF} -

• The type hierarchy el_time, instant, duration, interval

• the type t_o_set

5

Managing the three-valued
logic: the class bool3

The predefined class bool3 manages a three-valued logic.

The truth values are T: True, F: False, and U: Undefined.

The usual logical connectives AND, OR, NOT, IMPLIES, ...,

and the logical quantifiers EXISTS (∃), and FOR EACH (∀)

have been extended to consider the three truth values.

A NOT A T(A)

T F T

F T F

U U F

A AND B T U F

T T U F

U U U F

F F F F

A OR B stands for NOT((NOT A) AND (NOT B));

F(A) stands for T(NOT A);

U(A) stands for NOT (T(A) OR T(NOT A)).

6

Time modeling

The class el_time allows us to model time points, i.e.

chronons, on the basic time axis

• Format:

♦ YY/MM/DD/HH/Mi/SS for time points

♦ Y yy M mm D dd H hh Mi min S ss for distances

between time points

• Examples:

♦ 94/10/10/0/0/0 identifies the first second of

October 10, 1994

♦ 5 min 2 ss identifies a duration lasting 5 minutes

and 2 seconds

7

Time modeling

The class instant allows us to represent a time point,

identified by the granule, i.e. a set of contiguous

chronons, containing it

• Methods: inf(), sup() each returns an object of type el_time

• Format:

♦ YY/MM/DD/HH, or YY/MM/DD, or YY/MM, or ...

♦ pYY/MM/DD/HH/Mi/SS, YY/MM/DD/HH/Mi/SSf.

• Examples:

♦ 94/10/10 specifies a time point included between

94/10/10/0/0/0 and 94/10/10/23/59/59 (objects

of type el_time)

♦ p96/1/1/6/30/0, 96/1/1/6/36/59f specifies a

time point between 6:30 and 6:36 of January first,

1996

8

Time modeling

The class duration allows us to model a generic time span,

specified at arbitrary granularity

• Methods: inf() and sup() each returns an object of type

el_time

• Format:

♦ Y yy M mm, or Y yy M mm D dd, or H hh, or ...

♦ pY yy M mm D dd H hh Mi min S ss,

 Y yy M mm D dd H hh Mi min S ssf

• Examples:

♦ 4 yy

♦ 3 yy 2 mm 3 dd

♦ 2 min 3 ss

♦ p3 dd 4 hh 6 min 3 ss,
4 dd 6 hh 5 min 2 ssf

9

Time modeling

A generic interval, i.e. a set of contiguous time points, is

modeled by the class interval

• Methods:

♦ start(), end() each returns an object of type instant

♦ dur() returns an object of type duration

el_timea.start()

a.dur()

a.end()

el_timea.start()

a.dur()

a.end()

10

Temporal Relationships

Methods of the class interval representing temporal

relations are defined by the methods of classes instant and

duration, based, in turn, on methods of the class el_time

• Example:

The relation a.BEFORE(b) between two objects a, b

instances of the class interval is expressed by the methods of

the classes instant and then el_time in the following way:

a.BEFORE(b) =df a.end().BEFORE(b.start()) =df

• T iff a.end().sup() < b.start().inf()

• F iff a.end().inf() > b.start().sup() OR

 (a.end().inf() = b.start().inf() AND

 a.end().sup() = b.start().sup() AND

 a.end().inf() = a.end().sup())

• U otherwise

11

Temporal Relationships

Notation Pictorial example

a.TEMP_EXPR_AS(b) el_time

a.start() a.end()

b.start() b.end()

a.CONTEMPORARY(b, X)

el_time

X

b

a

a.T_SPECIFIES(b) el_timeb

a

a.BEFORE(b) el_timeb

a

a.OVERLAPS(b) el_timeb

a

a.DURING(b) el_timeb

a

a.STARTS(b, X)

el_time

X

b

a

a.FINISHES(b, X)

el_time

X

b

a

a.MEETS(b, X)

el_time

X

b

a

12

Temporal Relationships

Notation Pictorial example

a.LASTS_AS(b)

el_time
b

a

a.LASTS_LIKE(b, X)

el_time

X

b

a

a.DUR_SPECIFIES(b)

el_time
b

a

a.LASTS_LESS(b)

el_time
b

a

13

Temporal and atemporal
classes and methods

• Temporal classes

Objects instances of temporal classes (hereinafter temporal

objects) have an associated valid interval. The method

valid_interval() returns the interval of validity of an object.

• Atemporal classes

Objects instances of atemporal classes (hereinafter atemporal

objects) model information, not having an associated

temporal dimension.

• Temporal methods

Temporal methods model temporal features and return

temporal objects.

• Atemporal methods

Atemporal methods return atemporal objects.

14

Sets of temporal objects:
the class t_o_set

The class t_o_set (temporal_object_set) allows the

construction and the management of sets of temporal

objects

• Usual operations on sets: insertion, deletion, intersection,

union, difference,

• Methods verifying the existence of temporal relations

between objects belonging to an instance of the class

t_o_set and satisfying some conditions on atemporal

methods.

♦ I.subset(p) returns the subset of temporal objects

belonging to I, of type t_o_set, and satisfying the

atemporal formula p.

♦ I.CONTEMPORARY(p,q,X) ≡

∃ x ∈ I.subset(p), ∃ y ∈ I.subset(q)

(x.valid_time().CONTEMPORARY(y.valid_time(), X))

15

Sets of temporal objects:
the class t_o_set

The class t_o_set is a temporal class

The valid interval of an object I of the class t_o_set is

evaluated on the basis of all the valid intervals of temporal

objects belonging to I:

I.valid_interval().start().inf() ≡

min(x.valid_interval().start().inf()), x ∈ I

I.valid_interval().start().sup() ≡

min(x.valid_interval().start().sup()), x ∈ I

I.valid_interval().end().inf() ≡

max(x.valid_interval().end().inf()), x ∈ I

I.valid_interval().end().sup() ≡

max(x.valid_interval().end().sup()), x ∈ I

16

The class t_o_set

Two orthogonal ways of specializing the t_o_set class:

• Specializing temporal objects managed by the class

♦ t_o_set<c> is a specialization of t_o_set<c'> iff the

temporal class c is a specialization of the temporal class

c'.

• Defining explicitly some constraints on the managed

temporal objects.

♦ Example:

class time_varying_property: public t_o_set {
.....
}

For each instance P of the class the following formula
holds:

∀ o ∈ P:time_varying_property NOT ∃o' ∈ P
(NOT(o'.valid_interval() < o.valid_interval() OR
o'.valid_interval() > o.valid_interval()) AND
o.valid_interval().gran() = X)

17

The example clinical database

class person {

public:

char* name();

};

class patient: public

person {

public:

t_o_set<visit>

visit_set();

t_o_set<symptom>

symptom_set();

};

temporal class symptom {

interval valid_interval();

char* s_name();

char* severity ();

};

temporal class visit {

interval valid_interval();

int heart_rate();

int temperature();

};

18

The GCH-OSQL
query language

The temporal extension to the syntax of SQL concerns the

part needed for database queries

The SELECT statement:

SELECT <class methods or path expressions>

FROM <classes>

[WHERE <temporal and atemporal conditions>]

[TIME_SLICE [MUST|MAY] <interval>]

[MOVING WINDOW [MUST|MAY] <duration>]

19

 The SELECT and FROM
clauses

• Only methods related to the displaying of the data are

allowed in the SELECT clause

• To each class listed in the FROM clause, an object variable

is associated

Example

"Find all the patients having nausea and display patient

name and the starting instant of each nausea symptom"

SELECT P.name(),

S.valid_interval().start().display()

FROM patient P, symptom S

WHERE P.symptom_set().HAS_MEMBER(S) AND

S.s_name()="nausea"

20

The WHERE clause

• In the WHERE clause are specified the logical conditions

that identify the objects to be retrieved in the database

• Complex conditions may be made composing simpler

conditions, using the logical connectives AND, OR, NOT,

and the connectives MUSTBE, MAYBE, MUST_NOTBE,

translating the GCH-OODM operators T(), U(), F()

• Conditions involving temporal relations are expressed

through t_o_set class methods, and using interval class

methods

21

The WHERE clause

Example

"Find all the symptoms occurring during visits; display the

name and the interval of validity of the symptom, and also the

patient suffering from it"

SELECT P.name(), S.s_name(),

S.valid_interval().display()

FROM patient P, symptom S, visit V

WHERE P.symptom_set().HAS_MEMBER(S) AND

P.visit_set().HAS_MEMBER(V) AND

S.valid_interval().DURING(V.valid_interval())

22

The WHERE clause

Example

"Find the patients having had nausea and headache, with

headache surely before nausea"

SELECT P.name()

FROM patient P, symptom S1, symptom S2

WHERE P.symptom_set().HAS_MEMBER(S1) AND

P.visit_set().HAS_MEMBER(S2) AND

S1.s_name() = "nausea" AND

S2.s_name() = "headache" AND MUSTBE

S2.valid_interval().BEFORE(S1.valid_interval())

SELECT P.name()

FROM patient P,

WHERE MUSTBE P.symptom_set().BEFORE("s_name()

= "headache"", "s_name() = "nausea"")

23

The TIME-SLICE clause

This clause allows the user to query along the temporal

dimension of objects, considering only those objects in the

database whose valid time is or could be contained in the

specified interval

• MUST and MAY keywords

• Formats:

♦ FROM..TO..: e.g., FROM 1994/12/11 TO

1994/12/23/11/00. It is also possible to specify

only FROM.. or only TO...

♦ FROM..FOR..: e.g., FROM 1994/12/11 FOR 2 mm.

♦ FOR..TO..: e.g., FOR 3 dd TO 1995/4.

♦ AT..: e.g., AT 1996/5.

24

The TIME-SLICE clause

Example

"Find all symptoms happened starting from December 1991

to November 12th, 1996 in the afternoon"

SELECT S.s_name()

FROM symptom S

TIME-SLICE FROM 1991/12 TO p1996/11/12/12/0/0,

1996/11/12/17/0/0f

25

The TIME-SLICE clause

Defining the TIME-SLICE interval by, respectively, the

FROM..TO, FROM..FOR, and FOR..TO keywords is not

redundant

Example:

TIME-SLICE FROM 1994/6/23 TO 1994/6/25

el_time1994/6/23 1994/6/25

24 hh 0 min 1 ss

71 hh 59 min 59 ss

TIME-SLICE FROM 1994/6/23 FOR 48 hh 0 min 0 ss

el_time1994/6/23 1994/6/25

48 hh 0 min 0 ss

26

The MOVING WINDOW
clause

Objects stored in the database are examined through a

temporal window, of the width specified in the clause,

moving along the temporal axis

♦ MUST and MAY keywords

Example

"Print the name of patients having had heart rate greater

than 120 and symptoms of chest pain in a period of fifteen

days

SELECT P.name()

FROM patient P

WHERE P.visit_set().OCCURS("heart_rate()>

120") AND P.symptom_set().OCCURS("s_name()=

"chest pain")

MOVING WINDOW 15 dd

27

The clinical database

We selected the population of patients subjected to

Percutaneous Transluminal Coronary artery Angioplasty

(PTCA). Patients undergoing this operation stay in the

hospital for a few (mostly two or three) days; afterwards,

they are periodically followed up by different checks and

angiographic examinations and may be reoperated. This

category of patients has been selected for several reasons: the

interest shown by the scientific-medical community for this

kind of intervention; the size and the growth rate of the

population.

For these patients historical data has to be updated also

during the follow-up period.

Historical data and follow-up data have to be managed in a

global way, to monitor the status of the patient.

28

Considered data for the
PTCA-patients

• ID data

• Demographic data

• Risk factors

• Past and current pathologies

• Past and current therapies

• Data coming from periodical follow-up visits

29

Temporal clinical objects

The clinical database contains more instances of the class

t_o_set, collecting temporal objects, modeled by the classes

therapy, related to previous or current therapies, diagnosis,

related to previous or current pathologies, angio_visit, related

to the parameters - blood pressure, heart rate, .. - collected

during follow-up visits.

30

An Example of clinical query
by GCH-OSQL

Let us consider the following clinical query. For patient

undergone to PTCA it is important that the blood pressure is

normal (i.e. SBP: 100 - 150 mmHg, DBP: 60 - 100 mmHg) in

the period following the intervention. We want to know

which patients, having normal values of the blood pressure

for 90 days following the intervention, suffered from angina

and undergone to a reintervention within three years,

considering the period between March 1987 and April 1995.

31

An Example of clinical query
by GCH-OSQL

SELECT P.surname(), P.name()

FROM patient P, diagnosis D, angio_visit B,

angio_visit C

WHERE P.Dia_Set().HAS_MEMBER(A) AND

P.Visit_Set().HAS_MEMBER(B) AND

P.Visit_Set().HAS_MEMBER(C) AND

B.angio_exam().exam_type() = "PTCA" AND

C.angio_exam().exam_type() = "PTCA" AND

A.pathology()="angina" AND MUSTBE

(B.valid_interval().BEFORE(A.valid_interval()) AND

A.valid_interval().BEFORE(C.valid_interval())) AND

P.Visit_set().MAINTAINS("SBP()>100 AND SBP()<150",

B.start(),"90 dd") AND

P.Visit_set().MAINTAINS("DBP()>60 AND DBP()<100",

B.start(),"90 dd")

TIME SLICE FROM 1987/3 TO 1995/4

MOVING WINDOW 3 yy

32

An Example of clinical query
by GCH-OSQL

In this GCH-OSQL query we can observe some relevant

features:

• different granularities (years, months, and days) are

explicitly used;

• the MUSTBE operator allows us to verify the certainty of

the precedence between PTCA, angina, and the new PTCA;

• for temporal relationships, the query uses both methods of

the class interval (BEFORE is a method of the class

interval) and of the class t_o_set (MAINTAINS and

HAS_MEMBER are methods of the class t_o_set);

• the condition by the MAINTAINS methods consider also

the patient for which it may be the blood pressure has been

in a range of normality.

33

System Description

Used Instruments

• Sun SparcStations with SunOS 4.1.x

• ONTOS Object-oriented Database Management System /

Ode OODB

• Glockenspiel C++ compiler / Sun C++ 4.1

• X Toolkit

34

The graphical user interface of
GCH-OSQL

GCH-OSQL provides users with a set of different tools,

related to the user skill, guiding to compose correct and

sound queries. In the construction of the graphic interface of

GCH-OSQL we tried to satisfy two different needs:

• that of a user already experienced of the system, requiring a

simple help in composing the clauses - we indicate such

guide with the term of Elementary_Guide -;

• that of an inexperienced user, which wants to be driven in

the formulation of queries - we point out such guide with

the term of Complete_Guide -.

35

An example of the
Complete_Guide modality in

composing the query

SELECT =>

FROM =>

TIME - SLICE =>

WHERE =>

Complete_Guide

H - Select H - From H - Where H - TSlice

Textual Help

Exit DeleteConfirm

From clause writing

p.surname(), p.name()

patient p

Class
 Alias

patient

diagnosis

therapy

stenosis

risk_factor

angio_visit

Class set
Exit Confirm

Exit Confirm Delete Set

36

Final outlines

• Management of temporal granularity and of temporal

indeterminacy

♦ While inserting data

♦ In querying the database

• Management of uncertainty in temporal relations by a

three-valued logic

♦ True, Undefined, False

♦ MUSTBE, MAYBE, ...

• Homogeneous management of temporal conditions in

the query

♦ Few additional clauses: TIME-SLICE and MOVING

WINDOW

♦ Temporal conditions in the WHERE clause

37

