
Times

Laboratorio di Sistemi in Tempo Reale

Corso di Laurea in Informatica Multimediale

12 Dicembre 2008

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 1 / 27

Outline

1 Times

2 Esempio: un impianto industriale

3 Esercizio

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 2 / 27

TIMES è un pacchetto per la modellazione e l’analisi di schedulabilità
di sistemi in tempo reale

sviluppato dall’Università di Uppsala (Svezia)
unisce due mondi: problemi di scheduling e automi temporizzati
utilizza Uppaal come “motore”
interfaccia grafica
simulatore
analisi di schedulabilità
verifica di proprietà di sicurezza e raggiungibilità
permette di generare codice automaticamente per BrickOS

Programma e documentazione: www.timestool.com

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 3 / 27

www.timestool.com

Descrivere sistemi in tempo reale in Times

Un sistema in tempo reale è descritto mediante:

un insieme di task;
una strategia di schedulazione (RM, DM, EDF, . . .);
un insieme di processi, definiti come automi temporizzati.

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 4 / 27

I Task in Times

Un task in Times è caratterizzato da:

un tempo di esecuzione C;
una scadenza D;
un’interfaccia costituita da una serie di assegnamenti di variabili
discrete x1 := e1, . . . , xn := en.

Può essere di tre tipi:

periodico: si attiva ad ogni un periodo P;
sporadico: la periodicità non è nota a priori, viene trattato
imponendo un periodo minimo P;
controllato: l’attivazione del task dipende dal sistema di automi
temporizzati dato dall’utente.

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 5 / 27

I Task in Times

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 6 / 27

Automi Temporizzati estesi con Task

I processi sono rappresentati da Automi temporizzati estesi:

orologi;
variabili discrete;
canali di comunicazione chan!, chan?;

Le locazioni possono essere etichettate con un task controllato T :

quando si entra nella locazione, il task T viene attivato e inserito
nella coda dei pronti;
il momento di esecuzione del task dipende dalla politica di
scheduling.

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 7 / 27

Automi Temporizzati estesi con Task

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 8 / 27

Tradurre i problemi di scheduling in automi temporizzati (1)

1 I task periodici e sporadici possono essere rappresentati da
automi:

Shared Variables. To have a more general model, we may introduce data vari-
ables shared among automata and tasks. For example, shared variables can be
used to model precedence relations and synchronization between tasks. Note that
the sharing will not add technical difficulties as long as their domiains are finite.
For simplicity, we will not consider sharing in this paper. The only requirement
on the completion of a task is given by the deadline. The time when a task is
finished does not effect the control behavior specified in the automaton.

n
2

P
2
(2,10)

n
1

P
1
(4,20)

m
2

Q
2
(1,4)

x=20

x:=0

b
2

x:=0

x:=0

x=10

b
1

x:=0

x>10 m
1

Q
1
(1,2) a

1

a
2

n

x<=20

P(2,8)

x=20

x:=0

(a) (b)

Fig. 2. Modeling Periodic and Sporadic Tasks.

Parallel Composition. To handle concurrency and synchronization, a parallel
composition of extended timed automata may be defined as a product automaton
in the same way as for ordinary timed automata (e.g. see [16]). Note that the
parallel composition here is only an operator to construct models of systems
based on their components. It has nothing to do with multi-processor scheduling.
A product automaton may be scheduled to run on a one- or multi-processor
system.

Semantically, an automaton may perform two types of transitions. Delay
transitions correspond to the execution of running tasks with highest priority
(or earliest deadline) and idling for the other tasks waiting to run. Discrete
transitions corresponds to the arrivals of new task instances.

We represent the values of clocks as functions (i.e. clock assignments) from
C to the non–negative reals R≥0. We denote by V the set of clock assign-
ments for C. Naturally, a semantic state of an automaton is a triple (l, u, q)
where l is the current location, u ∈ V denotes the current values of clocks, and
q is the current task queue. We assume that the task queue takes the form:
[P1(c0, d0), P2(c1, d1)...Pn(cn, dn)] where Pi(ci, di) denotes a released instance of
task type Pi with remaining computing time ci and relative deadline di.

Assume that there are a fixed number of processors running the released task
instances according to a certain scheduling strategy Sch e.g. FPS (fixed priority
scheduling) or EDF (earliest deadline first) which sorts the task queue whenever
new tasks arrives according to task parameters e.g. deadlines. An action tran-

2 Dati i task e la politica di scheduling, viene generato un automa
temporizzato che la implementa;

3 I task che etichettano le locazioni diventano canali di
sincronizzazione con l’automa dello scheduler.

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 9 / 27

Tradurre i problemi di scheduling in automi temporizzati (2)

m l

P
i
(C,D)

a

m l

release
i

Extended Timed Automaton

Timed Automaton

Idling
release

i

Running

(i,j)

Error

Scheduler Automaton

1

2

3

Running

(m,n)

release
m

c(i,j)=C(i), status(m,n)=preempted

c(i,j)=C(i), status(m,n)=released

released
m

, Run(m,n)

released
i
, Run(i,j)

c(m,n)=C(m), status(i,j)=preempted

c(m,n)=C(m), status(i,j)=released

released
k
, Run(i,j) released

k
, Run(m,n)

empty(q) empty(q)

non-schedulable(q) non-schedulable(q)

Fig. 4. Encoding of schelulability problem.

1. c(i, j) (a computing clock) is used to remember the accumulated computing
time since Pij was started (when Run(i, j) became true) 5, and subtracted
with C(k) when the running task, say Pkl, is finished if it was preempted
after it was started.

2. d(i, j) (a deadline clock) is used to remember the deadline and reset to 0
when Pij is released.

We use a triple 〈c(i, j), d(i, j), status(i, j)〉 to represent each task instance,
and the task queue will contain such triples. We use q to denote the task queue.
Note that the maximal number of instances of Pi appearing in a schedulable
queue is #D(i)/C(i)$. We have a bound on the size of queue as claimed earlier,
which is

∑
Pi∈P #D(i)/C(i)$. We shall say that queue is empty denoted empty(q)

if status(i, j) = free for all i, j.
For a given scheduling strategy Sch, we use the predicate Run(m, n) to denote

that task instance Pmn is scheduled to run according to Sch. For a given Sch,
it can be coded as a constraint over the state variables. For example, for EDF,
Run(m, n) is the conjunction of the following constraints:

1. d(k, l) ≤ D(k) for all k, l such that status(k, l) &= free: no deadline is violated
yet

2. status(m, n) &= free: Pmn is released or preempted
3. D(m)− d(m,n) ≤ D(i)− d(i, j) for all (i, j): Pmn has the shortest deadline

E(Sch) contains three type of locations: Idling, Running and Error with Running
being parameterized with (i, j) representing the running task instance.

1. Idling denotes that the task queue is empty.
5 In fact, for each task type, we need only one clock for computing time because only

one instance of the same task type may be started.

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 10 / 27

Tradurre i problemi di scheduling in automi temporizzati (3)

Questo approccio presenta molti vantaggi:

l’analisi di schedulabilità si riduce ad un problema di raggiungiblità:
I il sistema è schedulabile se e solo se non si raggiunge mai lo stato

di errore

task con periodicità complesse o variabili possono essere descritti
ed implementati in modo semplice

i task possono essere integrati in sistemi complessi

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 11 / 27

Funzionalità di Times (1)

Analisi di schedulabilità:
I stabilisce se la politica di schedulazione scelta soddisfa sempre le

scadenze;
I in caso positivo, visualizza i tempi di risposta massimi (Worst Case

Response Time, WCRT) per ogni task;
I in caso negativo, ritorna un controesempio non schedulabile.

Verifica di proprietà formali di sicurezza e raggiungibiità:
I usa lo stesso linguaggio di query di Uppaal;
I A[] not deadlock;
I E<> x > 10;
I ...

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 12 / 27

Funzionalità di Times (2)

Simulazione del sistema:

Generazione di codice per BrickOS
I interfaccia con i robot della Lego.

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 13 / 27

Outline

1 Times

2 Esempio: un impianto industriale

3 Esercizio

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 14 / 27

Esempio: un impianto industriale

il pezzo viene caricato sul nastro e spostato verso il braccio
il braccio preleva il pezzo e lo sposta nella pressa
la pressa effettua la lavorazione
il controllore è unico e con un solo processore

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 15 / 27

I Task dell’esempio

CaricaNastro:
I Tempo di esecuzione: 1;
I Deadline: 5;
I Interfaccia: PiastraSuNastro := 1

BraccioANastro:
I Tempo di esecuzione: 3;
I Deadline: 10;
I Interfaccia: PosBraccio := 1

BraccioAPressa:
I Tempo di esecuzione: 3;
I Deadline: 10;
I Interfaccia: PosBraccio := 2

CaricaPressa:
I Tempo di esecuzione: 1;
I Deadline: 5;
I Interfaccia: PressaCarica := 1

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 16 / 27

L’automa del nastro

Vuoto
CaricaNastro

Sposta
x <= L

PiastraSuNastro == 1
go!
x := 0

x == L

Occupato

piastra!
PiastraSuNastro := 0, x := 0

Nome del Template: Nastro

Parametri: const L

Variabili locali: clock x

Variabili globali:
int PiastraSuNastro
urgent chan piastra
urgent chan go

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 17 / 27

L’automa del braccio

VaiAllaPressa
BraccioAPressa

VaiAlNastro
BraccioANastro

PosBraccio == 2
carica?

PosBraccio == 1
piastra?

Nome del Template:
Braccio

Variabili globali:
int PosBraccio
urgent chan piastra
urgent chan carica

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 18 / 27

L’automa della pressa

Vuota
Caricamento
CaricaPressa

carica!
x := 0

Lavora
x <= T

PressaCarica == 1
go!
x := 0

x == T
PressaCarica := 0

Nome del Template:
Pressa

Parametri: const T

Variabili locali: clock x

Variabili globali:
int PressaCarica
urgent chan carica
urgent chan go

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 19 / 27

Un trucco per avere transizioni urgenti

Questo automa permette di avere transizioni urgenti:

Location_1

go?

go è un urgent chan globale;
ogni transizione che deve essere urgente va etichettata con go!;
in questo modo la transizione viene eseguita appena possibile.

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 20 / 27

Il sistema completo

Nella scheda Project vanno inseriti i seguenti processi:

Br
Braccio()

Nas
Nastro(12)

Pre
Pressa(10)

Urg
Urgent()

I processi sono istanze dei template definiti in precedenza
Il nastro impiega 12 unità di tempo per trasportare i pezzi
La pressa impiega 10 unità di tempo per la lavorazione

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 21 / 27

Primo esercizio

Implementare il sistema nastro/braccio/pressa in Times

Effettuare l’analisi di schedulabilità con le varie politiche
disponibili:

I per quali politiche il sistema è schedulabile?

Verificare se il sistema rispetta le seguenti proprietà:
I Non va mai in deadlock:
A[] not deadlock

I Ogni pezzo rimane sul nastro al massimo 15 unità di tempo:
A[] not (Nas.x > 15)

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 22 / 27

Outline

1 Times

2 Esempio: un impianto industriale

3 Esercizio

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 23 / 27

Impianto di riempimento bottiglie

8 Example: Bottle filling system
The bottle filling system as shown in Figure 5 consists of a liquid storage tank, two identical
bottle filling lines, and a bottle supply (see [31]).

QFl QFr

VT, n, c, pH

Qu, cu Qa, ca

Figure 5: The bottle filling system.

The bottles are filled with liquid from the storage tank. A control system keeps the volume VT
in the storage tank between 2 and 10, and the pH level (acidity) of the liquid in the storage
tank between 7 and 7.1. The liquid in the storage tank slowly becomes less acidic (pH level
increases). To correct this, a strong acid is dribbled into the storage tank when the acidity of the
liquid becomes too low (pH ≥ 7.1).
The acid and liquid supply processes are not modeled, since we consider the acid and liquid
always to be available, and we are not interested in the amount of acid or liquid that is used.
The storage tank and the two bottle filling lines are connected by means of the variables QFl, and
QFr, respectively. The storage tank is available in both bottle filling lines to prevent filling of the
bottles when the storage tank is empty.
The molar quantity and molar concentration of the acid in the storage tank are denoted by n and
c, respectively, where n = cV . The incoming flows of liquid and acid of the liquid storage tank
T are denoted by Qu and Qa, respectively. Acid leaves the tank in outgoing flows QFl and QFr.
The gradual reduction of the acidity of the liquid is modeled by means of a constant Kloss, which
leads to

ṅ = cu Qu + ca Qa − cQFl − cQFr − KlossV ,
where cu and ca denote the concentrations of acid in the flows Qu and Qa. Taking into account
that the units of c are in [mol/m3] instead of [mol/l], the pH is given by

pH = − log c/1000.

The behavior of the liquid storage tank is explained as follows. Initially, the pH of the liquid in
the storage tank equals 7. It is assumed that the pH level of the incoming liquid is 7 or more,
since the acidity controller can only make the acidity of the storage tank increase, causing the pH
to decrease. If the pH value exceeds the maximum value (pH >= 7.1), the acid valve is opened
(alpha:= 1) so that acid is dribbled into the tank. Dribbling of the acid continues until the pH
value comes back at 7, and the valve is closed (alpha:= 0). In a similar way, the controller tries
to keep the level of the storage tank between 2 and 10.
The behavior of the filling controller is explained as follows. When a new crate of bottles arrives,
(bottles?n), where n denotes the number of bottles in a crate) the bottle volume is reset to 0, and
the filling process and the bottle filling process is started (VB,alpha := 0,1). The valve switching
the flow QF is modeled by means of the discrete variable alpha. Filling stops when the volume
in the storage tank drops below 0.5 (when VT <= 0.5 do alpha:= 0). Filling resumes when the

25

8 Example: Bottle filling system
The bottle filling system as shown in Figure 5 consists of a liquid storage tank, two identical
bottle filling lines, and a bottle supply (see [31]).

QFl QFr

VT, n, c, pH

Qu, cu Qa, ca

Figure 5: The bottle filling system.

The bottles are filled with liquid from the storage tank. A control system keeps the volume VT
in the storage tank between 2 and 10, and the pH level (acidity) of the liquid in the storage
tank between 7 and 7.1. The liquid in the storage tank slowly becomes less acidic (pH level
increases). To correct this, a strong acid is dribbled into the storage tank when the acidity of the
liquid becomes too low (pH ≥ 7.1).
The acid and liquid supply processes are not modeled, since we consider the acid and liquid
always to be available, and we are not interested in the amount of acid or liquid that is used.
The storage tank and the two bottle filling lines are connected by means of the variables QFl, and
QFr, respectively. The storage tank is available in both bottle filling lines to prevent filling of the
bottles when the storage tank is empty.
The molar quantity and molar concentration of the acid in the storage tank are denoted by n and
c, respectively, where n = cV . The incoming flows of liquid and acid of the liquid storage tank
T are denoted by Qu and Qa, respectively. Acid leaves the tank in outgoing flows QFl and QFr.
The gradual reduction of the acidity of the liquid is modeled by means of a constant Kloss, which
leads to

ṅ = cu Qu + ca Qa − cQFl − cQFr − KlossV ,
where cu and ca denote the concentrations of acid in the flows Qu and Qa. Taking into account
that the units of c are in [mol/m3] instead of [mol/l], the pH is given by

pH = − log c/1000.

The behavior of the liquid storage tank is explained as follows. Initially, the pH of the liquid in
the storage tank equals 7. It is assumed that the pH level of the incoming liquid is 7 or more,
since the acidity controller can only make the acidity of the storage tank increase, causing the pH
to decrease. If the pH value exceeds the maximum value (pH >= 7.1), the acid valve is opened
(alpha:= 1) so that acid is dribbled into the tank. Dribbling of the acid continues until the pH
value comes back at 7, and the valve is closed (alpha:= 0). In a similar way, the controller tries
to keep the level of the storage tank between 2 and 10.
The behavior of the filling controller is explained as follows. When a new crate of bottles arrives,
(bottles?n), where n denotes the number of bottles in a crate) the bottle volume is reset to 0, and
the filling process and the bottle filling process is started (VB,alpha := 0,1). The valve switching
the flow QF is modeled by means of the discrete variable alpha. Filling stops when the volume
in the storage tank drops below 0.5 (when VT <= 0.5 do alpha:= 0). Filling resumes when the

25

8 Example: Bottle filling system
The bottle filling system as shown in Figure 5 consists of a liquid storage tank, two identical
bottle filling lines, and a bottle supply (see [31]).

QFl QFr

VT, n, c, pH

Qu, cu Qa, ca

Figure 5: The bottle filling system.

The bottles are filled with liquid from the storage tank. A control system keeps the volume VT
in the storage tank between 2 and 10, and the pH level (acidity) of the liquid in the storage
tank between 7 and 7.1. The liquid in the storage tank slowly becomes less acidic (pH level
increases). To correct this, a strong acid is dribbled into the storage tank when the acidity of the
liquid becomes too low (pH ≥ 7.1).
The acid and liquid supply processes are not modeled, since we consider the acid and liquid
always to be available, and we are not interested in the amount of acid or liquid that is used.
The storage tank and the two bottle filling lines are connected by means of the variables QFl, and
QFr, respectively. The storage tank is available in both bottle filling lines to prevent filling of the
bottles when the storage tank is empty.
The molar quantity and molar concentration of the acid in the storage tank are denoted by n and
c, respectively, where n = cV . The incoming flows of liquid and acid of the liquid storage tank
T are denoted by Qu and Qa, respectively. Acid leaves the tank in outgoing flows QFl and QFr.
The gradual reduction of the acidity of the liquid is modeled by means of a constant Kloss, which
leads to

ṅ = cu Qu + ca Qa − cQFl − cQFr − KlossV ,
where cu and ca denote the concentrations of acid in the flows Qu and Qa. Taking into account
that the units of c are in [mol/m3] instead of [mol/l], the pH is given by

pH = − log c/1000.

The behavior of the liquid storage tank is explained as follows. Initially, the pH of the liquid in
the storage tank equals 7. It is assumed that the pH level of the incoming liquid is 7 or more,
since the acidity controller can only make the acidity of the storage tank increase, causing the pH
to decrease. If the pH value exceeds the maximum value (pH >= 7.1), the acid valve is opened
(alpha:= 1) so that acid is dribbled into the tank. Dribbling of the acid continues until the pH
value comes back at 7, and the valve is closed (alpha:= 0). In a similar way, the controller tries
to keep the level of the storage tank between 2 and 10.
The behavior of the filling controller is explained as follows. When a new crate of bottles arrives,
(bottles?n), where n denotes the number of bottles in a crate) the bottle volume is reset to 0, and
the filling process and the bottle filling process is started (VB,alpha := 0,1). The valve switching
the flow QF is modeled by means of the discrete variable alpha. Filling stops when the volume
in the storage tank drops below 0.5 (when VT <= 0.5 do alpha:= 0). Filling resumes when the

25

8 Example: Bottle filling system
The bottle filling system as shown in Figure 5 consists of a liquid storage tank, two identical
bottle filling lines, and a bottle supply (see [31]).

QFl QFr

VT, n, c, pH

Qu, cu Qa, ca

Figure 5: The bottle filling system.

The bottles are filled with liquid from the storage tank. A control system keeps the volume VT
in the storage tank between 2 and 10, and the pH level (acidity) of the liquid in the storage
tank between 7 and 7.1. The liquid in the storage tank slowly becomes less acidic (pH level
increases). To correct this, a strong acid is dribbled into the storage tank when the acidity of the
liquid becomes too low (pH ≥ 7.1).
The acid and liquid supply processes are not modeled, since we consider the acid and liquid
always to be available, and we are not interested in the amount of acid or liquid that is used.
The storage tank and the two bottle filling lines are connected by means of the variables QFl, and
QFr, respectively. The storage tank is available in both bottle filling lines to prevent filling of the
bottles when the storage tank is empty.
The molar quantity and molar concentration of the acid in the storage tank are denoted by n and
c, respectively, where n = cV . The incoming flows of liquid and acid of the liquid storage tank
T are denoted by Qu and Qa, respectively. Acid leaves the tank in outgoing flows QFl and QFr.
The gradual reduction of the acidity of the liquid is modeled by means of a constant Kloss, which
leads to

ṅ = cu Qu + ca Qa − cQFl − cQFr − KlossV ,
where cu and ca denote the concentrations of acid in the flows Qu and Qa. Taking into account
that the units of c are in [mol/m3] instead of [mol/l], the pH is given by

pH = − log c/1000.

The behavior of the liquid storage tank is explained as follows. Initially, the pH of the liquid in
the storage tank equals 7. It is assumed that the pH level of the incoming liquid is 7 or more,
since the acidity controller can only make the acidity of the storage tank increase, causing the pH
to decrease. If the pH value exceeds the maximum value (pH >= 7.1), the acid valve is opened
(alpha:= 1) so that acid is dribbled into the tank. Dribbling of the acid continues until the pH
value comes back at 7, and the valve is closed (alpha:= 0). In a similar way, the controller tries
to keep the level of the storage tank between 2 and 10.
The behavior of the filling controller is explained as follows. When a new crate of bottles arrives,
(bottles?n), where n denotes the number of bottles in a crate) the bottle volume is reset to 0, and
the filling process and the bottle filling process is started (VB,alpha := 0,1). The valve switching
the flow QF is modeled by means of the discrete variable alpha. Filling stops when the volume
in the storage tank drops below 0.5 (when VT <= 0.5 do alpha:= 0). Filling resumes when the

25

8 Example: Bottle filling system
The bottle filling system as shown in Figure 5 consists of a liquid storage tank, two identical
bottle filling lines, and a bottle supply (see [31]).

QFl QFr

VT, n, c, pH

Qu, cu Qa, ca

Figure 5: The bottle filling system.

The bottles are filled with liquid from the storage tank. A control system keeps the volume VT
in the storage tank between 2 and 10, and the pH level (acidity) of the liquid in the storage
tank between 7 and 7.1. The liquid in the storage tank slowly becomes less acidic (pH level
increases). To correct this, a strong acid is dribbled into the storage tank when the acidity of the
liquid becomes too low (pH ≥ 7.1).
The acid and liquid supply processes are not modeled, since we consider the acid and liquid
always to be available, and we are not interested in the amount of acid or liquid that is used.
The storage tank and the two bottle filling lines are connected by means of the variables QFl, and
QFr, respectively. The storage tank is available in both bottle filling lines to prevent filling of the
bottles when the storage tank is empty.
The molar quantity and molar concentration of the acid in the storage tank are denoted by n and
c, respectively, where n = cV . The incoming flows of liquid and acid of the liquid storage tank
T are denoted by Qu and Qa, respectively. Acid leaves the tank in outgoing flows QFl and QFr.
The gradual reduction of the acidity of the liquid is modeled by means of a constant Kloss, which
leads to

ṅ = cu Qu + ca Qa − cQFl − cQFr − KlossV ,
where cu and ca denote the concentrations of acid in the flows Qu and Qa. Taking into account
that the units of c are in [mol/m3] instead of [mol/l], the pH is given by

pH = − log c/1000.

The behavior of the liquid storage tank is explained as follows. Initially, the pH of the liquid in
the storage tank equals 7. It is assumed that the pH level of the incoming liquid is 7 or more,
since the acidity controller can only make the acidity of the storage tank increase, causing the pH
to decrease. If the pH value exceeds the maximum value (pH >= 7.1), the acid valve is opened
(alpha:= 1) so that acid is dribbled into the tank. Dribbling of the acid continues until the pH
value comes back at 7, and the valve is closed (alpha:= 0). In a similar way, the controller tries
to keep the level of the storage tank between 2 and 10.
The behavior of the filling controller is explained as follows. When a new crate of bottles arrives,
(bottles?n), where n denotes the number of bottles in a crate) the bottle volume is reset to 0, and
the filling process and the bottle filling process is started (VB,alpha := 0,1). The valve switching
the flow QF is modeled by means of the discrete variable alpha. Filling stops when the volume
in the storage tank drops below 0.5 (when VT <= 0.5 do alpha:= 0). Filling resumes when the

25

8 Example: Bottle filling system
The bottle filling system as shown in Figure 5 consists of a liquid storage tank, two identical
bottle filling lines, and a bottle supply (see [31]).

QFl QFr

VT, n, c, pH

Qu, cu Qa, ca

Figure 5: The bottle filling system.

The bottles are filled with liquid from the storage tank. A control system keeps the volume VT
in the storage tank between 2 and 10, and the pH level (acidity) of the liquid in the storage
tank between 7 and 7.1. The liquid in the storage tank slowly becomes less acidic (pH level
increases). To correct this, a strong acid is dribbled into the storage tank when the acidity of the
liquid becomes too low (pH ≥ 7.1).
The acid and liquid supply processes are not modeled, since we consider the acid and liquid
always to be available, and we are not interested in the amount of acid or liquid that is used.
The storage tank and the two bottle filling lines are connected by means of the variables QFl, and
QFr, respectively. The storage tank is available in both bottle filling lines to prevent filling of the
bottles when the storage tank is empty.
The molar quantity and molar concentration of the acid in the storage tank are denoted by n and
c, respectively, where n = cV . The incoming flows of liquid and acid of the liquid storage tank
T are denoted by Qu and Qa, respectively. Acid leaves the tank in outgoing flows QFl and QFr.
The gradual reduction of the acidity of the liquid is modeled by means of a constant Kloss, which
leads to

ṅ = cu Qu + ca Qa − cQFl − cQFr − KlossV ,
where cu and ca denote the concentrations of acid in the flows Qu and Qa. Taking into account
that the units of c are in [mol/m3] instead of [mol/l], the pH is given by

pH = − log c/1000.

The behavior of the liquid storage tank is explained as follows. Initially, the pH of the liquid in
the storage tank equals 7. It is assumed that the pH level of the incoming liquid is 7 or more,
since the acidity controller can only make the acidity of the storage tank increase, causing the pH
to decrease. If the pH value exceeds the maximum value (pH >= 7.1), the acid valve is opened
(alpha:= 1) so that acid is dribbled into the tank. Dribbling of the acid continues until the pH
value comes back at 7, and the valve is closed (alpha:= 0). In a similar way, the controller tries
to keep the level of the storage tank between 2 and 10.
The behavior of the filling controller is explained as follows. When a new crate of bottles arrives,
(bottles?n), where n denotes the number of bottles in a crate) the bottle volume is reset to 0, and
the filling process and the bottle filling process is started (VB,alpha := 0,1). The valve switching
the flow QF is modeled by means of the discrete variable alpha. Filling stops when the volume
in the storage tank drops below 0.5 (when VT <= 0.5 do alpha:= 0). Filling resumes when the

25

Nastro

Caricatore Riempitore

Le bottiglie vengono caricate sul nastro a blocchi di 4
Il nastro è lungo 4 e porta le bottiglie verso il riempitore
Le bottiglie vengono riempite una alla volta
All’inizio ci sono 2 bottiglie sul nastro

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 24 / 27

Task dell’esercizio

CaricaBottiglie:
I Tempo di esecuzione: 8;
I Deadline: 20;
I Interfaccia: Bottiglie := Bottiglie + 4

SpostaNastro:
I Tempo di esecuzione: 1;
I Deadline: 5;
I Interfaccia: BottigliaPronta := 1, Bottiglie :=
Bottiglie - 1

RiempiBottiglia:
I Tempo di esecuzione: 2;
I Deadline: 5;
I Interfaccia: BottigliaPiena := 1

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 25 / 27

Implementare il sistema in Times

Effettuare l’analisi di schedulabilità con le varie politiche
disponibili:

I per quali politiche il sistema è schedulabile?

Modellare il sistema in modo che rispetti le seguenti proprietà:
I Non va mai in deadlock:
A[] not deadlock

I Il nastro non rimane mai vuoto:
A[] Bottiglie > 0

I Non ci sono mai più di 6 bottiglie sul nastro:
A[] Bottiglie <= 6

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 26 / 27

http://profs.sci.univr.it/~bresolin/lab05.pdf

Sistemi in Tempo Reale (Lab) Times 12 Dicembre 2008 27 / 27

http://profs.sci.univr.it/~bresolin/lab05.pdf

	Times
	Esempio: un impianto industriale
	Esercizio

