
Reliable Systems Engineering

Tom Henzinger
EPFL

1. What do we do?

2. Why do we do it?

3. How do we do it?

We catch bugs.

We catch bugs.

bug n an unexpected defect, fault, flaw, or
imperfection hthe software is full of ~si[Webster]

June 4, 1996

The European Ariane 5 rocket explodes 40 s
into its maiden flight due to a software bug.

1997 Mars Rover looses contact
1999 Mars Climate Orbiter is lost
1999 Mars Polar Lander is lost
2004 Mars Rover freezes

August 14, 2003

A programming error has been identified as the cause of the Northeast power
blackout. The failure occurred when multiple computer systems trying to access
the same information at once got the equivalent of busy signals.

[Associated Press]

Price tag: $ 6-10 billion

2002 study by NIST:

Software bugs cost the US economy $ 60 billion annually
(0.6 % of GDP).

December 2004

In 1 of every 12,000 settings, the software can cause an error in the programming resulting
in the possibility of producing paced rates up to 185 beats/min. It is possible that one or
both rate response sensors (i.e., breathing sensor and activity sensor) are switched on, but
the timer reset for one or both sensors erroneously remains disabled. In this scenario, the
clock timer and the rate response timers can trigger a pace. Of course, with three possible
triggers now working independently this can result in high pacing rates.

[Journal of Pacing and Clinical Electrophysiology]

January 1-7, 2002

Ganz ohne Geheimzahl konnten Postbank-Kunden bis Montag mit ihrer Sparcard
unbegrenzt Geld abheben. “Wir haben bereits nach wenigen Tagen den Fehler bei
der neu installierten Software bemerkt und korrigiert. Wir wissen nur von einem
einzigen Fall in Hamburg, wo der Softwarefehler zufaellig entdeckt wurde. Der
Betroffene muss das abgehobene Geld zurueckgeben.”

[Sueddeutsche Zeitung]

Boeing could not assemble and integrate the fly-by-wire system until it
solved problems with the databus and the flight management software.
Solving these problems took more than a year longer than Boeing
anticipated. In April, 1995, the FAA certified the 777 as safe.

Total development cost: $ 3 billion
Software integration and validation cost: one third of total

As a Malaysia Airlines jetliner cruised
from Perth, Australia, to Kuala Lumpur,
Malaysia, one evening last August, it
suddenly took on a mind of its own and
zoomed 3,000 feet upward. The captain
disconnected the autopilot and pointed
the Boeing 777's nose down to avoid
stalling, but was jerked into a steep dive.
He throttled back sharply on both
engines, trying to slow the plane.

Instead, the jet raced into another climb. The crew eventually regained control
and manually flew their 177 passengers safely back to Australia.

August 2005

As a Malaysia Airlines jetliner cruised
from Perth, Australia, to Kuala Lumpur,
Malaysia, one evening last August, it
suddenly took on a mind of its own and
zoomed 3,000 feet upward. The captain
disconnected the autopilot and pointed
the Boeing 777's nose down to avoid
stalling, but was jerked into a steep dive.
He throttled back sharply on both
engines, trying to slow the plane.

Instead, the jet raced into another climb. The crew eventually regained control
and manually flew their 177 passengers safely back to Australia.

Investigators quickly discovered the reason for the plane's roller-coaster ride
38,000 feet above the Indian Ocean. A defective software program had provided
incorrect data about the aircraft's speed and acceleration, confusing flight
computers.

August 2005

August 2005
With well over five million lines of
code used on the latest jetliners, it's
increasingly difficult to detect and fix
software problems before they surprise
pilots. Plane makers are accustomed to
testing metals and plastics under
almost every conceivable kind of
extreme stress, but it's impossible to run
a big computer program through every
scenario to detect the bugs that invariably
crop up.

August 2005
With well over five million lines of
code used on the latest jetliners, it's
increasingly difficult to detect and fix
software problems before they surprise
pilots. Plane makers are accustomed to
testing metals and plastics under
almost every conceivable kind of
extreme stress, but it's impossible to run
a big computer program through every
scenario to detect the bugs that invariably
crop up.

Specialists say the biggest problems in aviation software don't stem from bugs in
the code of a single program but rather from the interaction between two different
parts of a plane's computer system. In extreme cases, foul-ups can lead to sudden
loss of control, sometimes not showing up until years after aircraft are introduced
into service. Malaysia Airlines Flight 124 is a case in point. Boeing's 777 jets
started service in 1995 and had never experienced a similar emergency before.

August 2005

Soon after the incident, Boeing
issued a safety alert advising that,
in such circumstances, pilots
should immediately disconnect the
autopilot and might need to exert
an unusually strong force on the
controls for as long as two minutes
to regain normal flight.

[Wall Street Journal; May 30, 2006]

500 horses
200 processors

Production Cost of Automobiles

13%

35%

4%Software

22%Electronics

2000 2010
[MIT Tech Review]

December 4, 2006

The NHTSA said DaimlerChrysler is recalling 128,000 Pacifica sports utility
vehicles because of a problem with the software governing the fuel pump and
power train control. The defect could cause the engine to stall unexpectedly.

[Washington Post]

It’s the Software, Stupid!

The value is in the software:
Microsoft is one of the three most valuable companies in the world.

It’s the Software, Stupid!

The value is in the software:
Microsoft is one of the three most valuable companies in the world.

The bugs are in the software:
What is more likely to crash: your modem or your browser?

It’s the Software, Stupid!

The value is in the software:
Microsoft is one of the three most valuable companies in the world.

The bugs are in the software:
What is more likely to crash: your modem or your browser?

It’s the Software, Stupid!

The value is in the software:
Microsoft is one of the three most valuable companies in the world.

The bugs are in the software:
What is more likely to crash: your modem or your browser?

It’s the Software, Stupid!

The value is in the software:
Microsoft is one of the three most valuable companies in the world.

The bugs are in the software:
What is more likely to crash: your modem or your browser?

The challenges are in the software:
Is it that no smart people go into software engineering,
or is building software really that difficult?

Software truly is the most complex artifact we build routinely.
It’s not surprising we rarely get it right.

11Between 1069 and 1081

atoms in the universe.

11Between 1069 and 1081

atoms in the universe.

10 MB cache >
1020,000,000 states.

Complexity Management in Engineering

Bridge
Aircraft
etc.

System

Build & test

Complexity Management in Engineering

Model Applied
Mathematics

System

Calculate

PredictAbstract

Bridge
Aircraft
etc.

Build & test

Uptime: 123 years

Complexity Management in Engineering

Bridge
Aircraft
Software

System

Build & test

So, why don’t we have a
mathematics for building software?

So, why don’t we have a
mathematics for building software?

We do, but it’s not continuous.

-sensitive against perturbations
-difficult to overengineer
-difficult to abstract

0 0 1 0 1 1 0

A Program

kbfilter.c
12,000 lines of code

A Program

kbfilter.c
12,000 lines of code

A Program

kbfilter.c
12,000 lines of code

r

An Error Trajectory

Programs are not continuous.

The Impossible Dream

Program Property

Verifier

Yes / No

Verifier

terminatesProgram

Yes / No

Verifier

terminatesProgram

if Yes then loop forever;

No

Verifier

terminatesProgram

Program X

if Yes then loop forever;

No

Program X
Verifier

terminatesX

if Yes then loop forever;

No

Does X terminate?

Program X
Verifier

terminatesX

if Yes then loop forever;

No

Conclusion: Verifier cannot exist!

Program X
Verifier

terminatesX

if Yes then loop forever;

[Turing 1936]

No

The Impossible Dream

Program Property

Verifier

Yes / No

Abstract
Model

Verifier

Program Property

Model Checker

Yes / No

Mathematical Modeling:
A Tale of Two Cultures

Engineering

Differential Equations
Linear Algebra
Probability Theory

Computer Science

Mathematical Logic
Discrete Structures
Automata Theory

Our Methodology

1. Model Building:

capture relevant aspects of the system
formally (using logic and automata)

2. Model Checking:

implement algorithms for model analysis
[Clarke/Emerson; Queille/Sifakis 1981]

Two Examples

1 Concurrency Bugs
(due to interaction between two programs)

Model: finite automata
Algorithm: state graph exploration

2 Embedded Bugs
(due to interaction between a program and the physical world)

Model: hybrid automata
Algorithm: polyhedral state exploration

Access to a Shared Resource

x ← 0

noacc

req

acc

y = 0

x ← 0

x ← 1

Access to a Shared Resource

x ← 0

noacc

req

acc

This checks that nobody
else accesses the resource.y = 0

x ← 0

x ← 1

Access to a Shared Resource

x ← 0

noacc

req

acc

y = 0

x ← 0

x ← 1

Access to a Shared Resource

x ← 0

noacc

req

acc

y = 0

x ← 0

x ← 1

Access to a Shared Resource

x ← 0

noacc

req

acc

y = 0

x ← 0

x ← 1

Access to a Shared Resource

x ← 0 y ← 0

noacc

req

acc

noacc

req

acc

y = 0 x = 0

x ← 0 y ← 0

x ← 1 y ← 1

Access to a Shared Resource

nn00

x ← 0 y ← 0

noacc

req

acc

noacc

req

acc

y = 0 x = 0

x ← 0 y ← 0

x ← 1 y ← 1

Access to a Shared Resource

nn00

x ← 0 y ← 0

noacc

req

acc

noacc

req

acc

rn00
y = 0 x = 0

x ← 0 y ← 0

x ← 1 y ← 1

Access to a Shared Resource

nn00

x ← 0 y ← 0

noacc

req

acc

noacc

req

acc

rn00
y = 0 x = 0

rr00x ← 0 y ← 0

x ← 1 y ← 1

Access to a Shared Resource

nn00

x ← 0 y ← 0

noacc

req

acc

noacc

req

acc

rn00
y = 0 x = 0

rr00x ← 0 y ← 0

ar10x ← 1 y ← 1

Access to a Shared Resource

nn00

x ← 0 y ← 0

noacc

req

acc

noacc

req

acc

rn00
y = 0 x = 0

rr00x ← 0 y ← 0

ar10x ← 1 y ← 1

aa11

Access to a Shared Resource

nn00

rn00

rr00

ar10

aa11

x ← 0 y ← 0

noacc

req

acc

noacc

req

acc

x = 0

y ← 1

y ← 0

y = 0

x ← 0

x ← 1

Violates safety.

Second Attempt

x ← 0

noacc

req

acc

x ← 1

x ← 0

y = 0

Second Attempt

x ← 0 y ← 0

noacc

req

acc

x ← 0

noacc

req

acc

x ← 1 y ← 1

y ← 0

y = 0
x = 0

Second Attempt

nn00

x ← 0 y ← 0

noacc

req

acc

x ← 0

noacc

req

acc

y ← 0

x ← 1 y ← 1

y = 0
x = 0

Second Attempt

nn00

x ← 0 y ← 0

noacc

req

acc

x ← 0

noacc

req

acc

y ← 0

rn10
x ← 1 y ← 1

y = 0
x = 0

Second Attempt

nn00

x ← 0 y ← 0

noacc

req

acc

x ← 0

noacc

req

acc

y ← 0

rn10
x ← 1 y ← 1

rr11

y = 0
x = 0

Second Attempt

noacc

req

acc

x ← 0

nn00

rn10

rr11

x ← 0 y ← 0

noacc

req

acc

y ← 0

x ← 1 y ← 1

X

Violates liveness.

y = 0
x = 0

Deadlock.

Third Attempt

x ← 0 y ← 0

noacc

req

acc

x ← 0

noacc

req

acc

x ← 1; z ← 0 y ← 1; z ← 1

y ← 0

y = 0 or z = 1
x = 0 or z = 0

The State Graph

rn101 nr012

ar112

an101 rr112

nn001

Testing / Simulation: Explore one path at a time.

nn001

rn101 nr012

ar112

an101 rr112

Model Checking: Explore the whole graph.

nn001

rr112

rn101 nr012

an101

ar112

Model Checking: Explore the whole graph.

nn001

rr112

rn101 nr012

ar112

an101

3⋅3⋅2⋅2⋅2 = 72 states

Two Examples

1 Concurrency Bugs
(due to interaction between two programs)

Model: finite automata
Algorithm: state graph exploration

2 Embedded Bugs
(due to interaction between a program and the physical world)

Model: hybrid automata
Algorithm: polyhedral state exploration

The Two Cultures

EE Systems &
Control TheoryContinuous Complexity

Physical
Systems

Discrete
Complexity

Software
SystemsComputer Science

The Two Cultures

EE Systems &
Control TheoryContinuous Complexity

Physical
Systems

Discrete
Complexity

Embedded
Systems

Cell phone
Flight control
etc.Software

SystemsComputer Science

Continuous Dynamical System

State space: Rn

Dynamics: initial condition + differential equations

Room temperature: x(0) = x0
x’(t) = -K·x(t)x

x0

t

Analytic complexity.

Discrete Software System

State space: Bm

Dynamics: initial condition + state transitions

Heater:
off onheat

off

on
t

Combinatorial complexity.

Hybrid Automaton

State space: Bm × Rn

Dynamics: initial condition + state transitions
+ differential equations

Thermostat:

x0

off

on
t

off
x’ = -K·x

on
x’ = K·(H-x)

x ≤ 19 x ≥ 21

x ≤ 23

x ≥ 17

x

y

far
x’∈[-50,-40]

x ≥ 1000

near
x’∈[-50,-30]

x ≥ 0

past
x’∈[30,50]

x ≤ 100

x = 1000

x = 0x = 100 →
x :∈ [2000,∞)

app!

exit!

app

exit

Train

up
y’ = 9

open
y’ = 0

Gate

y ≤ 90

y = 90

down
y’ = -9

closed
y’ = 0

y ≥ 0

y = 0

raise? lower? raise?

lower?

raise

lower

t’ = 1
t ≤ α

t ← 0

app?

lower!

t’ = 1
t ≤ α

t ← 0

exit?

raise!

app exit

idle

Controller

lower raise

α … response time of the controller

Temporal Logic

Safety: ∀ (x ≤ 10 ⇒ Gate = closed)

“on all trajectories, always”

Temporal Logic

Safety: ∀ (x ≤ 10 ⇒ Gate = closed)

Liveness: ∀ (Gate = closed ⇒ ∀ (Gate = open))

“on all trajectories, eventually”

Temporal Logic

Safety: ∀ (x ≤ 10 ⇒ Gate = closed)

Liveness: ∀ (Gate = closed ⇒ ∀ (Gate = open))

Real time: ∀ z ← 0. (z’ = 1 ⇒ ∀ (Gate = open ∧ z ≤ 60))

clock variable

Model Property

Model Checker

Yes / No

Safety or
liveness or
real time

Collection of
polyhedral

hybrid automata

Model Property

Model Checker

HyTech

Condition under which the
model satisfies the property,
or error trajectory.

Example: “For which values of α is the controller safe?”

Each state change of a polyhedral hybrid automaton
transforms a polyhedral set into a polyhedral set.

discrete state transition
causes linear
transformation

state set

Each state change of a polyhedral hybrid automaton
transforms a polyhedral set into a polyhedral set.

continuous
state evolution

discrete state transition
causes linear
transformation

state set

Model Checking for Safety

initial
states

unsafe
states

?

Bm × Rn

Model Checking for Safety

initial
states

unsafe
states

Bm × Rn

Model Checking for Safety

initial
states

unsafe
states

Bm × Rn

Model Checking for Safety

initial
states

unsafe
states

unsafe
parameter
values

Bm × Rn

HyTech on Train + Gate + Controller

hytech-out.cgi.html

Applications of HyTech

-automotive engine control [Wong-Toi et al.]

-chemical plant control [Preussig et al.]

-flight control [Honeywell; Rockwell-Collins]

-air traffic control [Tomlin et al.]

-robot control [Corbett et al.]

Still a long way to go ...

Uptime: 123 years

Indeed, it will get worse before it gets better.

[Intel]

Despite all the differences,
there are things we can learn from systems engineering:

Engineering

Theories of estimation
Theories of robustness

Computer Science

Theories of correctness

Despite all the differences,
there are things we can learn from systems engineering:

Engineering

Theories of estimation
Theories of robustness

Goal: build reliable systems.

Computer Science

Theories of correctness

Temptation: programs are
mathematical objects; hence
we want to prove them correct.

The MTC Mission Statement

Develop models and algorithms that let us quantify how the effort
spent during design relates to the quality of the software product.

The MTC Mission Statement

Systems are not correct or incorrect, but
there are many shades in between.

Develop models and algorithms that let us quantify how the effort
spent during design relates to the quality of the software product.

Develop models and algorithms that let us quantify how the effort
spent during design relates to the quality of the software product.

The MTC Mission Statement

Systems are not correct or incorrect, but
there are many shades in between.

Not only programming, but
especially system integration.

Develop models and algorithms that let us quantify how the effort
spent during design relates to the quality of the software product.

Not only programming, but
especially system integration.

The MTC Mission Statement

Systems are not correct or incorrect, but
there are many shades in between.

Not only functionality and performance, but also
robustness (usability, fault tolerance, security).

September 14, 2004

Without warning, at about 5 p.m. PDT, air traffic controllers lost contact with about
400 airplanes they were tracking over the southwestern US. A backup system that was
supposed to take over in such an event crashed within a minute after it was turned on.

September 14, 2004

Without warning, at about 5 p.m. PDT, air traffic controllers lost contact with about
400 airplanes they were tracking over the southwestern US. A backup system that was
supposed to take over in such an event crashed within a minute after it was turned on.

Inside the control system is a countdown timer that ticks off time in milliseconds. It
starts out at the highest possible number that the system’s server can handle: 232.
When the counter reaches 0, the system shuts down.

Counting down from 232 to 0 in milliseconds takes 50 days. The FAA procedure of
having a technician reboot the system every 30 days resets the timer almost three
weeks before it runs out of digits.

[IEEE Spectrum]

Thank you for your attention.

BC 350

