COMPUTATIONAL ALGEBRA 18/02/15

- 1. Determine the splitting field of
 - (a) $(x^3 x + 1)(x^2 + 1)$ over \mathbb{F}_3
 - (b) $x^4 + x^3 + x 1$ over \mathbb{F}_3
 - (c) $x^3 x$ over \mathbb{F}_4
- 2. (a) Construct the field \mathbb{F}_9 ;
 - (b) Find the primitive elements of \mathbb{F}_9 ;
 - (c) Is it true that a primitive 3^{th} -root of the unit over \mathbb{F}_3 is contained in \mathbb{F}_9 ? If yes, find such a root.
 - (d) Is it true that a primitive 4^{th} -root of the unit over \mathbb{F}_3 is contained in \mathbb{F}_9 ? If yes, find such a root.
- 3. (a) Construct a cyclic code C over \mathbb{F}_3 of length 8 and dimension 4.
 - (b) Find a generator polynomial and a check polynomial for C.
 - (c) What can be said about the minimum distance of C?
- 4. Decompose $x^{16} x$ in irreducible factors over \mathbb{F}_2 .
- 5. Consider the primitive element α of \mathbb{F}_{16} satisfing $\alpha^4 = 1 + \alpha$. The elements of \mathbb{F}_{16} are listed in the table belove.

0000	0	1000	$lpha^3$	1011	α^7	1110	α^{11}
0001	1	0011	$lpha^4$	0101	$lpha^8$	1111	α^{12}
0010	lpha	0110	$lpha^5$	1010	$lpha^9$	1101	α^{13}
0100	α^2	1100	$lpha^6$	0111	α^{10}	1001	α^{14}

Consider the BCH code of dimensions [15, 5] over $\mathbb{F}_2[x]$ (with b = 1) with defining set $T = \{1, 2, 3, 4, 5, 6, 8, 9, 10, 12\}$. Using the primitive 15-root of unity α form the previous table, the generator polynomial of C is $g(x) = 1 + x + x^2 + x^4 + x^5 + x^8 + x^{10}$. Suppose C is used to transmit a codeword and y(x) is received. Correct the received word using the Peterson-Gorenstein-Zierler Decoding Algorithm, in case $y(x) = 1 + x + x^5 + x^6 + x^7 + x^{12}$. Verify that the correct word is actually a codeword. Correct the same y(x) using the Sugiyama Decoding Algorithm.

6. Give the definition of a cyclic code of length m over \mathbb{F}_q . Show that the cyclic codes of length m over \mathbb{F}_q correspond to the ideals of the ring $\mathbb{F}_q[x]/(x^m - 1)$.