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Abstract—The amazing proliferation of communication technologies for embedded systems opens the way for completely new

applications but forces designers to adopt new methodologies to meet time-to-market constraints. CAD has been traditionally applied

to computers and embedded systems in isolation without considering them as a global inter-connected system. The paper contributes

to fill this gap by proposing 1) a communication-aware design flow for network-interconnected embedded systems and 2) a formal

framework to efficiently synthesize their network aspects by formulating and solving an optimization problem. Presented case studies

show the potentiality of the proposed approach to address heterogeneous scenarios, e.g., related to smart spaces up to the

ever-more-mentioned Internet-of-Things.
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✦

1 INTRODUCTION

T HE recent advances in communications for embedded sy-

stems open to completely new distributed applications in

which hundreds or thousands of smart devices interact together

through different types of channels and protocols [1], [2], [3]. We

can define them as Distributed Embedded Systems (DESs) since

these applications present three important features that distinguish

them from traditional network-connected applications, i.e., 1) the

communication aspects affect the design flow of the embedded

systems, 2) system-of-systems nature, and 3) strict relation with

the surrounding physical environment.

To clarify the discussion, we introduce a common example

related to the temperature control of a building as depicted in

Figure 1. Several sensors (in figure denoted by S) detect local

temperature. Collected data are sent to controllers (denoted by C),

which send commands to actuators (denoted by A), e.g., coolers.

Controllers decide the activation of actuators according to various

policies both centralized and distributed; for example, a controller

may be present in each room to adjust the local temperature but a

centralized controller is also present to ensure that room settings

comply with the total energy budget. A controller application can

also be executed by personal mobile devices so that each user can

control the temperature of the currently occupied space according

to a personal profile.

In DESs, the communication aspects affect the design flow.

Considering the example, physical channels among nodes can be

either wireless or wired according to deployment constraints (e.g.,

cabling costs and feasibility in historical buildings) and mobility

requirements. Communication protocols depend on the type of

these physical channels, on required reliability and quality of

service (e.g., maximum latency). Assuming that highly optimized
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Fig. 1. Example of distributed embedded system for building automation.

nodes are desirable, the choice of physical channels affects the

definition of hardware network interfaces while the choice of

communication protocols affects the memory and computational

requirements of the hardware platform.

Up to now, the embedded systems design flow has jointly

addressed hardware and software aspects, while communication

aspects have been faced separately by a different research commu-

nity. This lack of coordination may lead to non-optimal solutions

in the system design; in fact, past work demonstrated that HW/SW

design and network design are correlated [4]. To further push

performance, energy saving and reliability, the network among

nodes should be jointly designed with hardware and software

components [5]. In particular, CAD should be fruitfully applied

not only to each node, as currently done in the context of electronic

systems design, but also to the network among them. For this

reason, a communication-aware design flow is required.

A DES can be seen as a System-of-Systems since even if the

various nodes can independently operate, they interact together

to achieve the good behavior of the global application [6]. In

the mentioned example, the final objective is to achieve a good

control of the temperature and it does not matter the set of

nodes that provides such functionality, as long as the global

application behavior satisfies design objectives. Thus, DESs pose

new questions to designers, traditionally mainly interested in the
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specification of each single network node as done for Internet

servers and clients. Most relevant issues are:

• finding the optimal number of nodes to achieve the common

mission;

• finding the best assignment (according to given metrics)

between software tasks and hosting nodes by taking into

account tasks’ requirements and nodes’ capabilities;

• finding the best set (according to given metrics) of network

protocols by taking into account communication require-

ments and the presence of a legacy network infrastructure.

The last distinguishing feature is the strict relationship with the

environment. In fact, networked sensors and actuators should be

placed where is required by the application. Furthermore, environ-

ment affects communications in such systems; for instance, walls

and distance may affect wireless communications whereas area

size affects the deployment cost of wired infrastructure. Finally,

the number and position of nodes affect the communications

among them and application performance.

Solving these issues leads to the so-called Network Synthesis,

i.e., the allocation of functionality onto nodes and the complete

definition of the communication infrastructure among them. In

this context the contributions of the paper are:

• a communication-aware design flow centered on Network

Synthesis for DESs;

• a communication-aware formal specification of the whole

distributed system to formulate Network Synthesis as an

optimization problem;

• the formulation of Network Synthesis as a Mixed Integer

Linear Programming (MILP) problem.

The paper can be considered as part of the research roadmap

started by [7] and continued by [8]. In [7] a preliminary version

of the flow and the formal specification was described but many

issues were present and the optimization strategy was missing.

In [8] the focus was on model-driven design and simulation by

means of a UML-based representation. However, such represen-

tation does not allow, per se, the formulation of an optimization

problem which was left in background.

The paper is organized as follows. Related work is presented in

Section 2. The building blocks of a formal representation for dis-

tributed embedded applications and the corresponding design flow

are described in Section 3. The formulation of network synthesis

as a MILP problem is provided in Section 4. The analysis of its

complexity and scalability is reported in Section 5. Experimental

results are provided in Section 6. Finally, conclusions and future

work are reported in Section 7.

2 RELATED WORK

The design of distributed systems relies on methodologies for their

functional specification and techniques for network design.

2.1 System Functional Specification

The information driving network synthesis can be extracted from

a platform-independent description of an application created using

well-known languages as those reported in this section.

MARTE [9] is an UML [10] profile designed to allow an easy

specification of real-time and embedded systems. It provides some

sub-profiles, like Non-Functional-Properties (NFPs), which allow

to describe the “fitness” of the system behavior (e.g. performance,

memory usage, energy consumption, etc.). The Software Resource

Modeling (SRM) and the Hardware Resource Modeling (HRM)

profiles are derived from NFP, and they address the modeling

of resources. The System Modeling Language (SysML) [11] is

an UML extension which provides a general-purpose modeling

language for systems engineering applications.

Mathworks has developed Simulink [12] and Stateflow [13] to

model and simulate dynamic and embedded systems. The former

allows to represent an application as the inter-connection of analog

or digital blocks while the latter allows to describe applications

as finite-state machines. They can also be combined to represent

hybrid automata.

The Ptolemy Project [14] was born to model concurrent real-

time and embedded systems. One of its main advantages is

the support for heterogeneous mixtures of computation models.

Ptolemy supports simulation by using the actor-oriented design;

actors are software components executed concurrently and able to

communicate by sending messages through interconnected ports.

Ptolemy also supports communication modeling through Khan

Process Networks (KPN), i.e., groups of deterministic sequential

processes which are communicating through unbounded FIFO

channels [15].

They are distributed Models of Computation (MoCs) based on

tokens which focus on the flow of computation, thus it seems well

suited to check properties on the communication schema.

SystemC [16], initially born as an hardware description lan-

guage, has been extended with the Transaction-Level Modeling

(TLM) [17], to describe HW/SW systems. SystemC and TLM

allow to describe tasks as nested components with event-driven

or clock-driven processes. Communications between tasks can

be described by using standard protocols and payloads which

simplify the specification of their behavior. TLM was born to

represent local communications, such as bus interconnections or

accesses to devices.

SpecC [18] is an extension of the C language to be used

as system-level design language, like SystemC/TLM. The SpecC

methodology is a top-down design flow, with four well-defined

levels of abstraction. It allows different ways to describe the

target control (sequential, FSM, parallel and behavioral). One key

concept of SpecC is the clear separation of the communication and

computation model which can be useful to specify computation

and communication aspects of tasks.

Metropolis [19] is a framework based on the idea of meta-

model to support various communication and computation se-

mantics in a uniform way. This approach implements the abstract

semantics of process networks and uses the concepts advocated by

the Platform-Based Design (PBD) methodology, i.e., functionality

and architecture across models of computation and abstraction

levels, and the mapping relationships between them.

2.2 Network Design

Network design has been addressed by many research works,

in different fields, such as Wireless Sensor Networkss (WSNs).

In [20] a virtual architecture has been proposed in order to simplify

the synthesis of WSNs algorithms. Network topology and high-

level functionality are used to configure the virtual architecture.

This work is mainly focused on the application part of the system

rather than on communication aspects.

In [21], PBD has been adopted to design WSNs for industrial

control. In PBD, the application is usually designed at a high level

and then mapped onto a set of possible actual candidates for the
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nodes. However, no guideline is provided for selecting an appro-

priate network architecture and communication protocol. Scope-

based techniques have been proposed in macro-programming to

specify complex interactions between heterogeneous nodes of a

WSN [22]. However, the nodes number and network topology

are an input required by the technique and not a result, as in the

proposed approach.

A tool for the optimal design of WSNs for building automation

has been proposed in [23]. It suggests to integrate the network

design flow with the knowledge about the routing algorithm used

after the deployment of the network. Since the routing algorithm

is known a priori, it further proposes to systematically introduce

redundancy in order to maximize the performance of the chosen

algorithm. Then, it proposes a sub-optimal polynomial-time heu-

ristic for the synthesis problem and compares it with a custom

formalization of the MILP proposed in [24].

A communication synthesis methodology and HW/SW inte-

gration for embedded system design has been addressed in [25].

The method is based on task graphs and used after HW/SW

partitioning and task scheduling. On one hand, this inversion has

the advantage that the scheduling problem is simplified, since

communication components will be designed later. On the other

hand, it does not consider that scheduling could be optimized if

communication aspects were considered earlier.

The design of Network on Chips (NoCs) offers an example of

computation-communication integrated approach which is close to

the purpose of this paper. NoCs are embedded systems which are

designed with the traditional specification-refinement-synthesis

flow; nevertheless, they have also a communication infrastructure

which is a simplified version of a packet-switched network [26].

The design of the internal NoC communication infrastructure

presents problems similar to the one of traditional packet-based

networks [27]. For example, the design of NoC to meet hard la-

tency constraints is addressed in [28]. The problem of the optimal

mapping of tasks onto NoC’s cores is known to be NP-hard. In

some works, heuristics based on graph-decomposition techniques

have been used [29], [30]. A MILP formulation of the problem

has been proposed [31]. It assumes a regular 2D mesh topology

and shortest-path static routing. This methodology allows two

different optimization criteria, i.e., minimization of the average

hop distance (which is proportional to energy consumption and

communication delay), as well as minimization of the bandwidth

(which consists in minimizing the most-congested link-queuing

time and maximizing the throughput). Network synthesis in NoCs

is based on strong assumptions on network’s features (e.g., the

topology); thus, such approaches are not general enough to be

applied also to normal networks as proposed in this work.

The efficient routing of communication paths gives another

opportunity of optimization, also at different levels of the protocol

stack. At the lowest level, a synthesis process for routing of

physical wires inside an automotive system is proposed in [32]. It

aims at meeting requirements about delay, quality of signal, power

and temperature. First, a Steiner tree is generated using a cus-

tomized Kou-Markowsky-Berman (KMB) algorithm minimizing

connections length. Then, a Linear Programming (LP) problem is

formulated and its solution is used to modify the Steiner tree such

that the overall delay is minimized and signal quality maximized.

At a higher level Xu et al. [33] propose a MILP formulation

applied to ZigBee wireless networks. It comprises four speci-

fic groups of constraints: devices placement, link activation for

routing, connections scheduling and communication quality of

Fig. 2. Entities for the communication-aware specification.

service. Their formulation is limited to ZigBee architectures.

Synthesis of communication protocols is another research

topic related to this work. Automatic tools have been adopted

to derive the actual implementation of protocols specified through

finite state machines [34], [35], Petri Nets [36], trace models [37],

and languages like LOTOS [38]. All these approaches focus on the

behavioral aspect of communication without taking into account

the design of the nodes. A general modeling framework for a

global design flow could be useful to allow the joint exploration

of HW, SW and Network design space dimensions as addressed in

the proposed approach.

3 COMMUNICATION-AWARE DESIGN FLOW

The creation of a specific design flow for distributed embedded sy-

stems requires the definition of new entities to formulate a design

problem that accounts for communications; then, the traditional

flow for embedded systems can be extended to solve the problem.

Both aspects are described in the following text.

3.1 Network Specification

This section introduces the entities and relationships representing

the communication aspects to be designed in distributed embedded

systems. The proposed formal model is network-centric, i.e. it

describes the characteristics which are related to communications

while all the other details are omitted or highly abstracted. In fact,

the objective is the description of communication requirements

as an optimization problem whose solution leads to the network

synthesis. Therefore, this formalization is neither a distributed

model of computation, as Kahn Process Networks, nor a language

for executable specification as SystemC.

Figure 2 shows a general picture of such entities and their

relationships. It consists of tasks (Section 3.1.1), implementing

the behavior of the distributed system, which are hosted inside

network nodes (Section 3.1.3). The stream of data between tasks

is represented by data-flows (Section 3.1.2). Tasks and correspon-

ding nodes are deployed inside specific partitions of the envi-

ronment named zones (Section 3.1.5). Zones are related together

by contiguity which models the influence of the environment on

communications, i.e., obstacles, walls, distances (Section 3.1.6).

An abstract channel (Section 3.1.4) is established between

nodes to convey the data-flows of the hosted tasks. The intention is

to generalize the concept of physical channel with an abstraction

which takes into account also the presence of higher protocol

layers (we refer to the ISO/OSI representation). The highest
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layer encompassed in the abstract channel depends on the type

of protocols implemented in the conveyed data-flows. To under-

stand the underlying idea of this generalization, let us consider

two examples. In the first example, tasks implement a datalink

protocol, e.g. IEEE 802.11ac, and therefore the abstract channel

just represents the physical channel. In the second example, tasks

implement a temperature control application through messages

exchanged over a channel which is assumed to be reliable and

byte-oriented. In this case, the abstract channel encompasses all

the layers from physical channel up to TCP/IP.

In the following text, the network entities will be described

in detail together with the relationships between them. Regarding

notation, R≥ is used to denote the non-negative real numbers,

R[x,y] identifies the real numbers between x and y, and and

B := {true, false} for boolean values. Furthermore, the term

Time Unit (TU) refers to a timing value of one second and Space

Unit (SU) to a distance of one meter.

3.1.1 Tasks

A task represents a basic functionality of the whole application; it

takes some data as input and provides some output. From the point

of view of network synthesis the focus is not on the description

of the functionality itself and its HW/SW implementation but

rather on its computational and mobility requirements to decide

its assignment to a given network node. A task t = [s,m, z] ∈ T
is a triple defined as follows

s ∈ R≥ represents the task size, i.e., the computational

resources required to perform its activity;

m ∈ B specifies whether the task should be placed on a

mobile node;

z ∈ Z specifies to which zone the task belongs.

Defining the appropriate task size is a designer’s responsibility.

It would be easy to generalize the description to the case where

t.s ∈ R
k
≥, allowing to consider an array of k different types of

resources.

3.1.2 Data-Flows

A data-flow (DF) represents the flow of messages between two

tasks; output from the source task is delivered as input to the des-

tination task. A data-flow d = [st, dt, s, d, e] ∈ D is characterized

by the attributes

st, dt ∈ T are the source and destination tasks;

s ∈ R≥ represents the data-flow size, i.e. bit-rate;

d ∈ R≥ indicates the maximum acceptable delay;

e ∈ R≥ specifies the maximum acceptable error rate.

Network synthesis is mainly driven by the communication requi-

rements of the data-flows which affect the choice of channels and

protocols between the nodes hosting the involved tasks.

3.1.3 Nodes

A node can be seen as a container of tasks. At the end of the

whole design flow, nodes will be instances of HW platforms with

CPUs and network interfaces and tasks will be implemented as

either custom HW components or SW processes. From the point

of view of network synthesis, the focus is on the resources made

available by the node to host a number of tasks. A node n =
[s, k, e, te, ek,m] ∈ N is a tuple whose attributes are as follows

s ∈ R≥ represents the node size, i.e., the available compu-

tational resources;

k ∈ R≥ denotes the node economic cost;

e ∈ R≥ is the intrinsic energy consumption of the node

without considering the executed tasks;

te ∈ R≥ determines the energy consumption of the tasks

assigned to the node over a TU (each task t

mapped into the node n consumes an amount of

energy equal to t.s times n.te);

ek ∈ R≥ relates the consumed energy with a specific cost

based on the energy source (e.g., batteries, solar

panels, energy service company etc.);

m ∈ B identifies if the node is mobile or static.

The network synthesis process assigns tasks to nodes. Tasks with

the mobile attribute set to true must be placed on mobile nodes.

Regarding energy consumption, there are two contributions.

The first one, denoted by e, is constant and independent of

task operations while the second, denoted by te, accounts for

the energy consumed to execute each task operation. Regarding

economic cost, there is a constant contribution, denoted by k, to

acquire the use of the node (e.g., because of purchase or rent) and

a variable contribution due to energy consumption. To compute

this contribution, we introduced ek which describes the cost of

each energy unit. This cost depends on energy source, e.g., cost

of batteries and their replacement or energy service company bill.

This unit cost can be zero in case of energy harvesting (e.g., solar

panels).

3.1.4 Abstract Channels

An Abstract Channel (AC) can be seen as a container of data-

flows. It is an ideal medium connecting two or more nodes.

Referring to the ISO/OSI model, it is defined as follows

Definition Assuming that there is a data-flow implementing

a level-N protocol, it is hosted by an AC which represents the

physical channel and all the protocol entities up to level N − 1.

An abstract channel ac = [e, de, k, ek, w, pp, s, dl, er] ∈ A
is a tuple characterized as follows

e ∈ R≥ is the intrinsic energy consumption of the channel

without considering hosted data-flows;

de ∈ R≥ is the energy required to send a bit through the

channel over a TU (each data-flow d deployed in-

side the channel c consumes an amount of energy

equal to d.s times c.de);

k ∈ R≥ specifies the economic cost of this communication

architecture;

ek ∈ R≥ relates the consumed energy with a specific cost

based on the energy source;

w ∈ B specifies if the channel is wireless or wired;

pp ∈ B specifies if the channel is point-to-point;

s ∈ R≥ specifies the channel size, i.e. its capacity;

dl ∈ R≥ specifies the maximum transmission delay of the

channel;

er ∈ R≥ specifies the maximum error rate of the channel.

Data-flows between mobile tasks (hosted by mobile nodes) can

be assigned only to wireless abstract channels. The last three

attributes of the AC represent the Quality of Service (QoS)

resulting from the presence of a given physical channel and all

encompassed protocols. Similar attributes are present in the data-

flow description; they represent the QoS required by the data-flow

which should be provided by the hosting abstract channel. This

is one of the driving rules of the network synthesis. Attribute

ac.pp distinguishes between point-to-point and multi-point
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channels. It is worth noting that this information is orthogonal

to wireless/wired attribute. In fact there are multi-point wired

channels (e.g., CAN bus) and point-to-point wireless channels

(e.g., Bluetooth connections and wireless bridges).

For economic cost and energy consumption, similar reasoning

as for nodes applies since the proposed definition of Abstract

Channel accounts for both the physical channel and possible in-

termediate systems (e.g., switches and routers). Regarding energy

consumption, there are two contributions. The first one, denoted

by e, is constant and independent of communications while the

second, denoted by de, accounts for the energy consumed to trans-

mit data-flow bits. Regarding economic cost, there is a constant

contribution, denoted by k, to acquire the use of the channel

(e.g., because of purchase or rent of the line and intermediate

systems) and a variable contribution due to energy consumption.

To compute this contribution, we introduced ek which describes

the cost of each energy unit. This cost depends on energy source,

e.g., cost of batteries and their replacement or energy service

company bill. This unit cost can be zero in case of energy

harvesting (e.g., solar panels).

3.1.5 Zones

In distributed embedded applications tasks should be active in

specific positions of the 3D space. In the mentioned example,

temperature sensors and actuators are distributed in the various

rooms of the building. Position of tasks is important for their assig-

nment to nodes. Then nodes position is also important to determine

the effect of obstacles and distance on communications between

them. In general, we want to address properties like “between

nodes ni and nj there is an obstacle”. Information about precise

3D positioning may be not available and even not useful for a

given application (for instance, a temperature sensor is required

in each room but its position may be not so relevant). Therefore

we propose to describe the position of tasks and nodes in the

3D space by partitioning it according to application needs (e.g.,

rooms) and the presence of communication-relevant properties

such as obstacles and distances. We denote by Z the set of Zones

generated by this partition.

3.1.6 Contiguity Relationship

Contiguity relationship describes the relationship between zones

from the communication perspective. We assume that nodes pla-

ced in the same zone are always able to communicate with the

default quality of service of the involved abstract channel (see

Section 3.1.4). If nodes are deployed into different zones, the

quality of service might drop because of distance or obstacles. The

level of degradation also depends on the type of abstract channel.

Furthermore, in case of wired channels, the relationship between

zones can be also used to capture the wiring cost. A contiguity

element cnt = [z1, z2, ac, c, dc] ∈ C is a tuple whose attributes

are characterized as follows

z1, z2 ∈ Z are the involved zones;

ac ∈ A is the abstract channel to which the contiguity

applies;

c ∈ R[0,1] is the attenuation coefficient to compute the re-

maining level of QoS of the given abstract chan-

nel ac after crossing the border between the given

zones;

dc ∈ R≥ represents the wiring cost to deploy the given

channel between the given pair of zones; this

attribute is relevant only for wired channels and

takes into account both medium type and length.

3.2 Design Flow

White boxes in the right part of Figure 3 represent the traditional

design flow of embedded systems. The starting point is the set

of Application Requirements both functional and non-functional.

A platform-independent Functional Specification is created star-

ting from application requirements. Interacting components are

expressed through languages like UML and C/C++ or through

the use of tools like Matlab/Simulink/Stateflow (see Section 2.1).

With reference to the entities defined in Section 3.1, a functional

specification can be given as a set of Tasks exchanging information

through Data-Flows.

This specification, together with a description of the target

platform, is the subject of a Design Space Exploration (DSE)

which maps Tasks onto HW and SW components of the target

platform. The result is a platform-dependent description of the

system, in which the HW blocks correspond to actual devices

while the software is implemented and compiled for the target

processors. Such flow is well suited for isolated embedded sys-

tems. However, in case of distributed applications made of many

embedded systems it lacks a specific path devoted to the design of

the communication infrastructure among them.

For this reason, this work proposes to extend the flow with

new steps shown in light green on the left side. The new design

path is quite symmetric w.r.t. the traditional one since it applies

the same concepts to the communication aspects of the whole

system. A Communication-aware Problem Formulation for the

whole application is created by using information taken from the

Application Requirements and the Functional Specification. Such

information can be described with reference to the entities defined

in Section 3.1.

The Application Requirements block provides:

• a description of the environment as a set of Zones and

Contiguity relationships among them;

• a definition of the application as a set of Tasks and Data-

Flows with Task-Zone assignments;

• an optimization objective function (e.g., energy minimiza-

tion).

The Functional Specification allows to obtain the attributes

of Tasks and Data-Flows. Data-Flow attributes represent commu-

nication constraints of the various data-flows of the distributed

application, e.g., their bit-rate as well as maximum acceptable

delay and error rate.

The Communication-aware Problem Formulation describes a

constrained optimization problem which links metrics to be opti-

mized with constraints to be satisfied. This problem description,

together with a description of available abstract channels and

nodes (defined in Section 3.1), is the subject of DSE aiming at

searching the optimal solutions. Similarly to how components are

defined in electronic system design, this process is named Network

Synthesis.

Definition Network synthesis is a design process which starts

from an optimization problem and finds a feasible solution which

defines its communication infrastructure in terms of mapping of

application Tasks onto network Nodes, their spatial displacement

onto Zones, the type of channels and protocols among them, and

the network topology.
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Fig. 3. Proposed design flow for distributed embedded systems: the new steps for network design (in light green on the left) are added symmetrically
to the state-of-art design flow (in white on the right).

The final result is the Network Specification which contains

important information for the design of each node of the network,

i.e., the list of functions assigned to it and the presence of new

computation tasks to handle network protocols. For this reason,

this description is used as input in the traditional DSE of each

node as reported in the right part of Figure 3. The proposed flow

has the following advantages which match with the properties of

distributed embedded systems:

• Network features are decided before the design of HW and

SW components; in this way the impact of communications

can be taken into account in the early phase of the design

process.

• The environment is taken into account during network design

and therefore its impact is considered in the following design

of HW and SW components.

• The proposed top-down approach for the design of the distri-

buted embedded system matches with its nature of system-of-

systems. In the context of network deployment, the traditional

approach is bottom-up by making some implementation-

specific assumptions based on designer’s experience. For

instance, the designer starts assuming to build an Ethernet

network and then connects Ethernet nodes and switches wit-

hout considering if other technologies may be more suitable.

To the best of our knowledge, this is the first proposal that

considers all available network architectures at the beginning

of the flow.

• The decomposition of the application functionality into tasks

and their allocation to nodes allows to distribute a single

heavy function over multiple nodes and the process is driven

by the optimization objective, i.e., cost, reliability, and so on.

4 NETWORK SYNTHESIS

The network synthesis problem is the core of the previous design

flow. It can be formulated as an optimization problem by using

the entities defined in Section 3.1. Among several optimization

techniques that can be used to solve this problem, a mixed-integer

linear problem (MILP) is presented and solved.

4.1 Problem Formulation

Referring to Figure 3 and using the entities defined in Section 3.1

it is now possible to formulate the network synthesis problem.

The Application Requirements allow to obtain the set of

tasks (denoted by T ), data-flows (D), zones (Z) and contiguity

elements (C). The Functional Specification allows to obtain the

attributes of tasks and data-flows. All these information elements

allow to build the Communication-aware Problem Formulation.

Network synthesis process is also fed by the set of nodes

(denoted by N ) and abstract channels (A) which represent the

technological libraries for this design space exploration. For each

type of node and abstract channel its name and attributes are

specified.

Network synthesis can be formulated as an optimization

problem in which the allocation of tasks onto nodes and data-

flows onto abstract channels is driven by a set of constraints

and metrics to be optimized. A possible way to formulate and

solve such problem consists in describing it as a MILP problem.

Independently of the formulation technique, there are some strong

constraints that should be always considered:

• a non-mobile node cannot host a mobile task;

• a task with a given computational requirement cannot be

hosted by a node which does not provide at least such

resources;

• a data-flow with a given QoS requirement cannot be hosted

by an abstract channel which does not provide at least such

QoS;

• abstract channel types cannot be used between zone pairs

whose contiguity brings to zero their QoS.

To model these general constraints, the following functions are

defined and populated during a preprocessing phase:

• αn(t), t ∈ T returns the set of allowed nodes to which the

task t can be mapped;

• αt(n), n ∈ N returns the set of allowed tasks which can be

mapped into a node of type n;

• αc(d), d ∈ D returns the set of allowed channels in which

the data-flow d can be mapped. It can be further subdivided
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into αwc(d) and αcc(d) that only considers respectively the

allowed wireless and wired channels;

• αc(z1, z2), z1, z2 ∈ Z , z1 6= z2 returns the set of allowed

channels which can be used to connect two nodes deployed

respectively in z1 and z2. Two sub-sets αwc(z1, z2) and

αcc(z1, z2) are defined, respectively identifying the allowed

wireless and wired channels;

• αd(c), c ∈ A returns the set of allowed data-flows which can

be mapped into a channel of type c;

• cont(z1, z2, ac), z1, z2 ∈ Z , ac ∈ A, is a hash function that

allows to efficiently retrieve the contiguity relationship and

thus the corresponding conductivity c and the wiring cost dc.

The tasks connected to a data-flow and the zones in which

they are placed is well-known from Application Requirements.

Therefore, given an abstract channel c, the set αd(c) does not

contain data-flows whose tasks are placed in zones across which c

has zero conductivity.

4.2 MILP Variables

In the following, all the variables used during the MILP formali-

zation are presented and explained in detail. The first two sets of

variables play a distinguished structural role, in that they imply

the space of all the other variables.

• Nn,z , n ∈ N , z ∈ Z for each node-type n ∈ N and zone

z ∈ Z , Nn,z denotes how many nodes of node-type n are

deployed in zone z.

• Cc, c ∈ A for each channel type c ∈ A, Cc states how many

channels of type c are activated by the solution.

Since we can not write MILPs with an infinite number of variables,

we need to rely on the following two parameters which can be

conveniently computed in a preprocessing phase.

• Nn,z , n ∈ N , z ∈ Z for each node-type n ∈ N and zone

z ∈ Z , parameter Nn,z provides an upper bound on the value

of Nn,z . Before running our model we need to fix parameter

Nn,z to a natural value. We want this value to be as small as

possible, since the number of variables allocated by our MILP

grows polynomially in Nn,z. However, we should make sure

that there exist optimal solutions in which Nn,z ≤ Nn,z , i.e.,

Nn,z should be a valid upper bound.

• Cc, c ∈ A for each channel type c ∈ A, parameter Cc pro-

vides an upper bound on the value of Cc. This means that, as

above, we should make sure that there exist optimal solutions

in which Cc ≤ Cc, or that we are ready to anyhow limit

our search for good solutions below this parameter. Again,

we want Cc to be as small as possible since the number of

variables allocated by our MILP grows polynomially in this

parameter.

This work proposes to consider

Nn,z := |{t ∈ αt(n)|t.z = z}| (1)

Cc := |{d ∈ αd(c)}| (2)

Bound 1 indeed provides an upper bound to the number of type-

node n in zone z based on the number of allowed tasks for node

n in zone z. Bound 2 is also a valid upper bound since the upper-

bound of a given channel c is equal to the number of allowed

data-flow inside that channel.

The purpose of our first set of boolean variable x is to activate,

in a well structured way, single instances of nodes of any given

type. For each node n ∈ N , z ∈ Z and p ≤ Nn,z , their intended

value is as follows

xn,z,p =

{

1
if there are at least p nodes of type
n allocated in zone z,

0 otherwise.

∀n ∈ N , ∀z ∈ Z, ∀p ≤ Nn,z

(3)

Analogously, the second set of variables y determines the number

of allocated channels of any given type

yc,p =

{

1
if at least p channels of type c are
allocated,

0 otherwise.

∀c ∈ A, ∀p ≤ Cc

(4)

Another issue is represented by the presence of point-to-point

channels, which can only be deployed between two nodes. Such

aspect has been formalized with the support of two variables. First,

the tasks of a data-flow and a third task are related by a variable

γ, whose formalization follows

γd,t =

{

1
if tasks d.st, d.dt, and t are map-
ped into 3 different nodes,

0 otherwise.

∀d ∈ D, ∀t ∈ T ,

(5)

Variable ρ instead, is formalized as

ρt1,t2 =

{

1
if tasks t1 and t2 are mapped into
different nodes,

0 otherwise.

∀t1, t2 ∈ T , t1 6= t2

(6)

The key aspects of the proposed formulation are the assignment

of tasks to nodes and the deployment of data-flows into channels.

Concerning the positioning of tasks inside nodes, a new boolean

variable wt,n,p defined as

wt,n,p =

{

1
if task t is associated with the p-th
node of type n in zone t.z,

0 otherwise.

∀t ∈ T , ∀n ∈ αn(t), ∀p ≤ Nn,z

(7)

Deployment of data-flows inside channels is identified by a varia-

ble hd,c,p defined as

hd,c,p =

{

1
if the data-flow d is placed in the
p-th channel of type c,

0 otherwise.

∀d ∈ D, ∀c ∈ αc(d), ∀p ≤ Cc

(8)

Variable qc,z1,z2 is statically solved before executing the optimiza-

tion. It is initialized by checking if the conductance of the channel

between the two zones is greater than zero. It is defined as follows

qc,z1,z2 =

{

1
if a channel of type c can connect
nodes inside z1 and z2,

0 otherwise.

∀z1, z2 ∈ Z, ∀c ∈ A

(9)

Finally, variable jc,p is introduced in order to keep track of the

deployment cost for each instance of deployed channel. It is

defined as
jc,p ∈ R≥

∀c ∈ A, ∀p ≤ Cc

(10)
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4.3 MILP Objectives

Four metrics were considered to be of major importance within

a distributed embedded system, and then subject to optimization.

These metrics are: Economic cost, Energy consumption, Transmis-

sion delay, and Error rate. For all the metrics described above the

optimization can be determined by a minimization function.

4.3.1 Economic Cost Minimization

Its objective is to minimize the total economic cost of the distri-

buted embedded system, and it is defined as follows

min
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(xn,z,p ∗ (n.k + n.e ∗ n.ek))+
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c
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∑
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t
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n

Nn,t.z
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(wt,n,p ∗ n.te ∗ t.s ∗ n.ek)+

D
∑

d

αc(d)
∑

c

Cc
∑

p=1

hd,c,p ∗ c.de ∗ c.ek ∗ d.s

cont(d.st.z, d.dt.z, c).c











































(11)

The first two sums of the metric considers the base cost of

deployed nodes and channels plus their energetic cost. Then, the

third sum considers the supplementary cost for wired channels

whenever they are placed between different zones. The last two

sums concerns the economic cost deriving from the consumed

energy. For tasks, this is done by multiplying the total energy

consumed by a task deployed inside a node for the specific energy

cost for that node. Similarly, the last sum considers the energetic

cost of data-flows by multiplying the total amount of energy

consumed by a deployed channel for the price of the energy for

that particular channel.

4.3.2 Energy Consumption Minimization

The second optimization objective is to minimize the total energy

consumption of the distributed embedded system, and is defined

as follows

min
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∑
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Cc
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hd,c,p ∗ c.de ∗ d.s

cont(d.st.z, d.dt.z, c).c











































(12)

The first two sums of the metric consider the energy consumed by

deployed nodes and channels. The third sum takes into account the

task’s resource requirements and multiplies it for the coefficient

used to calculate contribution of each task to the node energy

consumption (i.e., attribute n.te). The last sum multiplies the size

of dataflows for the contribution to the energy consumption of

channels where they are deployed (i.e., attribute n.de).

4.3.3 Transmission Delay Minimization

Its purpose is to minimize the total transmission delay of the

distributed embedded system. Follows its definition

min





D
∑

d

αc(d)
∑

c

Cc
∑

p=1

hd,c,p ∗ c.dl

cont(d.st.z, d.dt.z, c).c



 (13)

The above metric sums the transmission delay of channels where

dataflows are deployed, enhanced by the effects of the border

between the involved zones on the communication quality. This

metric considers the delay for each dataflow and not only once for

each deployed channel.

4.3.4 Error Rate Minimization

The optimization objective is to minimize the total error rate

of the distributed embedded system. The function has the same

structure as for the transmission delay minimization but, instead

of summing the channel delay, its error rate value is used. Follows

its definition

min





D
∑

d

αc(d)
∑

c

Cc
∑

p=1

hd,c,p ∗ c.er

cont(d.st.z, d.dt.z, c).c



 (14)

4.4 MILP Constraints

Constraints on the Number of Instantiated Components

The first group of constraints activates in accordance to the number

of nodes and channels as well as defining the values of the

upper-bounds of such components. More in details constraints C.1

and C.2 concerns the nodes. For all n ∈ N and z ∈ Z

Nn,z =
Nn,z
∑

p=1
xn,z,p

∀n ∈ N , ∀z ∈ Z

(C.1)

Nn,z ≥ p ∗ xn,z,p

∀n ∈ N , ∀z ∈ Z, ∀p ≤ Nn,z

(C.2)

Moreover, the second set of constraints C.3 and C.4, concerns the

channels.

Cc =
Cc
∑

p=1
yc,p

∀c ∈ A

(C.3)

Cc ≥ p ∗ yc,p

∀c ∈ A, ∀p ≤ Cc

(C.4)

Constraints on the Existence of Used Components

Constraints C.5 and C.6 ensure that nodes and channels are

instantiated whenever tasks and data-flows use them.

wt,n,p ≤ xn,t.z,p

∀t ∈ T , ∀n ∈ αn(t), ∀p ≤ Nn,t.z

(C.5)

hd,c,p ≤ yc,p

∀d ∈ D, ∀c ∈ αc(d), ∀p ≤ Cc

(C.6)
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Constraints C.7 and C.8 instead ensure that only the nodes and

channels which are necessary are activated.

xn,z,p ≤
(αt(n)∧t.z=z)

∑

t

wt,n,p

∀n ∈ N , ∀z ∈ Z, ∀p ≤ Nn,z

(C.7)

yc,p ≤
αd(c)
∑

d

hd,c,p

∀c ∈ A, ∀p ≤ Cc

(C.8)

Constraints on Components Capacity

The assignment of tasks to nodes has to be compliant with the size

(i.e., resources) of each involved node. Constraint C.9, ensures that

the total amount of resources required by tasks inside a given node

is at most the size of the node.

(αt(n)∧t.z=z)
∑

t

t.s ∗ wt,n,p ≤ n.s

∀n ∈ N , ∀z ∈ Z, ∀p ≤ Nn,z

(C.9)

Constraint C.10, ensures that the total amount of bit-rate used

by data-flows mapped into a given channel is at most the size

(i.e., capacity) of the channel. Furthermore, the effect of the

environment has to be taken into consideration.

αd(c)
∑

d

d.s ∗ hd,c,p

cont(d.st.z, d.dt.z, c).c
≤ c.s

∀c ∈ A, ∀p ≤ Cc

(C.10)

Constraints on Tasks and Data-Flows Assignment

Tasks and data-flows are unique entities, specific of the application

functionality, thus they must be assigned only once to nodes and

channels, respectively. For what concerns tasks, Constraint C.11,

ensures that they are assigned to a node only once.

αn(t)
∑

n

Nn,t.z
∑

p=1
wt,n,p = 1

∀t ∈ T

(C.11)

However, for what concerns data-flows, their placement depends

on whether the tasks which they connect reside in the same node

or not. In the former case, formalized in Constraint C.12, the

data-flow is not necessarily assigned to a channel and in fact its

placement depends on variable ρ. For data-flows which instead

have tasks which reside in different zones their placement inside a

channel is necessary and ensured by Constraint C.13.

αc(d)
∑

c

Cc
∑

p=1
hd,c,p = ρd.st,d.dt

∀d ∈ D, d.st.z = d.dt.z

(C.12)

αc(d)
∑

c

Cc
∑

p=1
hd,c,p = 1

∀d ∈ D, d.st.z 6= d.dt.z

(C.13)

Constraints on Point-to-Point Channels

The next sets of constraints concern point-to-point channels, which

have to abide a more tightening rule. Each of them can connect no

more than a pair of nodes. Constraint C.14 ensures that variable

ρ is correctly set whenever two tasks are mapped into different

nodes. Constraint C.15 instead, sets ρ to constant 1 when the pair

of tasks resides in different zones.

ρt,t′ ≥ (wt,n,p + wt′,n′,p′ − 1)

∀t, t′ ∈ T , t.z = t′.z, t 6= t′,

∀n ∈ αn(t), ∀p ∈ Nn,t.z,

∀n′ ∈ αn(t
′), ∀p′ ∈ Nn′,t′.z,

(n 6= n′) ∨ (p 6= p′)

(C.14)

ρt,t′ = 1

∀t, t′ ∈ T , t.z 6= t′.z, t 6= t′
(C.15)

Constraint C.16 has to keep track of all the data-flows which have

a node in common. This is necessary since whenever a data-flow

mapped into a point-to-point channel share a node with another

data-flow, the source and destination task of the latter have to be

mapped into the same node w.r.t. the tasks of the former.

γd,d′.st ≤ 2− hd,c,p + hd′,c,p

with (d.st 6= d′.st) ∧ (d.dt 6= d′.st)

γd,d′.dt ≤ 2− hd,c,p + hd′,c,p

with (d.st 6= d′.dt) ∧ (d.dt 6= d′.dt)

∀c ∈ A, ∀p ≤ Cc, ∀d, d
′ ∈ αd(c),

c.pp = true, d 6= d′

(C.16)

Constraint C.17 ensures that, if the tasks of a data-flow d and a

third task t are placed all in different nodes (C.14, C.15 and C.17),

then data-flow d and the one connected to task t must be mapped

into different channels (C.16).

γd,t = 0
with (d.st = t) ∨ (d.dt = t)

γd,t = 1
with (d.st.z 6= t.z) ∧ (d.dt.z 6= t.z) ∧ (d.st.z 6= d.st.z)

γd,t ≥ ρt,d.st + ρt,d.dt + ρd.st,d.dt − 2
with (d.st.z = t.z) ∨ (d.dt.z = t.z) ∨ (d.st.z = d.st.z)

∀d ∈ D, ∀t ∈ T

(C.17)

Constraints on Wireless Channels

Constraint C.18 ensures that whenever two data-flows are placed

inside the same wireless channel, all tasks of the data-flows are

able to communicate with each other. Thus, the conductivity with

the given channel between the four combinations of the zones in

which the tasks reside is greater than zero.

hd,c,p + hd′,c,p ≤ 1 + (qc,d.st.z,d′.st.z∗
qc,d.st.z,d′.dt.z∗
qc,d.dt.z,d′.st.z∗
qc,d.dt.z,d′.dt.z)

∀c ∈ A, c.w = true, ∀p ≤ Cc, ∀d, d
′ ∈ αd(c), d 6= d′

(C.18)

Constraints on deployment cost of wired channels

Finally, Constraint C.19 poses an lower-bound on variable j ∈
R≥. Such lower-bound is equal to the highest deployment cost

for those channels which are placed between two zones. It can

be appreciated that such constraint is defined only for those pairs
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of zone interested by data-flows. The upper-bound on variable j

is intrinsically ensured by the objective function, which aims at

minimizing the variables.

jc,p ≥ hd,c,p ∗ cont(d.st.z, d.dt.z, c).dc

∀c ∈ A, c.w = false, ∀p ≤ Cc,

∀d ∈ αd(c), d.st.z 6= d.dt.z

(C.19)

5 COMPLEXITY AND SCALABILITY

One should be aware that the network synthesis model proposed

and solved in this paper is strongly NP-hard even in the following

two very extreme special cases:

• |N | = 1, |Z| = |A| = |D| = 0, |T | ∈ N. Without loss

of generality, both size and cost of each node instance are

1. Every node instance can be regarded as a bin that we can

open or not in order to accommodate a set of tasks, each one

representing an item of the same size.

• |A| = |N | = 1, |T | = 2, |Z| = 1, |D| ∈ N. Without loss

of generality, both size and cost of each channel instance are

1. Every channel instance can be regarded as a bin that we

can open or not in order to accommodate a set of data-flows,

each one representing an item of the same size.

As a consequence, unless P=NP, every general algorithm solving

our model will exhibit a running time which is exponential both

in |T | and in |D|. Nonetheless, the MILP solution here offered

works remarkably well in practice. In our tests, we never gave

up the ambition of obtaining a proof of optimality. By necessity,

there are surely limits to the scalability of this approach, but these

should be regarded more as limits to the ambition of solving the

general network design model to optimality rather than limits in

the tested solution. The model and solution we have designed

has successfully modeled and solved to optimality the situations

form the applications we had in mind. In fact, its efficiency allows

to solve instances whose share size was beyond our original

commitment.

To get a rough idea on the size of the instances that can be

addressed, consider first the asymptotic growth of the number of

variables that get allocated by our MILP formulation. Table 1

reports on the growth for each category of variables introduced.

TABLE 1
Number of allocated variables.

x O(|N ||T ||Z|)
y O(|A||D|)
γ O(|D||T |)
ρ O(|T |2)
w O(|N ||T |2)
h O(|A||D|2)
q O(|A||Z|2)
j O(|A||D|)

Those reported in the table are only worst case upper bounds

as quite fewer variables get actually allocated in many instances;

it is however easy to propose natural instance families meeting

these bounds. Since allocating a variable takes O(1) time and

space, then the phase where the variables get introduced in the

model one by one, through calls to the competent functions of the

Gurobi dynamic library interface, takes

O(max{|N ||T ||Z|, |D||T |, |N ||T |2|A||D|2|A||Z|2})

time and space. Since inserting a constraint takes O(1) time and

memory for each one of its non-zero coefficients, the upper bound

on the constraints specification phase can be similarly drawn from

Table 2.

TABLE 2
Number of defined constraints.

C.1 O(|N ||Z|)
C.2 O(|N ||Z||T |)
C.3 O(|A|)
C.4 O(|A||D|)
C.5 O(|N ||T |2)
C.6 O(|A||D|2)
C.7 O(|N ||Z||T |)
C.8 O(|A||D|)
C.9 O(|N ||Z||T |)

C.10 O(|A||D|)
C.11 O(|T |)
C.12 O(|A||D|2)
C.13 O(|A||D|2)
C.14 O(|N |2|T |3)
C.15 O(|T |2)
C.16 O(|A||D|3)
C.17 O(|D||T |)
C.18 O(|A||D|3)
C.19 O(|A||D|2)

The max of these bounds works as an upper bound only

for the model set up phase, whereas the true optimization phase

managed by Gurobi requires further memory and may easily take

exponential time. However, based on experiments and talking with

reference to a desktop architecture, we are confident that these

bounds may offer a rather good prediction on the ultimate perfor-

mance of our code when considering to apply our implementation

of the model, as it is, to other settings. More precisely, we are

confident that these bounds may offer you a rather good prediction

on the ultimate performance of our code over the limited range

where the predicted memory consumption for the only allocation

phase is not prohibitive.

6 EXPERIMENTAL RESULTS

In this section two case studies are presented with the aim of

showing the expressiveness of the proposed design flow and

the computational demand of the optimization process. Network

synthesis has been performed by using Gurobi 7.5.1 tool with

Python 2.7.12 front-end on a 64-bit machine running Ubuntu 16.04

LTS; the machine features an Intel(R) Core(TM) i7-3770 CPU @

3.40GHz with 16 GB memory.

6.1 Case Study 1

The first case study concerns the implementation of a distributed

building automation application spanning over two adjacent buil-

dings. The scenario is depicted in Figure 4. It consists of different

kinds of tasks (i.e., controllers, routers, sensors and actuators),

deployed inside rooms delimited by thick walls, and exchanging

a series of data-flows shown as red lines. Each building hosts a

total of twenty-four tasks: a central controller, two routers and

twenty-one sensors/actuators for room monitoring and regulation.

Tasks are distributed over ten zones which comprise a control

room, two technical closets for routers and seven offices. Each

office contains two sensors and one actuator which have access to

the central controller through an adjacent router. For this scenario,

the technological libraries of available nodes and channels are
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Fig. 4. Network topology with various network architectures connected
through routers.

TABLE 3
Catalog of available nodes for Case Study 1.

Label s k e te ek m

Development Board Type 1 32 5 5 1 0.10 false

Development Board Type 2 84 18 7 2 0.15 false

Development Board Type 3 64 22 8 2 0.30 true

Development Board Type 4 128 98 12 5 0.41 true

Development Board Type 5 256 128 15 6 0.33 true

Development Board Type 6 512 512 30 12 1.20 false

TABLE 4
Catalog of available abstract channels.

Label s k e de ek dl er w pp

Bluetooth 4.0 24 9 1 1 0.16 12 10 true true

IEEE 802.11ac 7000 34 3 2 0.30 8 7 true false

IEEE 802.11ad 7400 79 7 4 0.28 3 4 true false

Ethernet 200000 320 18 2 0.21 3 1 false true

Fiber 273000 367 14 1 0.12 1 3 false true

reported in Table 3 and Table 4, respectively. The tables use the

attribute symbols defined in Section 3.1.

As explained in Section 3.1.4, an Abstract Channel encompas-

ses the physical layer and all the required upper layers according

to application scenario: in our case, the abstract channels in

Table 4 include also TCP/IP. The presence of various network

architectures allows to select the most appropriate one for each

interconnection between nodes. Considering the environment de-

picted in Figure 4, the data-flow between the controllers has to

cross a pair of thick walls which may hinder the use of wireless

LAN. Such effect is represented as a lower value of conductance

between the corresponding zones (i.e., control rooms) for the

wireless channels as reported in boldface in Table 5. Therefore,

the optimization process will select a wired architecture even if it

leads to higher cost for cabling which is computed by summing up

dc attribute values for the given zone pairs and the chosen wired

TABLE 5
Example of contiguity values for Case Study 1.

z1 z2 ac c dc

Bluetooth 4.0 0.45 0

Technical IEEE 802.11ac 0.58 0

Office 1 closet IEEE 802.11ad 0.97 0

1 Ethernet 0.00 0

Fiber 0.00 0

Bluetooth 4.0 0.12 0

Technical Control IEEE 802.11ac 0.46 0

closet room IEEE 802.11ad 0.84 0

1 1 Ethernet 0.69 645

Fiber 0.95 1,252

Bluetooth 4.0 0.07 0

Control Control IEEE 802.11ac 0.12 0

room room IEEE 802.11ad 0.21 0

1 2 Ethernet 0.78 824

Fiber 1.00 1,486

TABLE 6
Case Study 1: performance and results of the network synthesis as a

function of the optimization objective.

Minimization CPU Economic Energy Delay Error

Objective Time (s) Cost ($) Consumption (J) (s) Rate (%)

Econ. Cost 11.38 38,903 56,306 543.96 47.0

Energy 5.07 41,762 48,330 514.00 45.1

Delay 3.89 68,312 86,604 283.35 19.8

Error 3.97 67,760 93,809 287.84 19.6

channel type (reported in boldface in Table 5).

In this example, the values in Tables 3, 4, and 5 have been

obtained by performing a relative comparison between different

technologies with the unique purpose of testing the optimization

engine. More accurate values can be found in HW datasheets

for nodes and actual benchmarks for network architectures [39].

Contiguity relationship should be evaluated by the designer for

each specific scenario, e.g., by using well-known tools for WiFi

deployment [40].

Vice versa, for other zones of the same scenario wireless

communications will be preferred for their lower cost. For in-

stance, with energy minimization, we use 2 Bluetooth links,

7 IEEE 802.11ac links, 12 IEEE 802.11ad links, 10 Ethernet links,

and 5 fiber links. To the best of our knowledge, this is the first

network synthesis approach that allows mixing different network

architectures.

Table 6 shows the statistics of the synthesized networks with

the four different optimization objectives presented in Section 4.3.

The table reports the CPU time spent to find the solution; it

depends on the optimization target but anyway it is acceptable.

The composition of the synthesized network depends on the

optimization metric. For instance, for cost minimization, the opti-

mizer chooses 12 nodes of Type 2, 17 nodes of Type 3, and 9 nodes

of Type 4, whereas for energy minimization, it chooses 19 nodes of

Type 2, 17 nodes of Type 3, and 9 nodes of Type 4. Furthermore,

application tasks can be grouped in different ways according to

task-node assignment which is determined by the optimization

process. For instance, let us consider three sensor/actuator tasks,

denoted as T 1, T 2, and T 3, belonging to the same zone (i.e.,
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Fig. 5. Wide urban area test case: the tasks and data-flows colored
in blue represent a preexisting network while red elements have been
added during network synthesis.

room). With economic cost minimization, all the tasks are placed

inside the same Type 4 node whereas with delay minimization, two

of them are placed inside inside distinct nodes of Type 3 while the

third is placed inside a node of Type 4.

In summary, this Case Study shows that:

• different network architectures can be mixed in the synthesis

process;

• a single heavy application can be distributed over multiple

nodes of a distributed embedded system;

• the optimization process can distribute tasks in different ways

over the network according to the optimization objective.

6.2 Case Study 2

The second case study concerns the implementation of a smart city

application. For example, energy efficiency is a well-known design

problem in this context [41]. The description of the environment

for the proposed case study is given by the cartography in Figure 5.

The area is subdivided into zones delineated by dotted lines. Each

zone contains a task named distributor (represented by a circle)

and a variable number of user tasks, all connected through data-

flows. In such a huge public context, it is quite common to exploit

a pre-existing network and add new pieces of infrastructure. This

fact gives us the opportunity to show how the proposed synthesis

flow is able to handle this kind of constraint. By referring to

Figure 5, the tasks and data-flows colored in blue represent a

pre-existing network, i.e., they have already been placed inside

nodes and channels, respectively. Vice versa, the red tasks and

data-flows are assigned to nodes and channels by the network

synthesis process. The catalogs of nodes and channels are shown

in Table 7 and Table 4, respectively. The contiguity values between

zones are mainly dependent on their distance.

TABLE 7
Catalog of available nodes for Case Study 2.

Label s k e te ek m

Development Board Type 1 64 10 2 1 0.05 false

Development Board Type 2 98 24 4 2 0.15 true

Development Board Type 3 128 64 8 4 0.40 true

Development Board Type 4 256 128 14 7 0.32 true

Development Board Type 5 512 378 20 10 0.60 false

Fig. 6. Value of the objective function as a function of number of tasks
over all zones and the optimization objective.

This case study aims at evaluating the scalability of the

approach as a function of scenario size, i.e., number of zones,

tasks, and data-flows. For this purpose, we automatically generated

instances with increased size by using two different approaches.

6.2.1 Scalability over zones

The first scalability test regards the creation of large scenarios by

increasing the number of zones, while the number of tasks per

zone remains quite small. The generation of instances is based on

the following rules:

• zones are arranged as a chain and a new instance is automa-

tically generated by increasing the chain;

• each zone has a set of contiguity values defined only for the

precedent zone and subsequent zone unless it is the first or

the last zone of the chain;

• each zone contains four user tasks and one distributor;

• in each zone there are four data-flows connecting each user

task with the distributor of the zone;

• the distributor of a zone is connected to the distributor of the

precedent zone and the one of the subsequent zone unless it

belongs to the first or last zone of the chain;

• attributes of tasks and data-flows are constant and their value

depends on the role of the task, i.e., distributor or user, and on

the type of connection, i.e., between distributors or between

user and distributor.

Figure 6 shows the value of the objective function as a function

of the size of the input instance (number of tasks). Even if values

have been normalized to fit in the same plot, each of them is

the minimum when the corresponding objective function is used

to drive the optimization. Therefore, we can conclude that the

behavior of the synthesizer is consistent over a large set of problem

instances.

Figure 7 shows the total optimization time for the synthesizer

as a function of the size of the input instance (number of tasks

over all zones) for all optimization targets. Time values have

been computed by using Python time.clock() function which

takes into account the effort spent by the CPU in each thread of

the process 1 thus avoiding artifacts due to the current load of

1. https://www.pythoncentral.io/measure-time-in-python-time-time-vs-time-clock
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Fig. 7. Total CPU time for Case Study 2 as a function of number of tasks
over all zones.

Fig. 8. Percentage of CPU time devoted to pre-optimization activities for
Case Study 2 as a function of number of tasks over all zones.

the workstation and hyper-threading techniques. The graph trend

of the objective functions in Figure 7 can be directly related to

the algorithmic complexity and the number of involved variables

of the objective functions reported in Section 4.3. Even if the

economic cost and energy consumption minimization functions

have the same number of loops, the former has a greater number

of involved variables. As such, the economic cost minimization

requires more effort than the other functions as shown in the graph.

As described in Section 5, the synthesis process consists of

some steps which prepare the proper optimization phase, i.e.,

parsing of the instance description file, generation of variables,

and generation of constraints. It is worth analyzing how CPU time

is spent in this optimization flow. Figure 8 shows the percentage of

the total optimization time (reported in Figure 7) devoted to pre-

optimization activities. For economic cost minimization, the real

optimization phase is mainly predominant over preparation but for

simpler objective functions and small instances preparation time

can be larger than time spent to search the optimal solution. To

complete the scalability analysis, Figure 9 shows the correspon-

ding memory usage.

6.2.2 Scalability over tasks

The second scalability test regards the creation of large scenarios

by increasing the number of tasks in the same zone. The generation

of instances is based on the following rules:

• only one large zone is considered;

Fig. 9. Memory usage for Case Study 2 as a function of number of tasks
over all zones.

Fig. 10. CPU time for Case Study 2 as a function of the number of tasks
per zone.

• no contiguity relationships are set;

• each zone contains an increasing number user tasks and one

distributor;

• in each zone there are as many data-flows as user tasks since

they connect each user task with the distributor of the zone;

• attributes of tasks and data-flows are constant and their value

depends on the role of the task, i.e., distributor or user, and on

the type of connection, i.e., between distributors or between

user and distributor.

Figure 10 shows the total optimization time for the synthesizer

as a function of the number of tasks per zone. We only show

economic cost minimization since the previous analysis proved it

to be the most computationally intensive target. Figure 11 shows

the corresponding memory usage.

7 CONCLUSIONS

This work focused on the peculiarities of distributed embed-

ded systems and proposed an extended design flow to address

them. Assuming that highly optimized nodes are desirable, the

network infrastructure should be decided before designing HW

and implementing SW thus leading to the concept of network

synthesis. A communication-aware formalization was proposed to

specify constraints and optimization metrics. Network synthesis

was formalized as an optimization problem using mixed-integer
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Fig. 11. Memory usage for Case Study 2 as a function of the number of
tasks per zone.

linear programming. We defined the following formal entities:

tasks, data-flows, nodes, abstract channels, and zones. The last

two entities are particularly innovative. The Abstract Channel

generalizes the concept of network architecture (i.e., physical

channels and protocols) so that the final solution can combine

different types of network architectures. The Zone generalizes the

concept of physical location adapting location accuracy to the

requirements of the application and focusing on the impact of

node placement on communications and cost. The framework was

applied to real case studies with the aim to show the advancement

with respect to state of the art. The first case study shows the

possibility to create network infrastructures containing different

network architectures according to users’ needs and environmental

constraints. The second one highlights the possibility to synthesize

a network by adding components to an existing infrastructure

which is a common problem in real life scenarios. Future work

aims at investigating the scalability issues of the MILP approach

and proposing communication-aware heuristics to address very

large problems.
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