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Information Rate Distortion Function

Definition The information rate distortion function R(I )(D) for a source
X with distortion measure d(x, ˆx) is defined as

where the minimization is over all conditional distributions p( ˆx|x) for which the 
joint distribution p(x, ˆx) = p(x)p( ˆx|x) satisfies the expected distortion
constraint.

Note that we minimize considering p( ˆx|x) because H(X) is given while we are 
interested in H(X|^X).
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Rate Distortion Theorem
Theorem The rate distortion function for an i.i.d. source X with distribution p(x) 
and bounded distortion function d(x, ˆ x) is equal to the associated information
rate distortion function. Thus,

is the minimum achievable rate at distortion D.

This theorem shows that the operational definition of the rate distortion function
is equal to the information definition. Hence we will use R(D) from now on to
denote both definitions of the rate distortion function.
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Calculation of the Rate Distortion
Function for a Binary Source

We now find the description rate R(D) required to describe a Bernoulli(p) source
with an expected proportion of errors less than or equal to D.

Theorem The rate distortion function for a Bernoulli(p) source with Hamming
distortion is given by:

Remember that a Bernoulli(p) random variable is a binary variable with takes on 
1 with probability p.
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Proof
Consider a binary source X ∼ Bernoulli(p) with a Hamming distortion measure. 
Without loss of generality, we may assume that p < 1/2. 

We wish to calculate the rate distortion function,

Let ⊕ denote modulo 2 addition. Thus, X ⊕ ˆX = 1 is equivalent to X ≠ ˆX. 

We do not minimize I (X; ˆ X) directly; instead, we find a lower bound and then
show that this lower bound is achievable. 
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Proof: Lower Bound on R(D)
For any joint distribution satisfying the distortion constraint, we have

since Pr(X ≠ ˆX) ≤ D and H(D) increases with D for D ≤ 1/2 . Thus,
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Proof: Achievability
We now show that the lower bound is actually the rate distortion function by
finding a joint distribution that meets the distortion constraint and has
I (X; ˆX) = R(D). 

For 0 ≤ D ≤ p, we can achieve the value of the rate distortion function by
choosing (X, ˆX) to have the joint distribution given by the binary symmetric
channel shown in Figure

We would like to find a D such that H(p)-
H(D)=I(X;^X). 

Recall that for a BSC I(X;Y)=H(Y)-H(p). 
Here p corresponds to D and Y to p.

Then we impose that X follows Bernoulli

r = Pr(^X=1)
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Proof: Achievability
We choose the distribution of ˆX at the input of the channel so that the output 
distribution of X is the specified distribution. Let r = Pr( ˆX = 1).  

Then choose r so that:

If D ≤ p ≤ 1/2, then Pr( ˆX = 1) ≥ 0 and Pr( ˆX = 0) ≥ 0. We then have

and the expected distortion is Pr(X ≠ ˆX) = D as can be noted from the Figure. 
Indeed, the uncertainty of X when if ^X is known is D, hence H(X|^X)=H(D).
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Proof: Achievability
If D ≥ p, we can achieve R(D) = 0 by letting ˆX = 0 with probability 1. 

In this case, I (X; ˆ X) = 0 and D = p. 

Similarly, if D ≥ 1 − p, we can achieve R(D) = 0 by setting ˆX = 1 with
probability 1. 

Hence, the rate distortion function for a binary source is

Note that for D≥p, if we set ^X=0, then H(X|^X)=H(X) since ^X is
independent from X, then I(X;^X) = 0. The uncertainty on X is D also in this
case. 
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R(D)
This function is illustrated in Figure
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Rate Distortion of a Gaussian Source

We calculate the rate distortion function for a Gaussian source with squared-
error distortion.

Theorem The rate distortion function for a N(0, σ2) source with squared-error
distortion is
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Proof: Lower Bound
Let X be ∼ N(0, σ2). By the rate distortion theorem extended to continuous
alphabets, we have

As in the preceding example, we first find a lower bound for the rate distortion
function and then prove that this is achievable. 

Since E(X −ˆX)2 ≤ D, we observe that
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Proof: Lower Bound
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Proof: Achievability
Hence

To find the conditional density f (ˆx|x) that achieves this lower bound, it is
usually more convenient to look at the conditional density f (x|ˆx), which is
sometimes called the test channel (thus emphasizing the duality of rate distortion
with channel capacity).

As in the binary case, we construct f (x|ˆx) to achieve equality in the bound. We
choose the joint distribution as shown in Figure. 
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Proof: Achievability
If D ≤ σ2, we choose

X = ˆX + Z,   ˆX ∼ N(0, σ2 − D),     Z ∼ N(0,D),

where ˆX and Z are independent. For this joint distribution, we calculate

and E(X −ˆX)2 = D, thus achieving the bound. If D > σ2, we choose ˆX = 0 with
probability 1, achieving R(D) = 0. Hence, the rate distortion function for the 
Gaussian source with squared-error distortion is
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R(D)
as illustrated in Figure. We can also express in terms of the rate.
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Comments
Each bit of description reduces the expected distortion by a factor of 4. 

With a 1-bit description, the best expected square error is σ2/4.

We can compare this with the result of simple 1-bit quantization of a N(0, σ2) 
random variable

In this case, using the two regions corresponding to the positive and negative real
lines and reproduction points as the centroids of the respective regions, the 
expected distortion is ((π−2)/π) σ2 = 0.3633σ2.
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Converse to the 
Rate Distortion Theorem

It is possible to prove that we cannot achieve a distortion of less than D if we
describe X at a rate less than R(D), where

Lemma (Convexity of R(D)) The rate distortion function R(D) given in is a 
nonincreasing convex function of D.

This shows that the rate R of any rate distortion code exceeds the rate distortion
function R(D) evaluated at the distortion level D = Ed(Xn, ˆXn) achieved by that
code.
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Source-Channel Separation Theorem
with Distortion

A similar argument can be applied when the encoded source is passed through a 
noisy channel and hence we have the equivalent of the source channel separation
theorem with distortion:

Theorem Let V1, V2, . . . , Vn be a finite alphabet i.i.d. source which is encoded
as a sequence of n input symbols Xn of a discrete memoryless channel with
capacity C. 

The output of the channel Yn is mapped onto the reconstruction alphabet ˆVn = 
g(Yn). Let D = Ed(Vn, ˆVn) = 1/n                    be the average distortion achieved
by this combined source and channel coding scheme. Then distortion D is
achievable if and only if C > R(D).
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Channel Coding for the Gaussian
Channel: A Sphere Packing Problem

Consider a Gaussian channel, Yi = Xi + Zi, where the Zi are i.i.d. ∼ N(0,N) and 
there is a power constraint P on the power per symbol of the transmitted
codeword.

Consider a sequence of n transmissions. The power constraint implies that the 
transmitted sequence lies within a sphere of radius √nP in Rn.

The coding problem is equivalent to finding a set of 2nR sequences within this
sphere such that the probability of any of them being mistaken for any other is
small—the spheres of radius √nN around each of them are almost disjoint.

This corresponds to filling a sphere of radius √n(P + N) with spheres of radius
√nN.
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One would expect that the largest number of spheres that could be fit would be
the ratio of their volumes, or, equivalently, the nth power of the ratio of their
radii. 

Thus, if M is the number of codewords that can be transmitted efficiently, we
have

The results of the channel coding theorem show that it is possible to do this
efficiently for large n; it is possible to find approximately

codewords such that the noise spheres around them are almost disjoint (the total 
volume of their intersection is arbitrarily small).
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Rate Distortion for the Gaussian Source: 
A Sphere Covering Problem

Consider a Gaussian source of variance σ2. A (2nR, n) rate distortion code for this
source with distortion D is a set of 2nR sequences in Rn such that most source
sequences of length n (all those that lie within a sphere of radius √nσ2) are within
a distance √nD of some codeword. 

Again, by the sphere-packing argument, it is clear that the minimum number of 
codewords required is

The rate distortion theorem shows that this minimum rate is asymptotically
achievable (i.e., that there exists a collection of spheres of radius √nD that cover 
the space except for a set of arbitrarily small probability).
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Putting it All Together
• The above geometric arguments also enable us to transform a good code for

channel transmission into a good code for rate distortion. In both cases, the 
essential idea is to fill the space of source sequences.

• In channel transmission, we want to find the largest set of codewords that have
a large minimum distance between codewords (given a bound on P)

• In rate distortion, we wish to find the smallest set of codewords that covers the 
entire space (given a bound on D)

• In the Gaussian case, choosing the codewords to be Gaussian with the 
appropriate variance is asymptotically optimal for both rate distortion and 
channel coding.


