
1

Vector Quantization
Vector quantization is used in many applications such as image and voice
compression, voice recognition (in general statistical pattern recognition).

A VQ is nothing more than an approximator. The idea is similar to that of
``rounding-off'' (say to the nearest integer).

An example of a 1-dimensional VQ is shown below:

Here, every number less than -2 are approximated by -3. Every number between
-2 and 0 are approximated by -1...
Note that the approximate values are uniquely represented by 2 bits. This is a 1-
dimensional, 2-bit VQ. It has a rate of 2 bits/dimension.

http://www.data-compression.com/vq.shtml

Vector Quantization
An example of a 2-dimensional VQ is shown below:

Here, every pair of numbers falling in a particular region are approximated by a
red star associated with that region. Note that there are 16 regions and 16 red
stars -- each of which can be uniquely represented by 4 bits. Thus, this is a 2
dimensional, 4-bit VQ. Its rate is also 2 bits/dimension.

2

Design Problem
In the above two examples, the red stars are called codevectors and the regions
defined by the blue borders are called encoding regions. The set of all codevectors is
called the codebook and the set of all encoding regions is called the partition of the
space.

The VQ design problem can be stated as follows. Given a vector source with its
statistical properties known, given a distortion measure, and given the number of
codevectors, find a codebook (the set of all red stars) and a partition (the set of
blue lines) which result in the smallest average distortion.

LBG Algorithm
We assume that there is a training sequence consisting of source vectors:

This training sequence can be obtained from some large database. For example, if
the source is a speech signal, then the training sequence can be obtained by
recording several long telephone conversations. M is assumed to be sufficiently
large so that all the statistical properties of the source are captured by the training
sequence.

We assume that the source vectors are k-dimensional, e.g.,

{ }Mxxx ,..., 21=Τ

()kmmmm xxx ,2,1, ,...,=x

3

Let N be the number of codevectors and let

represents the codebook. Each codevector is k-dimensional, e.g.,

Let Sn be the encoding region associated with codevector cn and let

denote the partition of the space. If the source vector xm is in the encoding
region Sn , then its approximation (denoted by Q(xm)) is cn :

If xm∈Sn.

()NC ccc ,..., 21=

()knnnnc ,2,1, ,..., ccc=

{ }NSSSP ,...,, 21=

nmQ cx =)(

Design Problem
Assuming a squared-error distortion measure, the average distortion is given by:

Where ||e||2=e1
2+e2

2+…..

The design problem can be succinctly stated as follows:

Given T and N, find C and P such that Dave is minimized.

∑
=

−=
M

m
mmave Q

Mk
D

1

2)(1 xx

4

Optimality Criteria
If C and P are a solution to the above minimization problem, then it must

satisfied the following two criteria:

• Nearest Neighbor Condition:

This condition says that the encoding region Sn should consists of all vectors
that are closer to cn than any of the other codevectors. For those vectors lying
on the boundary (blue lines), any tie-breaking procedure will do.

• Centroid Condition

This condition says that the codevector cn should be average of all those
training vectors that are in encoding region Sn. In implementation, one should
ensure that at least one training vector belongs to each encoding region (so
that the denominator in the above equation is never 0).

{ }NnS nnn ,...,2,1': 2
'

2 =∀−≤−= cxcxx

∑
∑

∈

∈=
nm

nm

S

S m
n

x

x
x

c
1

n=1,2,…N

LBG Design Algorithm
The LBG VQ design algorithm is an iterative algorithm which alternatively solves
the above two optimality criteria.

The algorithm requires an initial codebook C(0).

This initial codebook is obtained by the splitting method. In this method, an initial
codevector is set as the average of the entire training sequence. This codevector
is then split into two. The iterative algorithm is run with these two vectors as the
initial codebook.

The final two codevectors are splitted into four and the process is repeated until
the desired number of codevectors is obtained. The algorithm is summarized
below.

5

LBG
1. Given T. Fixed ε>0 to be a small number.
2. Let N=1

3. For i=1,2,…N set

Set N=2N

∑ =
=

M

m mM 1
*

1
1 xc

∑
=

−=
M

m
mave cx

Mk
D

1

2*
1

* 1

*)0(

*)0(

)1(

)1(

iiN

ii

cc

cc

ε

ε

−=

+=

+

LBG
4. Iteration: Let Dave

(i)= Dave
*. Set the index iteration i = 0

i. For m=1,2,…,M, find the minimum value of

over all n=1,2,….,N. over all . Let n* be the index which achieves the
minimum. Set

ii. For n=1,2,…,N update the codevector

iii. Set i=i+1.

2)(i
nm cx −

)(
*)(i

nm cxQ =

∑
∑

=

=+ =
)(

)(

)(

)()1(

1i
nm

i
nm

cxQ

cxQ mi
n

x
c

6

LBG
iv. Calculate

v. if (Dave
(i-1)-Dave

(i))/Dave
(i-1)>ε, go back to step (i)

vi. Set Dave
*=Dave

(i). For n=1,2,…N, set

as the final codevector.

5. Repeat steps 3 and 4 until the desired number of codevectors is obtained

∑
=

−=
M

m
mm

i
ave xQx

Mk
D

1

2)()(1

)(* i
nn cc =

Suggested Exercizes
Channel capacity: 2,3,4,9,11
Gaussian channel: 2,3,4
Rate distortion: 1,2,3,5,7,(9)

