
 - 1 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Periodic scheduling

For periodic scheduling, the best that we can do is to design
an algorithm which will always find a schedule if one exists.
 A scheduler is defined to be optimal iff it will find a
schedule if one exists.

T1

T2

05/06/27

 - 2 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Periodic scheduling

Let
• pi be the period of task Ti,
• ci be the execution time of Ti,
• di be the deadline interval, that is, the time between a job of

Ti becoming available and the time after which the same job
Ti has to finish execution.

• li be the laxity or slack, defined as li = di - ci

 - 3 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Accumulated utilization

Accumulated utilization: 



n

i i

i

p
c

1



Necessary condition for schedulability
(with m=number of processors):

m

 - 4 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Independent tasks:
Rate monotonic (RM) scheduling

Most well-known technique for scheduling independent
periodic tasks [Liu, 1973].
Assumptions:
• All tasks that have hard deadlines are periodic.
• All tasks are independent.
• di=pi, for all tasks.

• ci is constant and is known for all tasks.
• The time required for context switching is negligible.
• For a single processor and for n tasks, the following

equation holds for the accumulated utilization µ:
)12(/1

1




n
n

i i

i n
p
c



 - 5 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Rate monotonic (RM) scheduling
- The policy -

RM policy: The priority of a task is a monotonically decreasing
function of its period.
At any time, a highest priority task among all those that are
ready for execution is allocated.

Theorem: If all RM assumptions are met, schedulability is
guaranteed.

 - 6 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Maximum utilization for guaranteed schedulability

Maximum utilization as a function of the number of tasks:

)2ln()12((lim

)12(

/1

/1

1










n

n

n
n

i i

i

n

n
p
c



 - 7 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Example of RM-generated schedule

T1 preempts T2 and T3.
T2 and T3 do not preempt each other.

 - 8 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Case of failing RM scheduling

Task 1: period 5, execution time 2
Task 2: period 7, execution time 4
µ=2/5+4/7=34/35  0.97
 2(21/2-1)  0.828

Missed
deadline

Missing computations
scheduled in the next period

 - 9 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Proof of RM optimality

Definition: A critical instant of a task is the time at which
the release of a task will produce the largest response time.

Lemma: For any task, the critical instant occurs if that task
is simultaneously released with all higher priority tasks.

Proof: Let T={T1, …,Tn}: periodic tasks with i: pi ≦ pi +1.

More
in-depth:

Source: G. Buttazzo, Hard Real-time Computing Systems, Kluwer, 2002

 - 10 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Critical instances (1)

Response time of Tn is delayed by tasks Ti of higher priority:

cn+2ci

Tn

Ti
t

Maximum delay achieved if Tn and Ti start simultaneously.
cn+3ci

Tn

Ti
t

Delay may increase if Ti starts earlier

 - 11 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Critical instances (2)

Repeating the argument for all i = 1, … n-1:
The worst case response time of a task occurs when it is
released simultaneously with all higher-priority tasks. q.e.d.

Schedulability is checked at the critical instants.
If all tasks of a task set are schedulable at their critical
instants, they are schedulable at all release times.

 - 12 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Proof of the RM theorem

Let T={T1, T2} with p1 < p2.

Assume RM is not used  prio(T2) is highest:

T1

T2 t

Schedule is feasible if c1+c2 ≦ p1 (1)

c1

c2

p1

Define F= p2/p1: # of periods of T1fully contained in T2

 - 13 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Case 1: c1  p2 – Fp1

Assume RM is used  prio(T1) is highest:

T1

T2 t

Case 1*: c1  p2 – Fp1

(c1 small enough to be finished before 2nd instance of T2)

p2Fp1

Schedulable if (F+1) c1 + c2  p2 (2)

* Typos in [Buttazzo 2002]: < and  mixed up]

 - 14 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Proof of the RM theorem (3)

Not RM: schedule is feasible if c1+c2  p1 (1)

RM: schedulable if (F+1) c1 + c2  p2 (2)
From (1): Fc1+Fc2  Fp1

Since F  1: Fc1+c2  Fc1+Fc2  Fp1

Adding c1: (F+1)c1+c2  Fp1 +c1

Since c1  p2 – Fp1: (F+1)c1+c2  Fp1 +c1  p2

Hence: if (1) holds, (2) holds as well
For case 1: Given tasks T1 and T2 with p1 < p2, then if the

schedule is feasible by an arbitrary (but fixed) priority
assignment, it is also feasible by RM.

 - 15 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Case 2: c1 > p2 – Fp1

Case 2: c1 > p2 – Fp1

(c1 large enough not to finish before 2nd instance of T2)

T1

T2 t
p2Fp1

Schedulable if F c1 + c2  F p1 (3)
 c1+c2  p1 (1)
Multiplying (1) by F yields F c1+ F c2  F p1

Since F  1: F c1+ c2  F c1+ Fc2  F p1

 Same statement as for case 1.

 - 16 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Calculation of the least upper utilization bound

Let T={T1, T2} with p1 < p2.
Proof procedure: compute least upper bound Ulup as follows
 Assign priorities according to RM
 Compute upper bound Uup by setting computation times to

fully utilize processor
 Minimize upper bound with respect to other task parameters

As before: F= p2/p1
c2 adjusted to fully utilize processor.

 - 17 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Case 1: c1  p2 – Fp1

Largest possible value of c2 is c2= p2 – c1 (F+1)

Corresponding upper bound is

T1

T2 t
p2Fp1
















)1(1)1(1)1(
1

2

2

1

2

1

1

1

2

12

1

1

2

2

1

1 F
p
p

p
c

p
F c

p
c

p
F – cp

p
c

p
c

p
cUub

{ } is <0  Uub monotonically decreasing in c1

Minimum occurs for c1 = p2 – Fp1

 - 18 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Case 2: c1  p2 – Fp1

Largest possible value of c2 is c2= (p1-c1)F

Corresponding upper bound is:

T1

T2 t
p2Fp1










 F
p
p

p
 cF

p
pF

p
 c

p
cF

p
p

p
 F – cp

p
c

p
c

p
cUub

1

2

2

1

2

1

2

1

1

1

2

1

2

11

1

1

2

2

1

1)(

{ } is  0  Uub monotonically increasing in c1 (independent of c1 if {}=0)

Minimum occurs for c1 = p2 – Fp1, as before.

 - 19 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Utilization as a function of G=p2/p1-F

For minimum value of c1:

 















































 F

p
pF

p
pF

p
pF

p
p

p
FppF

p
pF

p
p

p
cF

p
pUub

1

2

1

2

2

1

1

2

2

12

2

1

1

2

2

1

2

1

 ; Let
1

2 F
p
pG

     
 

   

 
GF
GG

GF
GGGF

GF
GF

FFpp
GF

pp
GFGF

p
pUub






















11

)(
//

22

12

2

12

2
2

2

1

Since 0 G< 1: G(1-G)  0  Uub increasing in F 
Minimum of Uub for min(F): F=1 

G
GUub 




1
1 2

 - 20 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Proving the RM theorem for n=2

This proves the RM theorem for the special case of n=2

83.0)12(2)12(2
2

224
)12(1
)12(1

 :10 since ,only gConsiderin
 ;21 ;21

0
)1(

12
)1(

)1()1(2
: of minimum find to derivative Using

1
1

2
12

2

21

2

2

2

2

2





























lub

ub

ub

ub

U

GG
GG

G
GG

G
GGG

dG
dU

U
G
GU

end

 - 21 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Properties of RM scheduling

 From the proof, it is obvious that no idle capacity is
needed if p2=F p1. In general: not required if the period of
all tasks is a multiple of the period of the highest priority
task, that is, schedulability is then also guaranteed if µ  1.

 RM scheduling is based on static priorities. This allows
RM scheduling to be used in standard OS, such as
Windows NT.

 A huge number of variations of RM scheduling exists.

 In the context of RM scheduling, many formal proofs exist.

 - 22 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

EDF

EDF can also be applied to periodic scheduling.
EDF optimal for every period
 optimal for periodic scheduling
 EDF must be able to schedule the example in which RMS
failed.

 - 23 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Comparison EDF/RMS

RMS:

EDF:

T2 not preempted, due to its earlier deadline.

 - 24 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

EDF: Properties

EDF requires dynamic priorities
 EDF cannot be used with a standard operating system just
providing static priorities.

 - 25 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Dependent tasks

The problem of deciding whether or not a schedule exists
for a set of dependent tasks and a given deadline
is NP-complete in general [Garey/Johnson].
Strategies:
2. Add resources, so that scheduling becomes easier
3. Split problem into static and dynamic part so that only a

minimum of decisions need to be taken at run-time.

 - 26 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Sporadic tasks

If sporadic tasks were connected to interrupts, the execution

time of other tasks would become very unpredictable.

 Introduction of a sporadic task server,
periodically checking for ready sporadic tasks;

 Sporadic tasks are essentially turned into periodic tasks.

 - 27 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Resource access protocols

Critical sections: sections of code at which
exclusive access to some resource must be guaranteed.
Can be guaranteed with semaphores S.

P(S)

V(S)

P(S)

V(S)

P(S) checks semaphore to see
if resource is available
and if yes, sets S to „used“.
Uninterruptable operations!
If no, calling task has to wait.

V(S): sets S to „unused“ and
starts sleeping task (if any).

Exclusive
access
to resource
guarded by
S

Task 1 Task 2

 - 28 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Priority inversion

Priority T1 assumed to be > than priority of T2.
If T2 requests exclusive access first (at t0), T1 has to wait until
T2 releases the resource (time t3), thus inverting the priority:

In this example:
duration of inversion bounded by length of critical section of T2.

 - 29 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Duration of priority inversion with >2 tasks
can exceed the length of any critical section

Priority of T1 > priority of T2 > priority of T3.
T2 preempts T3:
T2 can prevent T3 from releasing the resource.

 - 30 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

The MARS Pathfinder problem (1)

“But a few days into the mission, not long
after Pathfinder started gathering
meteorological data, the spacecraft began
experiencing total system resets, each
resulting in losses of data. The press
reported these failures in terms such as
"software glitches" and "the computer
was trying to do too many things at
once".” …

 - 31 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

The MARS Pathfinder problem (2)

“VxWorks provides preemptive priority scheduling of threads.
Tasks on the Pathfinder spacecraft were executed as threads
with priorities that were assigned in the usual manner reflecting
the relative urgency of these tasks.”
“Pathfinder contained an "information bus", which you can think
of as a shared memory area used for passing information
between different components of the spacecraft.”

 A bus management task ran frequently with high priority
to move certain kinds of data in and out of the information
bus. Access to the bus was synchronized with mutual
exclusion locks (mutexes).”

 - 32 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

The MARS Pathfinder problem (3)

 The meteorological data gathering task ran as an
infrequent, low priority thread, … When publishing its data,
it would acquire a mutex, do writes to the bus, and release
the mutex. ..

 The spacecraft also contained a communications task that
ran with medium priority.”


High priority: retrieval of data from shared memory
Medium priority: communications task
Low priority: thread collecting meteorological data

 - 33 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

The MARS Pathfinder problem (4)

“Most of the time this combination worked fine. However, very
infrequently it was possible for an interrupt to occur that caused
the (medium priority) communications task to be scheduled
during the short interval while the (high priority) information bus
thread was blocked waiting for the (low priority) meteorological
data thread. In this case, the long-running communications task,
having higher priority than the meteorological task, would prevent
it from running, consequently preventing the blocked
information bus task from running. After some time had passed, a
watchdog timer would go off, notice that the data bus task had not
been executed for some time, conclude that something had gone
drastically wrong, and initiate a total system reset. This scenario
is a classic case of priority inversion.”

 - 34 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Coping with priority inversion:
the priority inheritance protocol

 Tasks are scheduled according to their active priorities. Tasks
with the same priorities are scheduled FCFS.

 If task T1 executes P(S) & exclusive access granted to T2:
T1 will become blocked.
If priority(T2) < priority(T1): T2 inherits the priority of T1.
 T2 resumes.
Rule: tasks inherit the highest priority of tasks blocked by it.

 When T2 executes V(S), its priority is decreased to the
highest priority of the tasks blocked by it.
If no other task blocked by T2: priority(T2):= original value.
Highest priority task so far blocked on S is resumed.

 Transitive: if T2 blocks T1 and T1 blocks T0,
then T2 inherits the priority of T0.

 - 35 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Example

T3 inherits the
priority of T1 and

T3 resumes.

How would priority inheritance affect our example with 3 tasks?

V(S)

 - 36 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Priority inversion on Mars

Priority inheritance also solved the Mars Pathfinder
problem: the VxWorks operating system used in the
pathfinder implements a flag for the calls to mutex
primitives. This flag allows priority inheritance to be set to
“on”. When the software was shipped, it was set to “off”.

The problem on Mars was
corrected by using the
debugging facilities of
VxWorks to change the flag to
“on”, while the Pathfinder was
already on the Mars [Jones,
1997].

 - 37 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Remarks on priority inheritance protocol

Possible large number of tasks with high priority.

Possible deadlocks.

Ongoing debate about problems with the protocol:

Victor Yodaiken: Against Priority Inheritance,
http://www.fsmlabs.com/articles/inherit/inherit.html

Finds application in ADA: During rendez-vous,
task priority is set to the maximum.

More sophisticated protocol: priority ceiling protocol.

 - 38 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006

Universität DortmundUniversität Dortmund

Summary

Periodic scheduling
 Rate monotonic scheduling

• Proof of the utilization bound for n=2.
 EDF
 Dependent and sporadic tasks (briefly)

Resource access protocols
 Priority inversion

• The Mars pathfinder example
 Priority inheritance

• The Mars pathfinder example

