
Signals and Systems

Collection Editor:
Richard Baraniuk

Signals and Systems

Collection Editor:
Richard Baraniuk

Authors:

Thanos Antoulas
Richard Baraniuk

Steven Cox
Benjamin Fite

Roy Ha
Michael Haag

Matthew Hutchinson

Don Johnson
Ricardo Radaelli-Sanchez

Justin Romberg
Phil Schniter
Melissa Selik
JP Slavinsky

Online:
<http://cnx.org/content/col10064/1.11/ >

C O N N E X I O N S

Rice University, Houston, Texas

©2008 Richard Baraniuk

This selection and arrangement of content is licensed under the Creative Commons Attribution License:

http://creativecommons.org/licenses/by/1.0

Table of Contents

1 Signals

1.1 Signal Classi�cations and Properties . 1
1.2 Size of A Signal: Norms . 9
1.3 Signal Operations . 19
1.4 Useful Signals . 22
1.5 The Impulse Function . 25
1.6 The Complex Exponential . 28
1.7 Discrete-Time Signals .31
Solutions . 35

2 Systems

2.1 System Classi�cations and Properties . 37
2.2 Properties of Systems .41

3 Time Domain Analysis of Continuous Time Systems

3.1 CT Linear Systems and Di�erential Equations . 47
3.2 Continuous-Time Convolution . 53
3.3 Properties of Convolution .59
3.4 BIBO Stability . 65

4 Time Domain Analysis of Discrete Time Systems

4.1 Discrete-Time Systems in the Time-Domain . 69
4.2 Discrete-Time Convolution . 73
4.3 Circular Convolution and the DFT . 158
4.4 Linear Constant-Coe�cient Di�erence Equations . 82
4.5 Solving Linear Constant-Coe�cient Di�erence Equations . 83
Solutions . 89

5 Linear Algebra Overview

5.1 Linear Algebra: The Basics . 91
5.2 Eigenvectors and Eigenvalues . 96
5.3 Matrix Diagonalization . 101
5.4 Eigen-stu� in a Nutshell . 104
5.5 Eigenfunctions of LTI Systems .105
5.6 Fourier Transform Properties . 108
Solutions . 109

6 Continuous Time Fourier Series

6.1 Periodic Signals . 111
6.2 Fourier Series: Eigenfunction Approach . 112
6.3 Derivation of Fourier Coe�cients Equation . 115
6.4 Fourier Series in a Nutshell . 116
6.5 Fourier Series Properties .119
6.6 Symmetry Properties of the Fourier Series . 122
6.7 Circular Convolution Property of Fourier Series . 126
6.8 Fourier Series and LTI Systems . 127
6.9 Convergence of Fourier Series . 130
6.10 Dirichlet Conditions .132
6.11 Gibbs's Phenomena . 134
6.12 Fourier Series Wrap-Up . 137

iv

Solutions . 139

7 Discrete Fourier Transform

7.1 Fourier Analysis . 141
7.2 Fourier Analysis in Complex Spaces . 142
7.3 Matrix Equation for the DTFS . 149
7.4 Periodic Extension to DTFS . 150
7.5 Circular Shifts .154
7.6 Circular Convolution and the DFT . 158
Solutions . 163

8 Fast Fourier Transform (FFT)

8.1 DFT: Fast Fourier Transform . 165
8.2 The Fast Fourier Transform (FFT) . 166
8.3 Deriving the Fast Fourier Transform . 167
Solutions . 170

9 Convergence

9.1 Convergence of Sequences . 171
9.2 Convergence of Vectors . 173
9.3 Uniform Convergence of Function Sequences . 176

10 Discrete Time Fourier Transform (DTFT)

10.1 Discrete Fourier Transformation . 179
10.2 Discrete Fourier Transform (DFT) . 181
10.3 Table of Common Fourier Transforms . 183
10.4 Discrete-Time Fourier Transform (DTFT) . 184
10.5 Discrete-Time Fourier Transform Properties . 185
10.6 Discrete-Time Fourier Transform Pair . 185
10.7 DTFT Examples . 186
Solutions . 190

11 Continuous Time Fourier Transform (CTFT)

11.1 Continuous-Time Fourier Transform (CTFT) . 191
11.2 Properties of the Continuous-Time Fourier Transform . 192
Solutions . 196

12 Sampling Theorem

12.1 Sampling .197
12.2 Reconstruction . 201
12.3 More on Reconstruction . 205
12.4 Nyquist Theorem . 207
12.5 Aliasing . 209
12.6 Anti-Aliasing Filters . 212
12.7 Discrete Time Processing of Continuous Time Signals . 214
Solutions . 217

13 Laplace Transform and System Design

13.1 The Laplace Transforms .219
13.2 Properties of the Laplace Transform . 222
13.3 Table of Common Laplace Transforms . 223
13.4 Region of Convergence for the Laplace Transform . 223
13.5 The Inverse Laplace Transform . 225
13.6 Poles and Zeros . 227

v

14 Z-Transform and Digital Filtering

14.1 The Z Transform: De�nition . 231
14.2 Table of Common z-Transforms . 236
14.3 Region of Convergence for the Z-transform . 237
14.4 Inverse Z-Transform . 246
14.5 Rational Functions . 249
14.6 Di�erence Equation . 251
14.7 Understanding Pole/Zero Plots on the Z-Plane . 254
14.8 Filter Design using the Pole/Zero Plot of a Z-Transform . 258

15 Appendix: Hilbert Spaces and Orthogonal Expansions

15.1 Vector Spaces . 263
15.2 Norms . 265
15.3 Inner Products . 268
15.4 Hilbert Spaces . 270
15.5 Cauchy-Schwarz Inequality . 270
15.6 Common Hilbert Spaces .277
15.7 Types of Basis . 280
15.8 Orthonormal Basis Expansions . 283
15.9 Function Space .287
15.10 Haar Wavelet Basis . 288
15.11 Orthonormal Bases in Real and Complex Spaces . 295
15.12 Plancharel and Parseval's Theorems .297
15.13 Approximation and Projections in Hilbert Space . 298
Solutions . 301

16 Homework Sets

16.1 Homework 1 . 303
16.2 Homework 1 Solutions . 307

17 Viewing Embedded LabVIEW Content .319
Glossary . 320
Index . 325
Attributions .330

vi

Chapter 1

Signals

1.1 Signal Classi�cations and Properties1

1.1.1 Introduction

This module will lay out some of the fundamentals of signal classi�cation. This is basically a list of de�nitions
and properties that are fundamental to the discussion of signals and systems. It should be noted that some
discussions like energy signals vs. power signals2 have been designated their own module for a more complete
discussion, and will not be included here.

1.1.2 Classi�cations of Signals

Along with the classi�cation of signals below, it is also important to understand the Classi�cation of Systems
(Section 2.1).

1.1.2.1 Continuous-Time vs. Discrete-Time

As the names suggest, this classi�cation is determined by whether or not the time axis (x-axis) is discrete
(countable) or continuous (Figure 1.1). A continuous-time signal will contain a value for all real numbers
along the time axis. In contrast to this, a discrete-time signal (Section 1.7) is often created by using the
sampling theorem3 to sample a continuous signal, so it will only have values at equally spaced intervals along
the time axis.

1This content is available online at <http://cnx.org/content/m10057/2.17/>.
2"Signal Energy vs. Signal Power" <http://cnx.org/content/m10055/latest/>
3"The Sampling Theorem" <http://cnx.org/content/m0050/latest/>

1

2 CHAPTER 1. SIGNALS

Figure 1.1

1.1.2.2 Analog vs. Digital

The di�erence between analog and digital is similar to the di�erence between continuous-time and discrete-
time. In this case, however, the di�erence is with respect to the value of the function (y-axis) (Figure 1.2).
Analog corresponds to a continuous y-axis, while digital corresponds to a discrete y-axis. An easy example
of a digital signal is a binary sequence, where the values of the function can only be one or zero.

Figure 1.2

1.1.2.3 Periodic vs. Aperiodic

Periodic signals (Section 6.1) repeat with some period T , while aperiodic, or nonperiodic, signals do not
(Figure 1.3). We can de�ne a periodic function through the following mathematical expression, where t can
be any number and T is a positive constant:

f (t) = f (T + t) (1.1)

The fundamental period of our function, f (t), is the smallest value of T that the still allows (1.1) to be
true.

3

(a)

(b)

Figure 1.3: (a) A periodic signal with period T0 (b) An aperiodic signal

1.1.2.4 Causal vs. Anticausal vs. Noncausal

Causal signals are signals that are zero for all negative time, while anticausal are signals that are zero for
all positive time. Noncausal signals are signals that have nonzero values in both positive and negative time
(Figure 1.4).

4 CHAPTER 1. SIGNALS

(a)

(b)

(c)

Figure 1.4: (a) A causal signal (b) An anticausal signal (c) A noncausal signal

1.1.2.5 Even vs. Odd

An even signal is any signal f such that f (t) = f (−t). Even signals can be easily spotted as they are
symmetric around the vertical axis. An odd signal, on the other hand, is a signal f such that f (t) =
− (f (−t)) (Figure 1.5).

5

(a)

(b)

Figure 1.5: (a) An even signal (b) An odd signal

Using the de�nitions of even and odd signals, we can show that any signal can be written as a combination
of an even and odd signal. That is, every signal has an odd-even decomposition. To demonstrate this, we
have to look no further than a single equation.

f (t) =
1
2

(f (t) + f (−t)) +
1
2

(f (t)− f (−t)) (1.2)

By multiplying and adding this expression out, it can be shown to be true. Also, it can be shown that
f (t) + f (−t) ful�lls the requirement of an even function, while f (t) − f (−t) ful�lls the requirement of an
odd function (Figure 1.6).

Example 1.1

6 CHAPTER 1. SIGNALS

(a)

(b)

(c)

(d)

Figure 1.6: (a) The signal we will decompose using odd-even decomposition (b) Even part: e (t) =
1
2

(f (t) + f (−t)) (c) Odd part: o (t) = 1
2

(f (t)− f (−t)) (d) Check: e (t) + o (t) = f (t)

7

1.1.2.6 Deterministic vs. Random

A deterministic signal is a signal in which each value of the signal is �xed and can be determined by a
mathematical expression, rule, or table. Because of this the future values of the signal can be calculated
from past values with complete con�dence. On the other hand, a random signal4 has a lot of uncertainty
about its behavior. The future values of a random signal cannot be accurately predicted and can usually
only be guessed based on the averages5 of sets of signals (Figure 1.7).

(a)

(b)

Figure 1.7: (a) Deterministic Signal (b) Random Signal

1.1.2.7 Right-Handed vs. Left-Handed

A right-handed signal and left-handed signal are those signals whose value is zero between a given variable
and positive or negative in�nity. Mathematically speaking, a right-handed signal is de�ned as any signal
where f (t) = 0 for t < t1 < ∞, and a left-handed signal is de�ned as any signal where f (t) = 0 for
t > t1 > −∞. See (Figure 1.8) for an example. Both �gures "begin" at t1 and then extends to positive or
negative in�nity with mainly nonzero values.

4"Introduction to Random Signals and Processes" <http://cnx.org/content/m10649/latest/>
5"Random Processes: Mean and Variance" <http://cnx.org/content/m10656/latest/>

8 CHAPTER 1. SIGNALS

(a)

(b)

Figure 1.8: (a) Right-handed signal (b) Left-handed signal

1.1.2.8 Finite vs. In�nite Length

As the name applies, signals can be characterized as to whether they have a �nite or in�nite length set of
values. Most �nite length signals are used when dealing with discrete-time signals or a given sequence of
values. Mathematically speaking, f (t) is a �nite-length signal if it is nonzero over a �nite interval

t1 < f (t) < t2

where t1 > −∞ and t2 < ∞. An example can be seen in Figure 1.9. Similarly, an in�nite-length signal,
f (t), is de�ned as nonzero over all real numbers:

∞ ≤ f (t) ≤ −∞

9

Figure 1.9: Finite-Length Signal. Note that it only has nonzero values on a set, �nite interval.

1.2 Size of A Signal: Norms6

"Size" indicates largeness or strength. We will use the mathematical concept of the norm to quantify this
notion for both continuous-time and discrete-time signals. First we consider a way to quantify the size of a
signal which may already be familiar.

1.2.1 Continuous-Time Energy

Our usual notion of the energy of a signal is the area under the curve (|f (t) |)2

Figure 1.10

Ef =
∫ ∞
−∞

(|f (t) |)2
dt (1.3)

6This content is available online at <http://cnx.org/content/m12363/1.2/>.

10 CHAPTER 1. SIGNALS

Example 1.2
Calculate Ef for

Figure 1.11

1.2.2 Generalized Energy: Norms

The notion of "energy" can be generalized through the introduction of the Lp norm:

‖ f ‖p =
(∫

(|f (t) |)pdt
) 1
p

(1.4)

where 1 ≤ p <∞.

Example 1.3

Ef = (‖ f ‖2)2

Example 1.4
Calculate the Lp norm of

Figure 1.12

11

Exercise 1.1
What happens to

‖ f ‖p =
(∫

(|f (t) |)pdt
) 1
p

as p→∞?

L∞ norm
‖ f ‖∞ = ess sup|f (t) |

Figure 1.13

1.2.3 Discrete-Time Energy

Figure 1.14

Ef =
∞∑

n=−∞

(
(|f [n] |)2

)

12 CHAPTER 1. SIGNALS

‖ f ‖p =
(∫

(|f (t) |)pdt
) 1
p

where 1 ≤ p <∞

‖ f ‖∞ = maxn {|f [n] |}

(
‖ f ‖p

)p
=
N−1∑
n=0

((|f [n] |)p)

where 1 ≤ p <∞
‖ f ‖∞ = maxn=0, 1, ..., N-1 {|f [n] |}

1.2.4 Finite Norm Signals

What are the conditions on a signal for ‖ f ‖p <∞? Look at all 4 fundamental signal classes

1.2.4.1 Discrete-Time and Finite Length

Figure 1.15

This is a length N vector.

f =



f [0]

f [1]

f [2]

f [...]

f [N − 1]


=



f0

f1

f2

...

fN1


where f ∈ CN , or f ∈ N N -dimensional complex or real Euclidean space.

Example 1.5
N = 3, f is a real signal.

13

Figure 1.16

De�nition 1:

lp [0, N − 1] =
{
f ∈ CN , ‖ f ‖p <∞

}
but from previous discussion lp [0, N − 1] = CN

1.2.4.2 Discrete-Time and In�nite Length

Figure 1.17

can still interpret f as an in�nite-length vector

f =



f [...]

f [−1]

f [0]

f [1]

f [2]

f [...]



14 CHAPTER 1. SIGNALS

but C∞, R∞ don't make sense.

De�nition 2:

lp (z) =
{
f, ‖ f ‖p <∞

}
(
‖ f ‖p

)p
=

∞∑
n=−∞

((|f [n] |)p)

where 1 ≤ p <∞
‖ f ‖∞ = maxn∈z {|f [n] |}

What does it take for an f to be in lp (z)?

Example 1.6
Sketch an f ∈ lp (z) and f /∈ lp (z).
Exercise 1.2
What characteristics does f ∈ lp (z) have and what happens as we charge p?

1.2.4.3 Continuous-Time and Finite-Length

Figure 1.18

We will still refer to f (t) as a vector; more on this later.

De�nition 3:

Lp [T1, T2] =
{
f [T1, T2] , ‖ f ‖p <∞

}

‖ f ‖p =

(∫ T2

T1

(|f (t) |)pdt

) 1
p

where 1 ≤ p <∞
‖ f ‖p = esssup|f (t) |

15

where T1 ≤ t ≤ T2

Exercise 1.3
What does it take for and f to be in Lp [T1, T2]?

1.2.4.4 Continuous-Time and In�nite-Length

Figure 1.19

We will still refer to f (t) as a vector.

De�nition 4:

Lp (R) =
{
f, ‖ f ‖p <∞

}

‖ f ‖p =
(∫ ∞
−∞

(|f [n] |)pdt
) 1
p

where 1 ≤ p <∞
‖ f ‖∞ = esssup|f (t) |

where −∞ < t <∞
Exercise 1.4
What does it take for an f ∈ Lp (R)?
Example 1.7
Sketch an f ∈ Lp (R) and f /∈ Lp (R).

1.2.5 Power

What do we do when ‖ f ‖p =∞?

Example 1.8: Periodic Signal

16 CHAPTER 1. SIGNALS

Figure 1.20

Solution: Look at the "norm per unit time".

• ie - norm over one period.
• ie - norm of in�nite-length signal converted to �nite length signal by windowing.

Figure 1.21

‖f‖p
T is the measure.

Units for p = 2?
L2 Power = "energy per unit time"

• Useful when Ef =∞
• time average of energy

Pf = lim
T→∞

∫ T
2

−(T2)
(|f (t) |)2

dt

17

Figure 1.22

1. compute Energy
T = (‖f‖2)

2

T

2. look at lim
T→∞

Energy
T = (‖f‖2)

2

T

Pf is often called the mean-square value of f .
√
Pf is called the root mean squared (RMS) value of f .

Units?
"Energy signals" have �nite norm (energy) Ef <∞.
"Power signals" have �nite and nonzero power Pf <∞, Pf 6= 0, and (→ Ef =∞).

1.2.5.1 Conclusions

Energy signals are not power signals.
Power signals are not energy signals.
Why?

Exercise 1.5
Are all signals either energy or power signals?

Example 1.9
f (t) = t

18 CHAPTER 1. SIGNALS

Figure 1.23

The 4 fundamental classes of signals we will study depend on the independent (time) variable.

19

Figure 1.24

1.3 Signal Operations7

This module will look at two signal operations, time shifting and time scaling. Signal operations are op-
erations on the time variable of the signal. These operations are very common components to real-world
systems and, as such, should be understood thoroughly when learning about signals and systems.

7This content is available online at <http://cnx.org/content/m10125/2.8/>.

20 CHAPTER 1. SIGNALS

1.3.1 Time Shifting

Time shifting is, as the name suggests, the shifting of a signal in time. This is done by adding or subtracting
the amount of the shift to the time variable in the function. Subtracting a �xed amount from the time
variable will shift the signal to the right (delay) that amount, while adding to the time variable will shift the
signal to the left (advance).

Figure 1.25: f (t− T) moves (delays) f to the right by T .

1.3.2 Time Scaling

Time scaling compresses and dilates a signal by multiplying the time variable by some amount. If that
amount is greater than one, the signal becomes narrower and the operation is called compression, while if
the amount is less than one, the signal becomes wider and is called dilation. It often takes people quite a
while to get comfortable with these operations, as people's intuition is often for the multiplication by an
amount greater than one to dilate and less than one to compress.

Figure 1.26: f (at) compresses f by a.

Example 1.10
Actually plotting shifted and scaled signals can be quite counter-intuitive. This example will show
a fool-proof way to practice this until your proper intuition is developed.

Given f (t) , plot f (− (at)).

21

(a) (b)

(c)

Figure 1.27: (a) Begin with f (t) (b) Then replace t with at to get f (at) (c) Finally, replace t with
t− b

a
to get f

`
a
`
t− b

a

´´
= f (at− b)

1.3.3 Time Reversal

A natural question to consider when learning about time scaling is: What happens when the time variable
is multiplied by a negative number? The answer to this is time reversal. This operation is the reversal of
the time axis, or �ipping the signal over the y-axis.

Figure 1.28: Reverse the time axis

22 CHAPTER 1. SIGNALS

This is an unsupported media type. To view, please see
http://cnx.org/content/m10125/latest/TDSignalOps.llb

1.4 Useful Signals8

Before looking at this module, hopefully you have some basic idea of what a signal is and what basic
classi�cations and properties (Section 1.1) a signal can have. To review, a signal is merely a function de�ned
with respect to an independent variable. This variable is often time but could represent an index of a sequence
or any number of things in any number of dimensions. Most, if not all, signals that you will encounter in
your studies and the real world will be able to be created from the basic signals we discuss below. Because
of this, these elementary signals are often referred to as the building blocks for all other signals.

1.4.1 Sinusoids

Probably the most important elemental signal that you will deal with is the real-valued sinusoid. In its
continuous-time form, we write the general form as

x (t) = Acos (ωt+ φ) (1.5)

where A is the amplitude, ω is the frequency, and φ represents the phase. Note that it is common to see ωt
replaced with 2πft. Since sinusoidal signals are periodic, we can express the period of these, or any periodic
signal, as

T =
2π
ω

(1.6)

Figure 1.29: Sinusoid with A = 2, w = 2, and φ = 0.

8This content is available online at <http://cnx.org/content/m10058/2.12/>.

23

1.4.2 Complex Exponential Function

Maybe as important as the general sinusoid, the complex exponential function will become a critical part
of your study of signals and systems. Its general form is written as

f (t) = Best (1.7)

where s, shown below, is a complex number in terms of σ, the phase constant, and ω the frequency:

s = σ + jω

Please look at the complex exponential module (Section 1.6) or the other elemental signals page9 for a much
more in depth look at this important signal.

1.4.3 Real Exponentials

Just as the name sounds, real exponentials contain no imaginary numbers and are expressed simply as

f (t) = Beαt (1.8)

where both B and α are real parameters. Unlike the complex exponential that oscillates, the real exponential
either decays or grows depending on the value of α.

• Decaying Exponential, when α < 0
• Growing Exponential, when α > 0

(a) (b)

Figure 1.30: Examples of Real Exponentials (a) Decaying Exponential (b) Growing Exponential

1.4.4 Unit Impulse Function

The unit impulse (Section 1.5) "function" (or Dirac delta function) is a signal that has in�nite height
and in�nitesimal width. However, because of the way it is de�ned, it actually integrates to one. While
in the engineering world, this signal is quite nice and aids in the understanding of many concepts, some
mathematicians have a problem with it being called a function, since it is not de�ned at t = 0 . Engineers

9"Elemental Signals": Section Complex Exponentials <http://cnx.org/content/m0004/latest/#sec2>

24 CHAPTER 1. SIGNALS

reconcile this problem by keeping it around integrals, in order to keep it more nicely de�ned. The unit
impulse is most commonly denoted as

δ (t)

The most important property of the unit-impulse is shown in the following integral:∫ ∞
−∞

δ (t) dt = 1 (1.9)

1.4.5 Unit-Step Function

Another very basic signal is the unit-step function that is de�ned as

u (t) =

 0 if t < 0

1 if t ≥ 0
(1.10)

t

1

(a)

t

1

(b)

Figure 1.31: Basic Step Functions (a) Continuous-Time Unit-Step Function (b) Discrete-Time Unit-
Step Function

Note that the step function is discontinuous at the origin; however, it does not need to be de�ned here
as it does not matter in signal theory. The step function is a useful tool for testing and for de�ning other
signals. For example, when di�erent shifted versions of the step function are multiplied by other signals, one
can select a certain portion of the signal and zero out the rest.

1.4.6 Ramp Function

The ramp function is closely related to the unit-step discussed above. Where the unit-step goes from zero to
one instantaneously, the ramp function better resembles a real-world signal, where there is some time needed
for the signal to increase from zero to its set value, one in this case. We de�ne a ramp function as follows

r (t) =


0 if t < 0

t
t0
if 0 ≤ t ≤ t0
1 if t > t0

(1.11)

25

t

1

t0

Figure 1.32: Ramp Function

1.5 The Impulse Function10

In engineering, we often deal with the idea of an action occurring at a point. Whether it be a force at a
point in space or a signal at a point in time, it becomes worth while to develop some way of quantitatively
de�ning this. This leads us to the idea of a unit impulse, probably the second most important function, next
to the complex exponential (Section 1.6), in systems and signals course.

1.5.1 Dirac Delta Function

The Dirac Delta function, often referred to as the unit impulse or delta function, is the function that
de�nes the idea of a unit impulse. This function is one that is in�nitesimally narrow, in�nitely tall, yet
integrates to unity, one (see (1.12) below). Perhaps the simplest way to visualize this is as a rectangular
pulse from a− ε

2 to a+ ε
2 with a height of 1

ε . As we take the limit of this, limε→0
0, we see that the width tends

to zero and the height tends to in�nity as the total area remains constant at one. The impulse function is
often written as δ (t). ∫ ∞

−∞
δ (t) dt = 1 (1.12)

10This content is available online at <http://cnx.org/content/m10059/2.19/>.

26 CHAPTER 1. SIGNALS

Figure 1.33: This is one way to visualize the Dirac Delta Function.

Figure 1.34: Since it is quite di�cult to draw something that is in�nitely tall, we represent the Dirac
with an arrow centered at the point it is applied. If we wish to scale it, we may write the value it is
scaled by next to the point of the arrow. This is a unit impulse (no scaling).

This is an unsupported media type. To view, please see
http://cnx.org/content/m10059/latest/ImpulseFunction.llb

1.5.1.1 The Sifting Property of the Impulse

The �rst step to understanding what this unit impulse function gives us is to examine what happens when
we multiply another function by it.

f (t) δ (t) = f (0) δ (t) (1.13)

Since the impulse function is zero everywhere except the origin, we essentially just "pick o�" the value of
the function we are multiplying by evaluated at zero.

27

At �rst glance this may not appear to give use much, since we already know that the impulse evaluated
at zero is in�nity, and anything times in�nity is in�nity. However, what happens if we integrate this?

Sifting Property ∫∞
−∞ f (t) δ (t) dt =

∫∞
−∞ f (0) δ (t) dt

= f (0)
∫∞
−∞ δ (t) dt

= f (0)

(1.14)

It quickly becomes apparent that what we end up with is simply the function evaluated at zero. Had we
used δ (t− T) instead of δ (t), we could have "sifted out" f (T). This is what we call the Sifting Property
of the Dirac function, which is often used to de�ne the unit impulse.

The Sifting Property is very useful in developing the idea of convolution (Section 3.2) which is one of the
fundamental principles of signal processing. By using convolution and the sifting property we can represent
an approximation of any system's output if we know the system's impulse response and input. Click on the
convolution link above for more information on this.

1.5.1.2 Other Impulse Properties

Below we will brie�y list a few of the other properties of the unit impulse without going into detail of their
proofs - we will leave that up to you to verify as most are straightforward. Note that these properties hold
for continuous and discrete time.

Unit Impulse Properties

• δ (αt) = 1
|α|δ (t)

• δ (t) = δ (−t)
• δ (t) = d

dtu (t), where u (t) is the unit step.

1.5.2 Discrete-Time Impulse (Unit Sample)

The extension of the Unit Impulse Function to discrete-time becomes quite trivial. All we really need to
realize is that integration in continuous-time equates to summation in discrete-time. Therefore, we are
looking for a signal that sums to zero and is zero everywhere except at zero.

Discrete-Time Impulse

δ [n] =

 1 if n = 0

0 otherwise
(1.15)

Figure 1.35: The graphical representation of the discrete-time impulse function

28 CHAPTER 1. SIGNALS

Looking at the discrete-time plot of any discrete signal one can notice that all discrete signals are composed
of a set of scaled, time-shifted unit samples. If we let the value of a sequence at each integer k be denoted
by s [k] and the unit sample delayed that occurs at k to be written as δ [n− k], we can write any signal as
the sum of delayed unit samples that are scaled by the signal value, or weighted coe�cients.

s [n] =
∞∑

k=−∞

(s [k] δ [n− k]) (1.16)

This decomposition is strictly a property of discrete-time signals and proves to be a very useful property.

note: Through the above reasoning, we have formed (1.16), which is the fundamental concept of
discrete-time convolution (Section 4.2).

1.5.3 The Impulse Response

The impulse response is exactly what its name implies - the response of an LTI system, such as a �lter,
when the system's input is the unit impulse (or unit sample). A system can be completed described by its
impulse response due to the idea mentioned above that all signals can be represented by a superposition of
signals. An impulse response gives an equivalent description of a system as a transfer function11, since they
are Laplace Transforms (Section 13.1) of each other.

notation: Most texts use δ (t) and δ [n] to denote the continuous-time and discrete-time impulse
response, respectively.

1.6 The Complex Exponential12

1.6.1 The Exponential Basics

The complex exponential is one of the most fundamental and important signal in signal and system
analysis. Its importance comes from its functions as a basis for periodic signals as well as being able to
characterize linear, time-invariant (Section 2.1) signals. Before proceeding, you should be familiar with the
ideas and functions of complex numbers13.

1.6.1.1 Basic Exponential

For all numbers x, we easily derive and de�ne the exponential function from the Taylor's series below:

ex = 1 +
x1

1!
+
x2

2!
+
x3

3!
+ . . . (1.17)

ex =
∞∑
k=0

(
1
k!
xk
)

(1.18)

We can prove, using the ratio test, that this series does indeed converge. Therefore, we can state that the
exponential function shown above is continuous and easily de�ned.

From this de�nition, we can prove the following property for exponentials that will be very useful,
especially for the complex exponentials discussed in the next section.

ex1+x2 = (ex1) (ex2) (1.19)

11"Transfer Functions" <http://cnx.org/content/m0028/latest/>
12This content is available online at <http://cnx.org/content/m10060/2.20/>.
13"Complex Numbers" <http://cnx.org/content/m0081/latest/>

29

1.6.1.2 Complex Continuous-Time Exponential

Now for all complex numbers s, we can de�ne the complex continuous-time exponential signal as

f (t) = Aest

= Aejωt
(1.20)

where A is a constant, t is our independent variable for time, and for s imaginary, s = jω. Finally, from
this equation we can reveal the ever important Euler's Identity (for more information on Euler read this
short biography14):

Aejωt = Acos (ωt) + j (Asin (ωt)) (1.21)

From Euler's Identity we can easily break the signal down into its real and imaginary components. Also we
can see how exponentials can be combined to represent any real signal. By modifying their frequency and
phase, we can represent any signal through a superposity of many signals - all capable of being represented
by an exponential.

The above expressions do not include any information on phase however. We can further generalize our
above expressions for the exponential to generalize sinusoids with any phase by making a �nal substitution
for s, s = σ + jω, which leads us to

f (t) = Aest

= Ae(σ+jω)t

= Aeσtejωt

(1.22)

where we de�ne S as the complex amplitude, or phasor, from the �rst two terms of the above equation
as

S = Aeσt (1.23)

Going back to Euler's Identity, we can rewrite the exponentials as sinusoids, where the phase term becomes
much more apparent.

f (t) = Aeσt (cos (ωt) + jsin (ωt)) (1.24)

As stated above we can easily break this formula into its real and imaginary part as follows:

Re (f (t)) = Aeσtcos (ωt) (1.25)

Im (f (t)) = Aeσtsin (ωt) (1.26)

1.6.1.3 Complex Discrete-Time Exponential

Finally we have reached the last form of the exponential signal that we will be interested in, the discrete-
time exponential signal, which we will not give as much detail about as we did for its continuous-time
counterpart, because they both follow the same properties and logic discussed above. Because it is discrete,
there is only a slightly di�erent notation used to represents its discrete nature

f [n] = BesnT

= BejωnT
(1.27)

where nT represents the discrete-time instants of our signal.

14http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Euler.html

30 CHAPTER 1. SIGNALS

1.6.2 Euler's Relation

Along with Euler's Identity, Euler also described a way to represent a complex exponential signal in terms
of its real and imaginary parts through Euler's Relation:

cos (ωt) =
ejwt + e−(jwt)

2
(1.28)

sin (ωt) =
ejwt − e−(jwt)

2j
(1.29)

ejwt = cos (ωt) + jsin (ωt) (1.30)

1.6.3 Drawing the Complex Exponential

At this point, we have shown how the complex exponential can be broken up into its real part and its
imaginary part. It is now worth looking at how we can draw each of these parts. We can see that both
the real part and the imaginary part have a sinusoid times a real exponential. We also know that sinusoids
oscillate between one and negative one. From this it becomes apparent that the real and imaginary parts of
the complex exponential will each oscillate between a window de�ned by the real exponential part.

(a) (b)

(c)

Figure 1.36: The shapes possible for the real part of a complex exponential. Notice that the oscillations
are the result of a cosine, as there is a local maximum at t = 0. (a) If σ is negative, we have the case of
a decaying exponential window. (b) If σ is positive, we have the case of a growing exponential window.
(c) If σ is zero, we have the case of a constant window.

31

While the σ determines the rate of decay/growth, the ω part determines the rate of the oscillations. This
is apparent by noticing that the ω is part of the argument to the sinusoidal part.

Exercise 1.6 (Solution on p. 35.)

What do the imaginary parts of the complex exponentials drawn above look like?

Example 1.11
The following demonstration allows you to see how the argument changes the shape of the complex
exponential. See here15 for instructions on how to use the demo.

This is an unsupported media type. To view, please see
http://cnx.org/content/m10060/latest/ComplexEXP.llb

1.6.4 The Complex Plane

It becomes extremely useful to view the complex variable s as a point in the complex plane16 (the s-plane).

Figure 1.37: This is the s-plane. Notice that any time s lies in the right half plane, the complex
exponential will grow through time, while any time it lies in the left half plane it will decay.

1.7 Discrete-Time Signals17

So far, we have treated what are known as analog signals and systems. Mathematically, analog signals are
functions having continuous quantities as their independent variables, such as space and time. Discrete-
time signals18 are functions de�ned on the integers; they are sequences. One of the fundamental results of
signal theory19 will detail conditions under which an analog signal can be converted into a discrete-time one

15"How to use the LabVIEW demos" <http://cnx.org/content/m11550/latest/>
16"The Complex Plane" <http://cnx.org/content/m10596/latest/>
17This content is available online at <http://cnx.org/content/m0009/2.23/>.
18"Discrete-Time Signals and Systems" <http://cnx.org/content/m10342/latest/>
19"The Sampling Theorem" <http://cnx.org/content/m0050/latest/>

32 CHAPTER 1. SIGNALS

and retrieved without error. This result is important because discrete-time signals can be manipulated by
systems instantiated as computer programs. Subsequent modules describe how virtually all analog signal
processing can be performed with software.

As important as such results are, discrete-time signals are more general, encompassing signals derived
from analog ones and signals that aren't. For example, the characters forming a text �le form a sequence,
which is also a discrete-time signal. We must deal with such symbolic valued20 signals and systems as well.

As with analog signals, we seek ways of decomposing real-valued discrete-time signals into simpler com-
ponents. With this approach leading to a better understanding of signal structure, we can exploit that
structure to represent information (create ways of representing information with signals) and to extract in-
formation (retrieve the information thus represented). For symbolic-valued signals, the approach is di�erent:
We develop a common representation of all symbolic-valued signals so that we can embody the information
they contain in a uni�ed way. From an information representation perspective, the most important issue
becomes, for both real-valued and symbolic-valued signals, e�ciency; What is the most parsimonious and
compact way to represent information so that it can be extracted later.

1.7.1 Real- and Complex-valued Signals

A discrete-time signal is represented symbolically as s (n), where n = {. . . ,−1, 0, 1, . . . }. We usually draw
discrete-time signals as stem plots to emphasize the fact they are functions de�ned only on the integers.
We can delay a discrete-time signal by an integer just as with analog ones. A delayed unit sample has the
expression δ (n−m), and equals one when n = m.

Discrete-Time Cosine Signal

n

sn

1
…

…

Figure 1.38: The discrete-time cosine signal is plotted as a stem plot. Can you �nd the formula for
this signal?

1.7.2 Complex Exponentials

The most important signal is, of course, the complex exponential sequence.

s (n) = ej2πfn (1.31)

1.7.3 Sinusoids

Discrete-time sinusoids have the obvious form s (n) = Acos (2πfn+ φ). As opposed to analog complex
exponentials and sinusoids that can have their frequencies be any real value, frequencies of their discrete-
time counterparts yield unique waveforms only when f lies in the interval

(
−
(

1
2

)
, 1

2

]
. This property can be

20"Discrete-Time Signals and Systems" <http://cnx.org/content/m10342/latest/#para11>

33

easily understood by noting that adding an integer to the frequency of the discrete-time complex exponential
has no e�ect on the signal's value.

ej2π(f+m)n = ej2πfnej2πmn

= ej2πfn
(1.32)

This derivation follows because the complex exponential evaluated at an integer multiple of 2π equals one.

1.7.4 Unit Sample

The second-most important discrete-time signal is the unit sample, which is de�ned to be

δ (n) =

 1 if n = 0

0 otherwise
(1.33)

Unit Sample

1

n

δn

Figure 1.39: The unit sample.

Examination of a discrete-time signal's plot, like that of the cosine signal shown in Figure 1.38 (Discrete-
Time Cosine Signal), reveals that all signals consist of a sequence of delayed and scaled unit samples. Because
the value of a sequence at each integer m is denoted by s (m) and the unit sample delayed to occur at m is
written δ (n−m), we can decompose any signal as a sum of unit samples delayed to the appropriate location
and scaled by the signal value.

s (n) =
∞∑

m=−∞
(s (m) δ (n−m)) (1.34)

This kind of decomposition is unique to discrete-time signals, and will prove useful subsequently.
Discrete-time systems can act on discrete-time signals in ways similar to those found in analog signals

and systems. Because of the role of software in discrete-time systems, many more di�erent systems can
be envisioned and �constructed� with programs than can be with analog signals. In fact, a special class of
analog signals can be converted into discrete-time signals, processed with software, and converted back into
an analog signal, all without the incursion of error. For such signals, systems can be easily produced in
software, with equivalent analog realizations di�cult, if not impossible, to design.

1.7.5 Symbolic-valued Signals

Another interesting aspect of discrete-time signals is that their values do not need to be real numbers. We
do have real-valued discrete-time signals like the sinusoid, but we also have signals that denote the sequence
of characters typed on the keyboard. Such characters certainly aren't real numbers, and as a collection of
possible signal values, they have little mathematical structure other than that they are members of a set.

34 CHAPTER 1. SIGNALS

More formally, each element of the symbolic-valued signal s (n) takes on one of the values {a1, . . . , aK} which
comprise the alphabet A. This technical terminology does not mean we restrict symbols to being mem-
bers of the English or Greek alphabet. They could represent keyboard characters, bytes (8-bit quantities),
integers that convey daily temperature. Whether controlled by software or not, discrete-time systems are
ultimately constructed from digital circuits, which consist entirely of analog circuit elements. Furthermore,
the transmission and reception of discrete-time signals, like e-mail, is accomplished with analog signals and
systems. Understanding how discrete-time and analog signals and systems intertwine is perhaps the main
goal of this course.

This is an unsupported media type. To view, please see
http://cnx.org/content/m0009/latest/SignalApprox.llb

35

Solutions to Exercises in Chapter 1

Solution to Exercise 1.6 (p. 31)
They look the same except the oscillation is that of a sinusoid as opposed to a cosinusoid (i.e. it passes
through the origin rather than being a local maximum at t = 0).

36 CHAPTER 1. SIGNALS

Chapter 2

Systems

2.1 System Classi�cations and Properties1

2.1.1 Introduction

In this module some of the basic classi�cations of systems will be brie�y introduced and the most important
properties of these systems are explained. As can be seen, the properties of a system provide an easy
way to separate one system from another. Understanding these basic di�erence's between systems, and
their properties, will be a fundamental concept used in all signal and system courses, such as digital signal
processing (DSP). Once a set of systems can be identi�ed as sharing particular properties, one no longer has
to deal with proving a certain characteristic of a system each time, but it can simply be accepted do the
the systems classi�cation. Also remember that this classi�cation presented here is neither exclusive (systems
can belong to several di�erent classi�cations) nor is it unique (there are other methods of classi�cation 2).
Examples of simple systems can be found here3.

2.1.2 Classi�cation of Systems

Along with the classi�cation of systems below, it is also important to understand other Classi�cation of
Signals (Section 1.1).

2.1.2.1 Continuous vs. Discrete

This may be the simplest classi�cation to understand as the idea of discrete-time and continuous-time is
one of the most fundamental properties to all of signals and system. A system where the input and output
signals are continuous is a continuous system, and one where the input and output signals are discrete is
a discrete system.

2.1.2.2 Linear vs. Nonlinear

A linear system is any system that obeys the properties of scaling (homogeneity) and superposition (addi-
tivity), while a nonlinear system is any system that does not obey at least one of these.

To show that a system H obeys the scaling property is to show that

H (kf (t)) = kH (f (t)) (2.1)

1This content is available online at <http://cnx.org/content/m10084/2.19/>.
2"Introduction to Systems" <http://cnx.org/content/m0005/latest/>
3"Simple Systems" <http://cnx.org/content/m0006/latest/>

37

38 CHAPTER 2. SYSTEMS

Figure 2.1: A block diagram demonstrating the scaling property of linearity

To demonstrate that a system H obeys the superposition property of linearity is to show that

H (f1 (t) + f2 (t)) = H (f1 (t)) +H (f2 (t)) (2.2)

Figure 2.2: A block diagram demonstrating the superposition property of linearity

It is possible to check a system for linearity in a single (though larger) step. To do this, simply combine
the �rst two steps to get

H (k1f1 (t) + k2f2 (t)) = k2H (f1 (t)) + k2H (f2 (t)) (2.3)

2.1.2.3 Time Invariant vs. Time Variant

A time invariant system is one that does not depend on when it occurs: the shape of the output does not
change with a delay of the input. That is to say that for a system H where H (f (t)) = y (t), H is time
invariant if for all T

H (f (t− T)) = y (t− T) (2.4)

39

Figure 2.3: This block diagram shows what the condition for time invariance. The output is the same
whether the delay is put on the input or the output.

When this property does not hold for a system, then it is said to be time variant, or time-varying.

2.1.2.4 Causal vs. Noncausal

A causal system is one that is nonanticipative; that is, the output may depend on current and past inputs,
but not future inputs. All "realtime" systems must be causal, since they can not have future inputs available
to them.

One may think the idea of future inputs does not seem to make much physical sense; however, we have
only been dealing with time as our dependent variable so far, which is not always the case. Imagine rather
that we wanted to do image processing. Then the dependent variable might represent pixels to the left and
right (the "future") of the current position on the image, and we would have a noncausal system.

40 CHAPTER 2. SYSTEMS

(a)

(b)

Figure 2.4: (a) For a typical system to be causal... (b) ...the output at time t0, y (t0), can only depend
on the portion of the input signal before t0.

2.1.2.5 Stable vs. Unstable

A stable system is one where the output does not diverge as long as the input does not diverge. There
are many ways to say that a signal "diverges"; for example it could have in�nite energy. One particularly
useful de�nition of divergence relates to whether the signal is bounded or not. Then a system is referred to
as bounded input-bounded output (BIBO) stable if every possible bounded input produces a bounded
output.

41

Representing this in a mathematical way, a stable system must have the following property, where x (t)
is the input and y (t) is the output. The output must satisfy the condition

|y (t) | ≤My <∞ (2.5)

when we have an input to the system that can be described as

|x (t) | ≤Mx <∞ (2.6)

Mx and My both represent a set of �nite positive numbers and these relationships hold for all of t.
If these conditions are not met, i.e. a system's output grows without limit (diverges) from a bounded

input, then the system is unstable. Note that the BIBO stability of a linear time-invariant system (LTI) is
neatly described in terms of whether or not its impulse response is absolutely integrable (Section 3.4).

2.2 Properties of Systems4

2.2.1 Linear Systems

If a system is linear, this means that when an input to a given system is scaled by a value, the output of the
system is scaled by the same amount.

Linear Scaling

(a) (b)

Figure 2.5

In Figure 2.5(a) above, an input x to the linear system L gives the output y. If x is scaled by a value α
and passed through this same system, as in Figure 2.5(b), the output will also be scaled by α.

A linear system also obeys the principle of superposition. This means that if two inputs are added
together and passed through a linear system, the output will be the sum of the individual inputs' outputs.

4This content is available online at <http://cnx.org/content/m2102/2.16/>.

42 CHAPTER 2. SYSTEMS

(a) (b)

Figure 2.6

Superposition Principle

Figure 2.7: If Figure 2.6 is true, then the principle of superposition says that Figure 2.7 (Superposition
Principle) is true as well. This holds for linear systems.

That is, if Figure 2.6 is true, then Figure 2.7 (Superposition Principle) is also true for a linear system.
The scaling property mentioned above still holds in conjunction with the superposition principle. Therefore,
if the inputs x and y are scaled by factors α and β, respectively, then the sum of these scaled inputs will
give the sum of the individual scaled outputs:

(a) (b)

Figure 2.8

43

Superposition Principle with Linear Scaling

Figure 2.9: Given Figure 2.8 for a linear system, Figure 2.9 (Superposition Principle with Linear
Scaling) holds as well.

2.2.2 Time-Invariant Systems

A time-invariant system has the property that a certain input will always give the same output, without
regard to when the input was applied to the system.

Time-Invariant Systems

(a) (b)

Figure 2.10: Figure 2.10(a) shows an input at time t while Figure 2.10(b) shows the same input
t0 seconds later. In a time-invariant system both outputs would be identical except that the one in
Figure 2.10(b) would be delayed by t0.

In this �gure, x (t) and x (t− t0) are passed through the system TI. Because the system TI is time-
invariant, the inputs x (t) and x (t− t0) produce the same output. The only di�erence is that the output
due to x (t− t0) is shifted by a time t0.

Whether a system is time-invariant or time-varying can be seen in the di�erential equation (or di�erence
equation) describing it. Time-invariant systems are modeled with constant coe�cient equations. A constant
coe�cient di�erential (or di�erence) equation means that the parameters of the system are not changing
over time and an input now will give the same result as the same input later.

2.2.3 Linear Time-Invariant (LTI) Systems

Certain systems are both linear and time-invariant, and are thus referred to as LTI systems.

44 CHAPTER 2. SYSTEMS

Linear Time-Invariant Systems

(a) (b)

Figure 2.11: This is a combination of the two cases above. Since the input to Figure 2.11(b) is a scaled,
time-shifted version of the input in Figure 2.11(a), so is the output.

As LTI systems are a subset of linear systems, they obey the principle of superposition. In the �gure
below, we see the e�ect of applying time-invariance to the superposition de�nition in the linear systems
section above.

(a) (b)

Figure 2.12

Superposition in Linear Time-Invariant Systems

Figure 2.13: The principle of superposition applied to LTI systems

2.2.3.1 LTI Systems in Series

If two or more LTI systems are in series with each other, their order can be interchanged without a�ecting
the overall output of the system. Systems in series are also called cascaded systems.

45

Cascaded LTI Systems

(a)

(b)

Figure 2.14: The order of cascaded LTI systems can be interchanged without changing the overall
e�ect.

2.2.3.2 LTI Systems in Parallel

If two or more LTI systems are in parallel with one another, an equivalent system is one that is de�ned as
the sum of these individual systems.

Parallel LTI Systems

(a) (b)

Figure 2.15: Parallel systems can be condensed into the sum of systems.

46 CHAPTER 2. SYSTEMS

2.2.4 Causality

A system is causal if it does not depend on future values of the input to determine the output. This means
that if the �rst input to a system comes at time t0, then the system should not give any output until that
time. An example of a non-causal system would be one that "sensed" an input coming and gave an output
before the input arrived:

Non-causal System

Figure 2.16: In this non-causal system, an output is produced due to an input that occurs later in
time.

A causal system is also characterized by an impulse response h (t) that is zero for t < 0.

Chapter 3

Time Domain Analysis of Continuous
Time Systems

3.1 CT Linear Systems and Di�erential Equations1

3.1.1 Continuous-Time Linear Systems

Physically realizable, linear time-invariant systems can be described by a set of linear di�erential equations
(LDEs):

Figure 3.1: Graphical description of a basic linear time-invariant system with an input, f (t) and an
output, y (t).

dn

dtn
y (t) + an−1

dn−1

dtn−1
y (t) + · · ·+ a1

d

dt
y (t) + a0y (t) = bm

dm

dtm
f (t) + · · ·+ b1

d

dt
f (t) + b0f (t)

Equivalently,
n∑
i=0

(
ai
di

dti
y (t)

)
=

m∑
i=0

(
bi
di

dti
f (t)

)
(3.1)

with an = 1.
It is easy to show that these equations de�ne a system that is linear and time invariant. A natural

question to ask, then, is how to �nd the system's output response y (t) to an input f (t). Recall that such a
solution can be written as

y (t) = yi (t) + ys (t)

We refer to yi (t) as the zero-input response � the homogeneous solution due only to the initial conditions
of the system. We refer to ys (t) as the zero-state response � the particular solution in response to the
input f (t). We now discuss how to solve for each of these components of the system's response.

1This content is available online at <http://cnx.org/content/m10855/2.6/>.

47

48
CHAPTER 3. TIME DOMAIN ANALYSIS OF CONTINUOUS TIME

SYSTEMS

3.1.1.1 Finding the Zero-Input Response

The zero-input response, yi (t), is the system response due to initial conditions only.

Example 3.1: Zero-Input Response
Close the switch in the circuit pictured in Figure 3.2 at time t=0 and then leave everything else
alone. The voltage response is shown in Figure 3.3.

Figure 3.2

49

Figure 3.3

Example 3.2: Zero-Input Response
Imagine a mass attached to a spring, as shown in Figure 3.4. When you pull the mass up and let
it go, you have an example of a zero-input response. A plot of this response is shown in Figure 3.5.

50
CHAPTER 3. TIME DOMAIN ANALYSIS OF CONTINUOUS TIME

SYSTEMS

Figure 3.4

51

Figure 3.5

There is no input, so we solve for y0 (t) such that

n∑
i=0

(
ai
di

dti
y0 (t)

)
= 0 , an = 1 (3.2)

If D is the derivative operator, we can write the previous equation as:(
Dn + an−1D

n−1 + · · ·+ a0

)
y0 (t) = 0 (3.3)

Since we need the weighted sum of a bunch of y0 (t)'s derivatives to be 0 for all t, then{
y0 (t) , ddty0 (t) , d

2

dt2 y0 (t) , . . .
}
must all be of the same form.

Only the exponential, est where s ∈ C, has this property (see your Di�erential Equation's textbook for
details). So we must assume that,

y0 (t) = cest , c 6= 0 (3.4)

for some c and s.
Since d

dty0 (t) = csest, d2

dt2 y0 (t) = cs2est, . . . we have(
Dn + an−1D

n−1 + · · ·+ a0

)
y0 (t) = 0

52
CHAPTER 3. TIME DOMAIN ANALYSIS OF CONTINUOUS TIME

SYSTEMS

c
(
sn + an−1s

n−1 + · · ·+ a1s+ a0

)
est = 0 (3.5)

(3.5) holds for all t only when
sn + an−1s

n−1 + · · ·+ a1s+ a0 = 0 (3.6)

Where this equation is referred to as the characteristic equation of the system. The possible values of s
are the roots of this polynomial {s1, s2, . . . , sn}

(s− s1) (s− s2) (s− s3) . . . (s− sn) = 0

i.e. possible solutions are c1e
s1t, c2e

s2t, . . ., cne
snt. Since the system is linear, the general solution if of the

form:
y0 (t) = c1e

s1t + c2e
s2t + · · ·+ cne

snt (3.7)

Then, solve for the {c1, . . . , cn} using the initial conditions.
Example 3.3
See Lathi p.108 for a good example!

We generally assume that the IC's of a system are zero, which implies yi (t) = 0. However, the method of
solving for yi (t) will prove useful later on.

3.1.1.2 Finding the Zero-State Response

Solving a linear di�erential equation

n∑
i=0

(
ai
di

dti
y (t)

)
=

m∑
i=0

(
bi
di

dti
f (t)

)
(3.8)

given a speci�c input f (t) is a di�cult task in general. More importantly, the method depends entirely on
the nature of f (t); if we change the input signal, we must completely re-solve the system of equations to
�nd the system response.

Convolution (Section 3.2) helps to bypass these di�culties. In section 2, we explain how convolution helps
to determine the system's output, given only the input f (t) and the system's impulse response (Section 1.5),
h (t).

Before deriving the convolution procedure, we show that a system's impulse response is easily derived
from its linear, di�erential equation (LDE). We will show the derivation for the LDE below, where m < n:

dn

dtn
y (t) + an−1

dn−1

dtn−1
y (t) + · · ·+ a1

d

dt
y (t) + a0y (t) = bm

dm

dtm
f (t) + · · ·+ b1

d

dt
f (t) + b0f (t) (3.9)

We can rewrite (3.9) as
QD [y (t)] = PD [f (t)] (3.10)

where QD [·] is an operator that maps y (t) to the left hand side of (3.9)

QD [y (t)] =
dn

dtn
y (t) + an−1

dn−1

dtn−1
y (t) + · · ·+ a1

d

dt
y (t) + a0y (t) (3.11)

and PD [·] maps f (t) to the right hand side of (3.9). Lathi shows (in Appendix 2.1) that the impulse
response of the system described by (3.9) is given by:

h (t) = bnδ (t) + PD [yn (t)]µ (t) (3.12)

where for m < n we have bn = 0. Also, yn equals the zero input response with initial conditions.{
yn−1 (0) = 1, yn−2 (0) = 1, . . . , y (0) = 0

}

53

3.2 Continuous-Time Convolution2

3.2.1 Motivation

Convolution helps to determine the e�ect a system has on an input signal. It can be shown that a linear,
time-invariant system (Section 2.1) is completely characterized by its impulse response. At �rst glance, this
may appear to be of little use, since impulse functions are not well de�ned in real applications. However,
the sifting property of impulses (Section 1.5.1.1: The Sifting Property of the Impulse) tells us that a signal
can be decomposed into an in�nite sum (integral) of scaled and shifted impulses. By knowing how a system
a�ects a single impulse, and by understanding the way a signal is comprised of scaled and summed impulses,
it seems reasonable that it should be possible to scale and sum the impulse responses of a system in order to
determine what output signal will results from a particular input. This is precisely what convolution does -
convolution determines the system's output from knowledge of the input and the system's impulse response.

In the rest of this module, we will examine exactly how convolution is de�ned from the reasoning above.
This will result in the convolution integral (see the next section) and its properties (Section 3.3). These
concepts are very important in Electrical Engineering and will make any engineer's life a lot easier if the
time is spent now to truly understand what is going on.

In order to fully understand convolution, you may �nd it useful to look at the discrete-time convolution
(Section 4.2) as well. It will also be helpful to experiment with the applets3 available on the internet. These
resources will o�er di�erent approaches to this crucial concept.

3.2.2 Convolution Integral

As mentioned above, the convolution integral provides an easy mathematical way to express the output of an
LTI system based on an arbitrary signal, x (t), and the system's impulse response, h (t). The convolution
integral is expressed as

y (t) =
∫ ∞
−∞

x (τ)h (t− τ) dτ (3.13)

Convolution is such an important tool that it is represented by the symbol ∗, and can be written as

y (t) = x (t) ∗ h (t) (3.14)

By making a simple change of variables into the convolution integral, τ = t − τ , we can easily show that
convolution is commutative:

x (t) ∗ h (t) = h (t) ∗ x (t) (3.15)

For more information on the characteristics of the convolution integral, read about the Properties of Con-
volution (Section 3.3).

We now present two distinct approaches for deriving the convolution integral. These derivations, along
with a basic example, will help to build intuition about convolution.

3.2.3 Derivation I: The Short Approach

The derivation used here closely follows the one discussed in the Motivation (Section 3.2.1: Motivation)
section above. To begin this, it is necessary to state the assumptions we will be making. In this instance,
the only constraints on our system are that it be linear and time-invariant.

Brief Overview of Derivation Steps:

1. An impulse input leads to an impulse response output.
2. A shifted impulse input leads to a shifted impulse response output. This is due to the time-invariance

of the system.

2This content is available online at <http://cnx.org/content/m10085/2.26/>.
3http://www.jhu.edu/∼signals

54
CHAPTER 3. TIME DOMAIN ANALYSIS OF CONTINUOUS TIME

SYSTEMS

3. We now scale the impulse input to get a scaled impulse output. This is using the scalar multiplication
property of linearity.

4. We can now "sum up" an in�nite number of these scaled impulses to get a sum of an in�nite number
of scaled impulse responses. This is using the additivity attribute of linearity.

5. Now we recognize that this in�nite sum is nothing more than an integral, so we convert both sides into
integrals.

6. Recognizing that the input is the function f (t), we also recognize that the output is exactly the
convolution integral.

Figure 3.6: We begin with a system de�ned by its impulse response, h (t).

Figure 3.7: We then consider a shifted version of the input impulse. Due to the time invariance of the
system, we obtain a shifted version of the output impulse response.

55R1�1f(�)Æ(t � �) d� h R1�1f(�)h(t� �) d�
Figure 3.8: Now we use the scaling part of linearity by scaling the system by a value, f (τ), that is
constant with respect to the system variable, t.

Figure 3.9: We can now use the additivity aspect of linearity to add an in�nite number of these, one
for each possible τ . Since an in�nite sum is exactly an integral, we end up with the integration known as
the Convolution Integral. Using the sifting property, we recognize the left-hand side simply as the input
f (t).

3.2.4 Derivation II: The Long Approach

This derivation is really not too di�erent from the one above. It is, however, a little more rigorous and a
little longer. Hopefully, if you think you "kind of" get the derivation above, this will help you gain a more
complete understanding of convolution.

The �rst step in this derivation is to de�ne a particular realization of the unit impulse function (Sec-

tion 1.5). For this, we will use δ∆ (t) =

 1
∆ if −

(
∆
2

)
< t < ∆

2

0 otherwise

56
CHAPTER 3. TIME DOMAIN ANALYSIS OF CONTINUOUS TIME

SYSTEMS

Figure 3.10: The realization of the unit impulse function that we will use for this derivation.

After de�ning our realization of the unit impulse response, we can derive our convolution integral from
the following steps found in the table below. Note that the left column represents the input and the right
column is the system's output given that input.

Derivation II of Convolution Integral

Input Output

lim
∆→0

δ∆ (t) → h→ lim
∆→0

h (t)

lim
∆→0

δ∆ (t− n∆) → h→ lim
∆→0

h (t− n∆)

lim
∆→0

f (n∆) δ∆ (t− n∆) ∆ → h→ lim
∆→0

f (n∆)h (t− n∆) ∆

lim
∆→0

∑
n (f (n∆) δ∆ (t− n∆) ∆) → h→ lim

∆→0

∑
n (f (n∆)h (t− n∆) ∆)∫∞

−∞ f (τ) δ (t− τ) dτ → h→
∫∞
−∞ f (τ)h (t− τ) dτ

f (t) → h→ y (t) =
∫∞
−∞ f (τ)h (t− τ) dτ

3.2.5 Implementation of Convolution

Taking a closer look at the convolution integral, we �nd that we are multiplying the input signal by the
time-reversed impulse response and integrating. This will give us the value of the output at one given value
of t. If we then shift the time-reversed impulse response by a small amount, we get the output for another
value of t. Repeating this for every possible value of t, yields the total output function. While we would
never actually do this computation by hand in this fashion, it does provide us with some insight into what
is actually happening. We �nd that we are essentially reversing the impulse response function and sliding
it across the input function, integrating as we go. This method, referred to as the graphical method,
provides us with a much simpler way to solve for the output for simple (contrived) signals, while improving
our intuition for the more complex cases where we rely on computers. In fact Texas Instruments4 develops

4http://www.ti.com

57

Digital Signal Processors5 which have special instruction sets for computations such as convolution.

Example 3.4
This demonstration illustrates the graphical method for convolution. See here6 for instructions on
how to use the demo.

This is an unsupported media type. To view, please see
http://cnx.org/content/m10085/latest/ConvolutionTime.llb

3.2.6 Basic Example

Let us look at a basic continuous-time convolution example to help express some of the ideas mentioned
above through a short example. We will convolve together two unit pulses, x (t) and h (t).

(a) (b)

Figure 3.11: Here are the two basic signals that we will convolve together.

3.2.6.1 Re�ect and Shift

Now we will take one of the functions and re�ect it around the y-axis. Then we must shift the function, such
that the origin, the point of the function that was originally on the origin, is labeled as point τ . This step is
shown in the �gure below, h (t− τ). Since convolution is commutative it will never matter which function is
re�ected and shifted; however, as the functions become more complicated re�ecting and shifting the "right
one" will often make the problem much easier.

5http://dspvillage.ti.com/docs/toolssoftwarehome.jhtml
6"How to use the LabVIEW demos" <http://cnx.org/content/m11550/latest/>

58
CHAPTER 3. TIME DOMAIN ANALYSIS OF CONTINUOUS TIME

SYSTEMS

Figure 3.12: The re�ected and shifted unit pulse.

3.2.6.2 Regions of Integration

Next, we want to look at the functions and divide the span of the functions into di�erent limits of integration.
These di�erent regions can be understood by thinking about how we slide h (t− τ) over the other function.
These limits come from the di�erent regions of overlap that occur between the two functions. If the function
were more complex, then we would need to have more limits so that that overlapping parts of both function
could be expressed in a single, linear integral. For this problem we will have the following four regions.
Compare these limits of integration to the sketches of h (t− τ) and x (t) to see if you can understand why we
have the four regions. Note that the t in the limits of integration refers to the right-hand side of h (t− τ)'s
function, labeled as t between zero and one on the plot.

Four Limits of Integration

1. t < 0
2. 0 ≤ t < 1
3. 1 ≤ t < 2
4. t ≥ 2

3.2.6.3 Using the Convolution Integral

Finally we are ready for a little math. Using the convolution integral, let us integrate the product of
x (t)h (t− τ). For our �rst and fourth region this will be trivial as it will always be 0. The second region,
0 ≤ t < 1, will require the following math:

y (t) =
∫ t

0
1dτ

= t
(3.16)

The third region, 1 ≤ t < 2, is solved in much the same manner. Take note of the changes in our integration
though. As we move h (t− τ) across our other function, the left-hand edge of the function, t − 1, becomes

59

our lowlimit for the integral. This is shown through our convolution integral as

y (t) =
∫ 1

t−1
1dτ

= 1− (t− 1)

= 2− t

(3.17)

The above formulas show the method for calculating convolution; however, do not let the simplicity of this
example confuse you when you work on other problems. The method will be the same, you will just have to
deal with more math in more complicated integrals.

3.2.6.4 Convolution Results

Thus, we have the following results for our four regions:

y (t) =


0 if t < 0

t if 0 ≤ t < 1

2− t if 1 ≤ t < 2

0 if t ≥ 2

(3.18)

Now that we have found the resulting function for each of the four regions, we can combine them together
and graph the convolution of x (t) ∗ h (t).

Figure 3.13: Shows the system's response to the input, x (t).

3.3 Properties of Convolution7

In this module we will study several of the most prevalent properties of convolution. Note that these prop-
erties apply to both continuous-time convolution (Section 3.2) and discrete-time convolution (Section 4.2).

7This content is available online at <http://cnx.org/content/m10088/2.14/>.

60
CHAPTER 3. TIME DOMAIN ANALYSIS OF CONTINUOUS TIME

SYSTEMS

(Refer back to these two modules if you need a review of convolution). Also, for the proofs of some of the
properties, we will be using continuous-time integrals, but we could prove them the same way using the
discrete-time summations.

3.3.1 Associativity

Theorem 3.1: Associative Law

f1 (t) ∗ (f2 (t) ∗ f3 (t)) = (f1 (t) ∗ f2 (t)) ∗ f3 (t) (3.19)

Figure 3.14: Graphical implication of the associative property of convolution.

3.3.2 Commutativity

Theorem 3.2: Commutative Law

y (t) = f (t) ∗ h (t)

= h (t) ∗ f (t)
(3.20)

Proof: To prove (3.20), all we need to do is make a simple change of variables in our convolution
integral (or sum),

y (t) =
∫ ∞
−∞

f (τ)h (t− τ) dτ (3.21)

By letting τ = t− τ , we can easily show that convolution is commutative:

y (t) =
∫∞
−∞ f (t− τ)h (τ) dτ

=
∫∞
−∞ h (τ) f (t− τ) dτ

(3.22)

f (t) ∗ h (t) = h (t) ∗ f (t) (3.23)

61

Figure 3.15: The �gure shows that either function can be regarded as the system's input while the
other is the impulse response.

3.3.3 Distribution

Theorem 3.3: Distributive Law

f1 (t) ∗ (f2 (t) + f3 (t)) = f1 (t) ∗ f2 (t) + f1 (t) ∗ f3 (t) (3.24)

Proof: The proof of this theorem can be taken directly from the de�nition of convolution and by
using the linearity of the integral.

Figure 3.16

62
CHAPTER 3. TIME DOMAIN ANALYSIS OF CONTINUOUS TIME

SYSTEMS

3.3.4 Time Shift

Theorem 3.4: Shift Property
For c (t) = f (t) ∗ h (t), then

c (t− T) = f (t− T) ∗ h (t) (3.25)

and
c (t− T) = f (t) ∗ h (t− T) (3.26)

(a)

(b)

(c)

Figure 3.17: Graphical demonstration of the shift property.

3.3.5 Convolution with an Impulse

Theorem 3.5: Convolving with Unit Impulse

f (t) ∗ δ (t) = f (t) (3.27)

Proof: For this proof, we will let δ (t) be the unit impulse located at the origin. Using the
de�nition of convolution we start with the convolution integral

f (t) ∗ δ (t) =
∫ ∞
−∞

δ (τ) f (t− τ) dτ (3.28)

63

From the de�nition of the unit impulse, we know that δ (τ) = 0 whenever τ 6= 0. We use this fact
to reduce the above equation to the following:

f (t) ∗ δ (t) =
∫∞
−∞ δ (τ) f (t) dτ

= f (t)
∫∞
−∞ (δ (τ)) dτ

(3.29)

The integral of δ (τ) will only have a value when τ = 0 (from the de�nition of the unit impulse),
therefore its integral will equal one. Thus we can simplify the equation to our theorem:

f (t) ∗ δ (t) = f (t) (3.30)

(a)

(b)

Figure 3.18: The �gures, and equation above, reveal the identity function of the unit impulse.

3.3.6 Width

In continuous time, if Duration (f1) = T1 and Duration (f2) = T2 , then

Duration (f1 ∗ f2) = T1 + T2 (3.31)

64
CHAPTER 3. TIME DOMAIN ANALYSIS OF CONTINUOUS TIME

SYSTEMS

(a)

(b)

(c)

Figure 3.19: In continuous-time, the duration of the convolution result equals the sum of the lengths
of each of the two signals that are convolved.

In discrete time, if Duration (f1) = N1 and Duration (f2) = N2 , then

Duration (f1 ∗ f2) = N1 +N2 − 1 (3.32)

65

3.3.7 Causality

If f and h are both causal, then f ∗ h is also causal.

This is an unsupported media type. To view, please see
http://cnx.org/content/m10088/latest/ConvTIMEDOM.llb

3.4 BIBO Stability8

BIBO stands for bounded input, bounded output. BIBO stable is a condition such that any bounded input
yields a bounded output. This is to say that as long as we input a stable signal, we are guaranteed to have
a stable output.

In order to understand this concept, we must �rst look more closely into exactly what we mean by
bounded. A bounded signal is any signal such that there exists a value such that the absolute value of the
signal is never greater than some value. Since this value is arbitrary, what we mean is that at no point can
the signal tend to in�nity.

Figure 3.20: A bounded signal is a signal for which there exists a constant A such that |f (t) | < A ,

Once we have identi�ed what it means for a signal to be bounded, we must turn our attention to the
condition a system must posess in order to guarantee that if any bounded signal is passed through the
system, a bounded signal will arise on the output. It turns out that a continuous-time LTI (Section 2.1)
system with impulse response h (t) is BIBO stable if and only if

Continuous-Time Condition for BIBO Stability∫ ∞
−∞
|h (t) |dt <∞ (3.33)

8This content is available online at <http://cnx.org/content/m10113/2.9/>.

66
CHAPTER 3. TIME DOMAIN ANALYSIS OF CONTINUOUS TIME

SYSTEMS

This is to say that the transfer function is absolutely integrable.
To extend this concept to discrete-time, we make the standard transition from integration to summation

and get that the transfer function, h (n), must be absolutely summable. That is

Discrete-Time Condition for BIBO Stability

∞∑
n=−∞

(|h (n) |) <∞ (3.34)

3.4.1 Stability and Laplace

Stability is very easy to infer from the pole-zero plot (Section 13.6) of a transfer function. The only condition
necessary to demonstrate stability is to show that the jω-axis is in the region of convergence.

(a) (b)

Figure 3.21: (a) Example of a pole-zero plot for a stable continuous-time system. (b) Example of a
pole-zero plot for an unstable continuous-time system.

3.4.2 Stability and the Z-Transform

Stability for discrete-time signals (Section 1.1) in the z-domain (Section 14.1) is about as easy to demonstrate
as it is for continuous-time signals in the Laplace domain. However, instead of the region of convergence
needing to contain the jω-axis, the ROC must contain the unit circle.

67

(a) (b)

Figure 3.22: (a) A stable discrete-time system. (b) An unstable discrete-time system.

This is an unsupported media type. To view, please see http://cnx.org/content/m10113/latest/BIBO.llb

68
CHAPTER 3. TIME DOMAIN ANALYSIS OF CONTINUOUS TIME

SYSTEMS

Chapter 4

Time Domain Analysis of Discrete Time
Systems

4.1 Discrete-Time Systems in the Time-Domain1

A discrete-time signal s (n) is delayed by n0 samples when we write s (n− n0), with n0 > 0. Choosing n0 to
be negative advances the signal along the integers. As opposed to analog delays2, discrete-time delays can
only be integer valued. In the frequency domain, delaying a signal corresponds to a linear phase shift of the
signal's discrete-time Fourier transform:

(
s (n− n0)↔ e−(j2πfn0)S

(
ej2πf

))
.

Linear discrete-time systems have the superposition property.

S (a1x1 (n) + a2x2 (n)) = a1S (x1 (n)) + a2S (x2 (n)) (4.1)

A discrete-time system is called shift-invariant (analogous to time-invariant analog systems3) if delaying
the input delays the corresponding output. If S (x (n)) = y (n), then a shift-invariant system has the property

S (x (n− n0)) = y (n− n0) (4.2)

We use the term shift-invariant to emphasize that delays can only have integer values in discrete-time, while
in analog signals, delays can be arbitrarily valued.

We want to concentrate on systems that are both linear and shift-invariant. It will be these that allow us
the full power of frequency-domain analysis and implementations. Because we have no physical constraints
in "constructing" such systems, we need only a mathematical speci�cation. In analog systems, the di�er-
ential equation speci�es the input-output relationship in the time-domain. The corresponding discrete-time
speci�cation is the di�erence equation.

y (n) = a1y (n− 1) + · · ·+ apy (n− p) + b0x (n) + b1x (n− 1) + · · ·+ bqx (n− q) (4.3)

Here, the output signal y (n) is related to its past values y (n− l), l = {1, . . . , p}, and to the current and
past values of the input signal x (n). The system's characteristics are determined by the choices for the
number of coe�cients p and q and the coe�cients' values {a1, . . . , ap} and {b0, b1, . . . , bq}.

aside: There is an asymmetry in the coe�cients: where is a0? This coe�cient would multiply
the y (n) term in (4.3). We have essentially divided the equation by it, which does not change the
input-output relationship. We have thus created the convention that a0 is always one.

1This content is available online at <http://cnx.org/content/m10251/2.22/>.
2"Simple Systems": Section Delay <http://cnx.org/content/m0006/latest/#delay>
3"Simple Systems" <http://cnx.org/content/m0006/latest/#para4wra>

69

70 CHAPTER 4. TIME DOMAIN ANALYSIS OF DISCRETE TIME SYSTEMS

As opposed to di�erential equations, which only provide an implicit description of a system (we must
somehow solve the di�erential equation), di�erence equations provide an explicit way of computing the
output for any input. We simply express the di�erence equation by a program that calculates each output
from the previous output values, and the current and previous inputs.

Di�erence equations are usually expressed in software with for loops. A MATLAB program that would
compute the �rst 1000 values of the output has the form

for n=1:1000

y(n) = sum(a.*y(n-1:-1:n-p)) + sum(b.*x(n:-1:n-q));

end

An important detail emerges when we consider making this program work; in fact, as written it has (at least)
two bugs. What input and output values enter into the computation of y (1)? We need values for y (0),
y (−1), ..., values we have not yet computed. To compute them, we would need more previous values of the
output, which we have not yet computed. To compute these values, we would need even earlier values, ad
in�nitum. The way out of this predicament is to specify the system's initial conditions: we must provide
the p output values that occurred before the input started. These values can be arbitrary, but the choice
does impact how the system responds to a given input. One choice gives rise to a linear system: Make the
initial conditions zero. The reason lies in the de�nition of a linear system4: The only way that the output
to a sum of signals can be the sum of the individual outputs occurs when the initial conditions in each case
are zero.

Exercise 4.1 (Solution on p. 89.)

The initial condition issue resolves making sense of the di�erence equation for inputs that start at
some index. However, the program will not work because of a programming, not conceptual, error.
What is it? How can it be "�xed?"

Example 4.1
Let's consider the simple system having p = 1 and q = 0.

y (n) = ay (n− 1) + bx (n) (4.4)

To compute the output at some index, this di�erence equation says we need to know what the
previous output y (n− 1) and what the input signal is at that moment of time. In more detail, let's
compute this system's output to a unit-sample input: x (n) = δ (n). Because the input is zero for
negative indices, we start by trying to compute the output at n = 0.

y (0) = ay (−1) + b (4.5)

What is the value of y (−1)? Because we have used an input that is zero for all negative indices, it
is reasonable to assume that the output is also zero. Certainly, the di�erence equation would not
describe a linear system5 if the input that is zero for all time did not produce a zero output. With
this assumption, y (−1) = 0, leaving y (0) = b. For n > 0, the input unit-sample is zero, which
leaves us with the di�erence equation y (n) = ay (n− 1) , n > 0 . We can envision how the �lter
responds to this input by making a table.

y (n) = ay (n− 1) + bδ (n) (4.6)

4"Simple Systems": Section Linear Systems <http://cnx.org/content/m0006/latest/#linearsys>
5"Simple Systems": Section Linear Systems <http://cnx.org/content/m0006/latest/#linearsys>

71

n x (n) y (n)

−1 0 0

0 1 b

1 0 ba

2 0 ba2

: 0 :

n 0 ban

Figure 4.1

Coe�cient values determine how the output behaves. The parameter b can be any value, and
serves as a gain. The e�ect of the parameter a is more complicated (Figure 4.1). If it equals
zero, the output simply equals the input times the gain b. For all non-zero values of a, the output
lasts forever; such systems are said to be IIR (In�nite Impulse Response). The reason for this
terminology is that the unit sample also known as the impulse (especially in analog situations), and
the system's response to the "impulse" lasts forever. If a is positive and less than one, the output
is a decaying exponential. When a = 1, the output is a unit step. If a is negative and greater
than −1, the output oscillates while decaying exponentially. When a = −1, the output changes
sign forever, alternating between b and −b. More dramatic e�ects when |a| > 1; whether positive
or negative, the output signal becomes larger and larger, growing exponentially.

1

n

y(n)
a = 0.5, b = 1

n

-1

1
y(n)
a = –0.5, b = 1

n
0

2

4
y(n)
a = 1.1, b = 1

x(n)

n

n

Figure 4.2: The input to the simple example system, a unit sample, is shown at the top, with the
outputs for several system parameter values shown below.

Positive values of a are used in population models to describe how population size increases
over time. Here, n might correspond to generation. The di�erence equation says that the number
in the next generation is some multiple of the previous one. If this multiple is less than one, the
population becomes extinct; if greater than one, the population �ourishes. The same di�erence
equation also describes the e�ect of compound interest on deposits. Here, n indexes the times at
which compounding occurs (daily, monthly, etc.), a equals the compound interest rate plusone, and
b = 1 (the bank provides no gain). In signal processing applications, we typically require that the

72 CHAPTER 4. TIME DOMAIN ANALYSIS OF DISCRETE TIME SYSTEMS

output remain bounded for any input. For our example, that means that we restrict |a| = 1 and
chose values for it and the gain according to the application.

Exercise 4.2 (Solution on p. 89.)

Note that the di�erence equation (4.3),

y (n) = a1y (n− 1) + · · ·+ apy (n− p) + b0x (n) + b1x (n− 1) + · · ·+ bqx (n− q)

does not involve terms like y (n+ 1) or x (n+ 1) on the equation's right side. Can such terms also
be included? Why or why not?

y(n)

n

1
5

Figure 4.3: The plot shows the unit-sample response of a length-5 boxcar �lter.

Example 4.2
A somewhat di�erent system has no "a" coe�cients. Consider the di�erence equation

y (n) =
1
q

(x (n) + · · ·+ x (n− q + 1)) (4.7)

Because this system's output depends only on current and previous input values, we need not
be concerned with initial conditions. When the input is a unit-sample, the output equals 1

q for

n = {0, . . . , q − 1}, then equals zero thereafter. Such systems are said to be FIR (Finite Impulse
Response) because their unit sample responses have �nite duration. Plotting this response (Fig-
ure 4.3) shows that the unit-sample response is a pulse of width q and height 1

q . This waveform
is also known as a boxcar, hence the name boxcar �lter given to this system. We'll derive its
frequency response and develop its �ltering interpretation in the next section. For now, note that
the di�erence equation says that each output value equals the average of the input's current and
previous values. Thus, the output equals the running average of input's previous q values. Such a
system could be used to produce the average weekly temperature (q = 7) that could be updated
daily.

This is an unsupported media type. To view, please see
http://cnx.org/content/m10251/latest/DiscreteTimeSys.llb

73

4.2 Discrete-Time Convolution6

4.2.1 Overview

Convolution is a concept that extends to all systems that are both linear and time-invariant (Section 2.1)
(LTI). The idea of discrete-time convolution is exactly the same as that of continuous-time convolution
(Section 3.2). For this reason, it may be useful to look at both versions to help your understanding of this
extremely important concept. Recall that convolution is a very powerful tool in determining a system's
output from knowledge of an arbitrary input and the system's impulse response. It will also be helpful to
see convolution graphically with your own eyes and to play around with it some, so experiment with the
applets7 available on the internet. These resources will o�er di�erent approaches to this crucial concept.

4.2.2 Convolution Sum

As mentioned above, the convolution sum provides a concise, mathematical way to express the output of an
LTI system based on an arbitrary discrete-time input signal and the system's response. The convolution
sum is expressed as

y [n] =
∞∑

k=−∞

(x [k]h [n− k]) (4.8)

As with continuous-time, convolution is represented by the symbol *, and can be written as

y [n] = x [n] ∗ h [n] (4.9)

By making a simple change of variables into the convolution sum, k = n − k, we can easily show that
convolution is commutative:

x [n] ∗ h [n] = h [n] ∗ x [n] (4.10)

For more information on the characteristics of convolution, read about the Properties of Convolution (Sec-
tion 3.3).

4.2.3 Derivation

We know that any discrete-time signal can be represented by a summation of scaled and shifted discrete-time
impulses. Since we are assuming the system to be linear and time-invariant, it would seem to reason that
an input signal comprised of the sum of scaled and shifted impulses would give rise to an output comprised
of a sum of scaled and shifted impulse responses. This is exactly what occurs in convolution. Below we
present a more rigorous and mathematical look at the derivation:

Letting H be a DT LTI system, we start with the following equation and work our way down the
convolution sum!

y [n] = H [x [n]]

= H
[∑∞

k=−∞ (x [k] δ [n− k])
]

=
∑∞
k=−∞ (H [x [k] δ [n− k]])

=
∑∞
k=−∞ (x [k]H [δ [n− k]])

=
∑∞
k=−∞ (x [k]h [n− k])

(4.11)

Let us take a quick look at the steps taken in the above derivation. After our initial equation, we using the
DT sifting property (Section 1.5.1.1: The Sifting Property of the Impulse) to rewrite the function, x [n], as a
sum of the function times the unit impulse. Next, we can move around the H operator and the summation
because H [·] is a linear, DT system. Because of this linearity and the fact that x [k] is a constant, we can

6This content is available online at <http://cnx.org/content/m10087/2.18/>.
7http://www.jhu.edu/∼signals

74 CHAPTER 4. TIME DOMAIN ANALYSIS OF DISCRETE TIME SYSTEMS

pull the previous mentioned constant out and simply multiply it by H [·]. Finally, we use the fact that H [·]
is time invariant in order to reach our �nal state - the convolution sum!

A quick graphical example may help in demonstrating why convolution works.

Figure 4.4: A single impulse input yields the system's impulse response.

Figure 4.5: A scaled impulse input yields a scaled response, due to the scaling property of the system's
linearity.

75

Figure 4.6: We now use the time-invariance property of the system to show that a delayed input
results in an output of the same shape, only delayed by the same amount as the input.

Figure 4.7: We now use the additivity portion of the linearity property of the system to complete the
picture. Since any discrete-time signal is just a sum of scaled and shifted discrete-time impulses, we can
�nd the output from knowing the input and the impulse response.

4.2.4 Convolution Through Time (A Graphical Approach)

In this section we will develop a second graphical interpretation of discrete-time convolution. We will begin
this by writing the convolution sum allowing x to be a causal, length-m signal and h to be a causal, length-k,

76 CHAPTER 4. TIME DOMAIN ANALYSIS OF DISCRETE TIME SYSTEMS

LTI system. This gives us the �nite summation,

y [n] =
m−1∑
l=0

(x [l]h [n− l]) (4.12)

Notice that for any given n we have a sum of the products of xl and a time-delayed h−l. This is to say that
we multiply the terms of x by the terms of a time-reversed h and add them up.

Going back to the previous example:

Figure 4.8: This is the end result that we are looking to �nd.

Figure 4.9: Here we reverse the impulse response, h , and begin its traverse at time 0.

77

Figure 4.10: We continue the traverse. See that at time 1 , we are multiplying two elements of the
input signal by two elements of the impulse response.

Figure 4.11

78 CHAPTER 4. TIME DOMAIN ANALYSIS OF DISCRETE TIME SYSTEMS

Figure 4.12: If we follow this through to one more step, n = 4, then we can see that we produce the
same output as we saw in the initial example.

What we are doing in the above demonstration is reversing the impulse response in time and "walking
it across" the input signal. Clearly, this yields the same result as scaling, shifting and summing impulse
responses.

This approach of time-reversing, and sliding across is a common approach to presenting convolution,
since it demonstrates how convolution builds up an output through time.

4.3 Circular Convolution and the DFT8

4.3.1 Introduction

You should be familiar with Discrete-Time Convolution (Section 4.2), which tells us that given two discrete-
time signals x [n], the system's input, and h [n], the system's response, we de�ne the output of the system
as

y [n] = x [n] ∗ h [n]

=
∑∞
k=−∞ (x [k]h [n− k])

(4.13)

When we are given two DFTs (�nite-length sequences usually of length N), we cannot just multiply them
together as we do in the above convolution formula, often referred to as linear convolution. Because the
DFTs are periodic, they have nonzero values for n ≥ N and thus the multiplication of these two DFTs will be
nonzero for n ≥ N . We need to de�ne a new type of convolution operation that will result in our convolved
signal being zero outside of the range n = {0, 1, . . . , N − 1}. This idea led to the development of circular
convolution, also called cyclic or periodic convolution.

8This content is available online at <http://cnx.org/content/m10786/2.8/>.

79

4.3.2 Circular Convolution Formula

What happens when we multiply two DFT's together, where Y [k] is the DFT of y [n]?

Y [k] = F [k]H [k] (4.14)

when 0 ≤ k ≤ N − 1
Using the DFT synthesis formula for y [n]

y [n] =
1
N

N−1∑
k=0

(
F [k]H [k] ej

2π
N kn

)
(4.15)

And then applying the analysis formula F [k] =
∑N−1
m=0

(
f [m] e(−j) 2π

N kn
)

y [n] = 1
N

∑N−1
k=0

((∑N−1
m=0

(
f [m] e(−j) 2π

N kn
))

H [k] ej
2π
N kn

)
=

∑N−1
m=0

(
f [m]

(
1
N

∑N−1
k=0

(
H [k] ej

2π
N k(n−m)

))) (4.16)

where we can reduce the second summation found in the above equation into h [((n−m))N] =
1
N

∑N−1
k=0

(
H [k] ej

2π
N k(n−m)

)
y [n] =

N−1∑
m=0

(f [m]h [((n−m))N])

which equals circular convolution! When we have 0 ≤ n ≤ N − 1 in the above, then we get:

y [n] ≡ (f [n] ~ h [n]) (4.17)

note: The notation ~ represents cyclic convolution "mod N".

4.3.2.1 Steps for Cyclic Convolution

Steps for cyclic convolution are the same as the usual convo, except all index calculations are done "mod N"
= "on the wheel"

Steps for Cyclic Convolution

• Step 1: "Plot" f [m] and h [((−m))N]

(a) (b)

Figure 4.13: Step 1

80 CHAPTER 4. TIME DOMAIN ANALYSIS OF DISCRETE TIME SYSTEMS

• Step 2: "Spin" h [((−m))N] n notches ACW (counter-clockwise) to get h [((n−m))N] (i.e. Simply
rotate the sequence, h [n], clockwise by n steps).

Figure 4.14: Step 2

• Step 3: Pointwise multiply the f [m] wheel and the h [((n−m))N] wheel.

sum = y [n]

• Step 4: Repeat for all 0 ≤ n ≤ N − 1

Example 4.3: Convolve (n = 4)

(a) (b)

Figure 4.15: Two discrete-time signals to be convolved.

• h [((−m))N]

Figure 4.16

Multiply f [m] and sum to yield: y [0] = 3

81

• h [((1−m))N]

Figure 4.17

Multiply f [m] and sum to yield: y [1] = 5

• h [((2−m))N]

Figure 4.18

Multiply f [m] and sum to yield: y [2] = 3

• h [((3−m))N]

Figure 4.19

Multiply f [m] and sum to yield: y [3] = 1

Example 4.4
The following demonstration allows you to explore this algorithm for circular convolution. See
here9 for instructions on how to use the demo.

9"How to use the LabVIEW demos" <http://cnx.org/content/m11550/latest/>

82 CHAPTER 4. TIME DOMAIN ANALYSIS OF DISCRETE TIME SYSTEMS

This is an unsupported media type. To view, please see
http://cnx.org/content/m10786/latest/DTCircularConvolution.llb

4.3.2.2 Alternative Algorithm

Alternative Circular Convolution Algorithm

• Step 1: Calculate the DFT of f [n] which yields F [k] and calculate the DFT of h [n] which yields H [k].
• Step 2: Pointwise multiply Y [k] = F [k]H [k]
• Step 3: Inverse DFT Y [k] which yields y [n]

Seems like a roundabout way of doing things, but it turns out that there are extremely fast ways to calculate
the DFT of a sequence.

To circularily convolve 2 N -point sequences:

y [n] =
N−1∑
m=0

(f [m]h [((n−m))N])

For each n : N multiples, N − 1 additions
N points implies N2 multiplications, N (N − 1) additions implies O

(
N2
)
complexity.

4.4 Linear Constant-Coe�cient Di�erence Equations10

• remember linear di�erential equations?

d

dt
y (t)− y (t) = x (t)

• A di�erence equation is the discrete-time analogue of a di�erentail equation. We simply use di�er-
ences (x [n]− x [n− 1]) rather than derivatives (d

dtx (t)).
• An important subclass of linear systems consists of those whose input x [n] and output x [n] obey an

N -th order LCCDE:
N∑
K=0

(aKy [n−K]) =
M∑
K=0

(bKx [n−K]) (4.18)

Example 4.5: Moving average system

y [n] =
1

M1 +M2 + 1

M2∑
K=M1

(x [n−K])

where set M1 = 0 and M2 = M , aK =

 1 if K = 0

0 otherwise
, bK =

 1
M+1 if 0 ≤ K ≤M

0 otherwise

10This content is available online at <http://cnx.org/content/m12325/1.3/>.

83

4.4.1 How to Implement?

code / hardware M = 2: y [n] = 1
3

∑2
K=0 (x [n−K])

IIR? FIR?

Example 4.6: Recursive System

y [n] =
N∑
K=1

(αKy [n−K]) + x [n]

N∑
K=0

(aKy [n−K]) = x [n]

Where aK =


1 if K = 0

−αK if 1 ≤ K ≤ N
0 otherwise

4.4.1 How to Implement?

N = 2: y [n] =
∑2
K=1 (αKy [n−K]) + x [n]

IIR? FIR?

FIR ∼ MOVING AVERAGE ∼ FEED FORWARD
IIR ∼ RECURSIVE ∼ FEED BACK

• The SOLUTION of a di�erence equation is similar to a di�erential equation.
• In particular, note that a single input-output pair (x [n], yp [n]) that solves the DE is not enough to

characterize the solution.
N∑
k=0

(akyp [n− k]) =
M∑
k=0

(bkx [n− k])

Add in zero to get the homogenous equation:
∑N
k=0 (akyh [n− k]) = 0.

N∑
k=0

(ak (yp [n− k] + yh [n− k])) =
M∑
k=0

(bkx [n− k])

where the particular solution ("forced") yp [n] and homogeneous solution ("unforced") yh [n]
General Solution

y (n) = yp (n) + yh (n) (4.19)

4.5 Solving Linear Constant-Coe�cient Di�erence Equations11

• Step 1 - Given the input x [n], �nd a solution to

N∑
k=0

(akyp [n− k]) =

(
M∑
k=0

(bkx [n− k])

)

Note: Just any old solution will do!

yp [n] - particular solution.

11This content is available online at <http://cnx.org/content/m12326/1.3/>.

84 CHAPTER 4. TIME DOMAIN ANALYSIS OF DISCRETE TIME SYSTEMS

• Solve the homogeneous equation
N∑
k=0

(akyh [n− k]) = 0

for yh [n] - homogeneous solution.
• Complete solution given by

y [n] = yp [n] + yh [n]

4.5.1 Solving The Homogeneous Equation

• What does it mean?

Figure 4.20

• Clearly yh [n] depends on the INITIAL CONDITIONS of the system T .

· Linearity
· Time-Invariance
· Causality

will each depend on these conditions.
• In this course, we will emphasize the simplest case, when T is "initially at rest" with "zero initial

conditions." → we will get LTI and causal solutions. (although possibly at the expense of stability

Example 4.7
Solve

y [n]− ay [n− 1] = x [n]

where |a| < 1 for x [n] = δ [n].

• Step 1: Particular Solution - Assume n ≥ 0 and "zero initial conditions"

yp [0] = (δ [0]→ 1) + a (yp [−1]→ 0) = 1

yp [1] = (δ [1]→ 0) + a (yp [0]→ 1) = a

yp [2] = (δ [2]→ 0) + a (yp [1]→ a) = a2

yp [n] = an (4.20)

where n ≥ 0

85

Figure 4.21

• Step 2: Homogeneous Solution - If x [n] = 0, then yh [n]− ayh [n− 1] = 0

yh [n] = ayh [n− 1]

A solution is given by
yh [n] = can (4.21)

for all n.

Figure 4.22

• Step 3: Reconcile -
y [n] = yn [p] + yh [n]

= anu [n] + can

How to pick c? Need auxilliary conditions.

86 CHAPTER 4. TIME DOMAIN ANALYSIS OF DISCRETE TIME SYSTEMS

Figure 4.23

If we desire a causal system, then c = 0 and

y [n] = anu [n]

Figure 4.24

If we desire an anticausal system then choose c = −1, so

y [n] = − (anu [−n])

This does not assume "system initially at rest!"

87

Figure 4.25

Notes

1. Solution 1 (p. 86) was causal and stable.
2. Solution 2 (p. 86) was anticausal and unstable.

In general, linearity, time-invariance, and causality of a system implemented as a DE will depend on the
auxilliary conditions.

Fact: If we assume that the system is initially at rest ("zero initial conditions"), then it will be
LINEAR, TIME-INVARIANT, and CAUSAL.

Note:
Setting input x = δ0 impulse and setting initial conditions all = 0 and solving for yp yields

yp = h

as the impulse response of this LSI system.

Example 4.8: Frequency Response of a "wire"

Figure 4.26

88 CHAPTER 4. TIME DOMAIN ANALYSIS OF DISCRETE TIME SYSTEMS

Impulse Response:

Figure 4.27

so Frequency Response:

H = FHδ0 =
1√
N

N−1∑
n=0

(
h [n] e−(2π

N kn)
)

=
1√
N

N−1∑
n=0

(
δ0 [n] e−(2π

N kn)
)

δ0 [n] =

 1 if n = 0

0 otherwise

=
1√
N

Flat

Figure 4.28

89

Solutions to Exercises in Chapter 4

Solution to Exercise 4.1 (p. 70)
The indices can be negative, and this condition is not allowed in MATLAB. To �x it, we must start the
signals later in the array.

Solution to Exercise 4.2 (p. 72)
Such terms would require the system to know what future input or output values would be before the
current value was computed. Thus, such terms can cause di�culties.

90 CHAPTER 4. TIME DOMAIN ANALYSIS OF DISCRETE TIME SYSTEMS

Chapter 5

Linear Algebra Overview

5.1 Linear Algebra: The Basics1

This brief tutorial on some key terms in linear algebra is not meant to replace or be very helpful to those of
you trying to gain a deep insight into linear algebra. Rather, this brief introduction to some of the terms and
ideas of linear algebra is meant to provide a little background to those trying to get a better understanding
or learn about eigenvectors and eigenfunctions, which play a big role in deriving a few important ideas on
Signals and Systems. The goal of these concepts will be to provide a background for signal decomposition
and to lead up to the derivation of the Fourier Series (Section 6.2).

5.1.1 Linear Independence

A set of vectors {x1, x2, . . . , xk} , xi ∈ Cn are linearly independent if none of them can be written as
a linear combination of the others.

De�nition 5: Linearly Independent
For a given set of vectors, {x1, x2, . . . , xn}, they are linearly independent if

c1x1 + c2x2 + · · ·+ cnxn = 0

only when c1 = c2 = · · · = cn = 0
Example
We are given the following two vectors:

x1 =

 3

2



x2 =

 −6

−4


These are not linearly independent as proven by the following statement, which, by inspection, can
be seen to not adhere to the de�nition of linear independence stated above.

x2 = −2x1 ⇒ 2x1 + x2 = 0

Another approach to reveal a vectors independence is by graphing the vectors. Looking at these
two vectors geometrically (as in Figure 5.1), one can again prove that these vectors are not linearly
independent.

1This content is available online at <http://cnx.org/content/m10734/2.4/>.

91

92 CHAPTER 5. LINEAR ALGEBRA OVERVIEW

3-6

2

4

Figure 5.1: Graphical representation of two vectors that are not linearly independent.

Example 5.1
We are given the following two vectors:

x1 =

 3

2



x2 =

 1

2


These are linearly independent since

c1x1 = − (c2x2)

only if c1 = c2 = 0. Based on the de�nition, this proof shows that these vectors are indeed linearly
independent. Again, we could also graph these two vectors (see Figure 5.2) to check for linear
independence.

3

2

1

Figure 5.2: Graphical representation of two vectors that are linearly independent.

Exercise 5.1 (Solution on p. 109.)

Are {x1, x2, x3} linearly independent?

x1 =

 3

2



93

x2 =

 1

2


x3 =

 −1

0


As we have seen in the two above examples, often times the independence of vectors can be easily seen
through a graph. However this may not be as easy when we are given three or more vectors. Can you easily
tell whether or not these vectors are independent from Figure 5.3. Probably not, which is why the method
used in the above solution becomes important.

3

2

1-1

Figure 5.3: Plot of the three vectors. Can be shown that a linear combination exists among the three,
and therefore they are not linear independent.

hint: A set of m vectors in Cn cannot be linearly independent if m > n.

5.1.2 Span

De�nition 6: Span
The span2 of a set of vectors {x1, x2, . . . , xk} is the set of vectors that can be written as a linear
combination of {x1, x2, . . . , xk}

span ({x1, . . . , xk}) = {α1x1 + α2x2 + · · ·+ αkxk , αi ∈ Cn }

Example
Given the vector

x1 =

 3

2


the span of x1 is a line.

Example
Given the vectors

x1 =

 3

2


2"Subspaces", De�nition 2: "Span" <http://cnx.org/content/m10297/latest/#defn2>

94 CHAPTER 5. LINEAR ALGEBRA OVERVIEW

x2 =

 1

2


the span of these vectors is C2.

5.1.3 Basis

De�nition 7: Basis
A basis for Cn is a set of vectors that: (1) spans Cn and (2) is linearly independent.

Clearly, any set of n linearly independent vectors is a basis for Cn.

Example 5.2
We are given the following vector

ei =



0
...

0

1

0
...

0


where the 1 is always in the ith place and the remaining values are zero. Then the basis for Cn is

{ei , i = [1, 2, . . . , n] }

note: {ei , i = [1, 2, . . . , n] } is called the standard basis.

Example 5.3

h1 =

 1

1


h2 =

 1

−1


{h1, h2} is a basis for C2.

95

Figure 5.4: Plot of basis for C2

If {b1, . . . , b2} is a basis for Cn, then we can express any x ∈ Cn as a linear combination of the bi's:

x = α1b1 + α2b2 + · · ·+ αnbn , αi ∈ C

Example 5.4
Given the following vector,

x =

 1

2


writing x in terms of {e1, e2} gives us

x = e1 + 2e2

Exercise 5.2 (Solution on p. 109.)

Try and write x in terms of {h1, h2} (de�ned in the previous example).

In the two basis examples above, x is the same vector in both cases, but we can express it in many di�erent
ways (we give only two out of many, many possibilities). You can take this even further by extending this
idea of a basis to function spaces.

note: As mentioned in the introduction, these concepts of linear algebra will help prepare you to
understand the Fourier Series (Section 6.2), which tells us that we can express periodic functions,
f (t), in terms of their basis functions, ejω0nt.

This is an unsupported media type. To view, please see
http://cnx.org/content/m10734/latest/LinearAlgebraCalc3.llb

This is an unsupported media type. To view, please see
http://cnx.org/content/m10734/latest/LinearTransform.llb

96 CHAPTER 5. LINEAR ALGEBRA OVERVIEW

5.2 Eigenvectors and Eigenvalues3

In this section, our linear systems will be n×n matrices of complex numbers. For a little background into
some of the concepts that this module is based on, refer to the basics of linear algebra (Section 5.1).

5.2.1 Eigenvectors and Eigenvalues

Let A be an n×n matrix, where A is a linear operator on vectors in Cn.

Ax = b (5.1)

where x and b are n×1 vectors (Figure 5.5).

(a)

(b)

Figure 5.5: Illustration of linear system and vectors.

De�nition 8: eigenvector
An eigenvector of A is a vector v ∈ Cn such that

Av = λv (5.2)

where λ is called the corresponding eigenvalue. A only changes the length of v, not its direction.

5.2.1.1 Graphical Model

Through Figure 5.6 and Figure 5.7, let us look at the di�erence between (5.1) and (5.2).

3This content is available online at <http://cnx.org/content/m10736/2.7/>.

97

Figure 5.6: Represents (5.1), Ax = b.

If v is an eigenvector of A, then only its length changes. See Figure 5.7 and notice how our vector's
length is simply scaled by our variable, λ, called the eigenvalue:

Figure 5.7: Represents (5.2), Av = λv.

note: When dealing with a matrix A, eigenvectors are the simplest possible vectors to operate
on.

5.2.1.2 Examples

Exercise 5.3 (Solution on p. 109.)

From inspection and understanding of eigenvectors, �nd the two eigenvectors, v1 and v2, of

A =

 3 0

0 −1


Also, what are the corresponding eigenvalues, λ1 and λ2? Do not worry if you are having problems
seeing these values from the information given so far, we will look at more rigorous ways to �nd
these values soon.

Exercise 5.4 (Solution on p. 109.)

Show that these two vectors,

v1 =

 1

1



98 CHAPTER 5. LINEAR ALGEBRA OVERVIEW

v2 =

 1

−1


are eigenvectors of A, where A =

 3 −1

−1 3

. Also, �nd the corresponding eigenvalues.

5.2.2 Calculating Eigenvalues and Eigenvectors

In the above examples, we relied on your understanding of the de�nition and on some basic observations to
�nd and prove the values of the eigenvectors and eigenvalues. However, as you can probably tell, �nding
these values will not always be that easy. Below, we walk through a rigorous and mathematical approach at
calculating the eigenvalues and eigenvectors of a matrix.

5.2.2.1 Finding Eigenvalues

Find λ ∈ C such that v 6= 0, where 0 is the "zero vector." We will start with (5.2), and then work our way
down until we �nd a way to explicitly calculate λ.

Av = λv

Av − λv = 0

(A− λI) v = 0

In the previous step, we used the fact that
λv = λIv

where I is the identity matrix.

I =


1 0 . . . 0

0 1 . . . 0

0 0
. . .

...

0 1


So, A− λI is just a new matrix.

Example 5.5
Given the following matrix, A, then we can �nd our new matrix, A− λI.

A =

 a11 a12

a21 a22



A− λI =

 a11 − λ a12

a21 a22 − λ


If (A− λI) v = 0 for some v 6= 0, then A− λI is not invertible. This means:

det (A− λI) = 0

99

This determinant (shown directly above) turns out to be a polynomial expression (of order n). Look at the
examples below to see what this means.

Example 5.6
Starting with matrix A (shown below), we will �nd the polynomial expression, where our eigen-
values will be the dependent variable.

A =

 3 −1

−1 3



A− λI =

 3− λ −1

−1 3− λ


det (A− λI) = (3− λ)2 − (−1)2 = λ2 − 6λ+ 8

λ = {2, 4}

Example 5.7
Starting with matrix A (shown below), we will �nd the polynomial expression, where our eigen-
values will be the dependent variable.

A =

 a11 a12

a21 a22



A− λI =

 a11 − λ a12

a21 a22 − λ


det (A− λI) = λ2 − (a11 + a22)λ− a21a12 + a11a22

If you have not already noticed it, calculating the eigenvalues is equivalent to calculating the roots of

det (A− λI) = cnλ
n + cn−1λ

n−1 + · · ·+ c1λ+ c0 = 0

conclusion: Therefore, by simply using calculus to solve for the roots of our polynomial we can
easily �nd the eigenvalues of our matrix.

5.2.2.2 Finding Eigenvectors

Given an eigenvalue, λi, the associated eigenvectors are given by

Av = λiv

A


v1

...

vn

 =


λ1v1

...

λnvn


set of n equations with n unknowns. Simply solve the n equations to �nd the eigenvectors.

100 CHAPTER 5. LINEAR ALGEBRA OVERVIEW

5.2.3 Main Point

Say the eigenvectors of A, {v1, v2, . . . , vn}, span (Section 5.1.2: Span) Cn, meaning {v1, v2, . . . , vn} are
linearly independent (Section 5.1.1: Linear Independence) and we can write any x ∈ Cn as

x = α1v1 + α2v2 + · · ·+ αnvn (5.3)

where {α1, α2, . . . , αn} ∈ C. All that we are doing is rewriting x in terms of eigenvectors of A. Then,

Ax = A (α1v1 + α2v2 + · · ·+ αnvn)

Ax = α1Av1 + α2Av2 + · · ·+ αnAvn

Ax = α1λ1v1 + α2λ2v2 + · · ·+ αnλnvn = b

Therefore we can write,

x =
∑
i

(αivi)

and this leads us to the following depicted system:

Figure 5.8: Depiction of system where we break our vector, x, into a sum of its eigenvectors.

where in Figure 5.8 we have,

b =
∑
i

(αiλivi)

Main Point: By breaking up a vector, x, into a combination of eigenvectors, the calculation of
Ax is broken into "easy to swallow" pieces.

5.2.4 Practice Problem

Exercise 5.5 (Solution on p. 109.)

For the following matrix, A and vector, x, solve for their product. Try solving it using two di�erent
methods: directly and using eigenvectors.

A =

 3 −1

−1 3


x =

 5

3



This is an unsupported media type. To view, please see
http://cnx.org/content/m10736/latest/LinearAlgebraCalc3.llb

101

5.3 Matrix Diagonalization4

From our understanding of eigenvalues and eigenvectors (Section 5.2) we have discovered several things about
our operator matrix, A. We know that if the eigenvectors of A span Cn and we know how to express any
vector x in terms of {v1, v2, . . . , vn}, then we have the operator A all �gured out. If we have A acting on x,
then this is equal to A acting on the combinations of eigenvectors. Which we know proves to be fairly easy!

We are still left with two questions that need to be addressed:

1. When do the eigenvectors {v1, v2, . . . , vn} of A span Cn (assuming {v1, v2, . . . , vn} are linearly inde-
pendent)?

2. How do we express a given vector x in terms of {v1, v2, . . . , vn}?

5.3.1 Answer to Question #1

Question 1: When do the eigenvectors {v1, v2, . . . , vn} of A span Cn?

If A has n distinct eigenvalues
λi 6= λj , i 6= j

where i and j are integers, then A has n linearly independent eigenvectors {v1, v2, . . . , vn} which then span
Cn.

aside: The proof of this statement is not very hard, but is not really interesting enough to include
here. If you wish to research this idea further, read Strang, G., "Linear Algebra and its Application"
for the proof.

Furthermore, n distinct eigenvalues means

det (A− λI) = cnλ
n + cn−1λ

n−1 + · · ·+ c1λ+ c0 = 0

has n distinct roots.

5.3.2 Answer to Question #2

Question 2: How do we express a given vector x in terms of {v1, v2, . . . , vn}?

We want to �nd {α1, α2, . . . , αn} ∈ C such that

x = α1v1 + α2v2 + · · ·+ αnvn (5.4)

In order to �nd this set of variables, we will begin by collecting the vectors {v1, v2, . . . , vn} as columns in a
n×n matrix V .

V =


...

...
...

v1 v2 . . . vn
...

...
...


Now (5.4) becomes

x =


...

...
...

v1 v2 . . . vn
...

...
...




α1

...

αn


4This content is available online at <http://cnx.org/content/m10738/2.5/>.

102 CHAPTER 5. LINEAR ALGEBRA OVERVIEW

or
x = V α

which gives us an easy form to solve for our variables in question, α:

α = V −1x

Note that V is invertible since it has n linearly independent columns.

5.3.2.1 Aside

Let us recall our knowledge of functions and there basis and examine the role of V .

x = V α


x1

...

xn

 = V


α1

...

αn


where α is just x expressed in a di�erent basis (Section 5.1.3: Basis):

x = x1


1

0
...

0

+ x2


0

1
...

0

+ · · ·+ xn


0

0
...

1



x = α1


...

v1

...

+ α2


...

v2

...

+ · · ·+ αn


...

vn
...


V transforms x from the standard basis to the basis {v1, v2, . . . , vn}

5.3.3 Matrix Diagonalization and Output

We can also use the vectors {v1, v2, . . . , vn} to represent the output, b, of a system:

b = Ax = A (α1v1 + α2v2 + · · ·+ αnvn)

Ax = α1λ1v1 + α2λ2v2 + · · ·+ αnλnvn = b

Ax =


...

...
...

v1 v2 . . . vn
...

...
...




λ1α1

...

λ1αn


Ax = V Λα

103

Ax = V ΛV −1x

where Λ is the matrix with the eigenvalues down the diagonal:

Λ =


λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn


Finally, we can cancel out the x and are left with a �nal equation for A:

A = V ΛV −1

5.3.3.1 Interpretation

For our interpretation, recall our key formulas:

α = V −1x

b =
∑
i

(αiλivi)

We can interpret operating on x with A as:
x1

...

xn

→


α1

...

αn

→


λ1α1

...

λ1αn

→


b1
...

bn


where the three steps (arrows) in the above illustration represent the following three operations:

1. Transform x using V −1, which yields α
2. Multiplication by Λ
3. Inverse transform using V , which gives us b

This is the paradigm we will use for LTI systems!

Figure 5.9: Simple illustration of LTI system!

This is an unsupported media type. To view, please see
http://cnx.org/content/m10738/latest/LinearAlgebraCalc3.llb

104 CHAPTER 5. LINEAR ALGEBRA OVERVIEW

5.4 Eigen-stu� in a Nutshell5

5.4.1 A Matrix and its Eigenvector

The reason we are stressing eigenvectors (Section 5.2) and their importance is because the action of a matrix
A on one of its eigenvectors v is

1. extremely easy (and fast) to calculate
Av = λv (5.5)

just multiply v by λ.
2. easy to interpret: A just scales v, keeping its direction constant and only altering the vector's length.

If only every vector were an eigenvector of A....

5.4.2 Using Eigenvectors' Span

Of course, not every vector can be ... BUT ... For certain matrices (including ones with distinct eigen-
values, λ's), their eigenvectors span (Section 5.1.2: Span) Cn, meaning that for any x ∈ Cn, we can �nd
{α1, α2, αn} ∈ C such that:

x = α1v1 + α2v2 + · · ·+ αnvn (5.6)

Given (5.6), we can rewrite Ax = b. This equation is modeled in our LTI system pictured below:

Figure 5.10: LTI System.

x =
∑
i

(αivi)

b =
∑
i

(αiλivi)

The LTI system above represents our (5.5). Below is an illustration of the steps taken to go from x to b.

x→
(
α = V −1x

)
→
(
ΛV −1x

)
→ V ΛV −1x = b

where the three steps (arrows) in the above illustration represent the following three operations:

1. Transform x using V −1 - yields α
2. Action of A in new basis - a multiplication by Λ
3. Translate back to old basis - inverse transform using a multiplication by V , which gives us b

5This content is available online at <http://cnx.org/content/m10742/2.4/>.

105

5.5 Eigenfunctions of LTI Systems6

5.5.1 Introduction

Hopefully you are familiar with the notion of the eigenvectors of a "matrix system," if not they do a quick
review of eigen-stu� (Section 5.4). We can develop the same ideas for LTI systems acting on signals. A linear
time invariant (LTI) system7 H operating on a continuous input f (t) to produce continuous time output
y (t)

H [f (t)] = y (t) (5.7)

Figure 5.11: H [f (t)] = y (t). f and t are continuous time (CT) signals and H is an LTI operator.

is mathematically analogous to an NxN matrix A operating on a vector x ∈ CN to produce another
vector b ∈ CN (see Matrices and LTI Systems for an overview).

Ax = b (5.8)

Figure 5.12: Ax = b where x and b are in CN and A is an N x N matrix.

Just as an eigenvector (Section 5.2) of A is a v ∈ CN such that Av = λv, λ ∈ C,
6This content is available online at <http://cnx.org/content/m10500/2.7/>.
7"Introduction to Systems" <http://cnx.org/content/m0005/latest/>

106 CHAPTER 5. LINEAR ALGEBRA OVERVIEW

Figure 5.13: Av = λv where v ∈ CN is an eigenvector of A.

we can de�ne an eigenfunction (or eigensignal) of an LTI system H to be a signal f (t) such that

H [f (t)] = λf (t) , λ ∈ C (5.9)

Figure 5.14: H [f (t)] = λf (t) where f is an eigenfunction of H.

Eigenfunctions are the simplest possible signals for H to operate on: to calculate the output, we simply
multiply the input by a complex number λ.

5.5.2 Eigenfunctions of any LTI System

The class of LTI systems has a set of eigenfunctions in common: the complex exponentials (Section 1.6) est,
s ∈ C are eigenfunctions for all LTI systems.

H
[
est
]

= λse
st (5.10)

107

Figure 5.15: H
ˆ
est
˜

= λse
st where H is an LTI system.

Note: While {est , s ∈ C } are always eigenfunctions of an LTI system, they are not necessarily
the only eigenfunctions.

We can prove (5.10) by expressing the output as a convolution (Section 3.2) of the input est and the
impulse response (Section 1.5) h (t) of H:

H [est] =
∫∞
−∞ h (τ) es(t−τ)dτ

=
∫∞
−∞ h (τ) este−(sτ)dτ

= est
∫∞
−∞ h (τ) e−(sτ)dτ

(5.11)

Since the expression on the right hand side does not depend on t, it is a constant, λs. Therefore

H
[
est
]

= λse
st (5.12)

The eigenvalue λs is a complex number that depends on the exponent s and, of course, the system H. To
make these dependencies explicit, we will use the notation H (s) ≡ λs.

Figure 5.16: est is the eigenfunction and H (s) are the eigenvalues.

Since the action of an LTI operator on its eigenfunctions est is easy to calculate and interpret, it is
convenient to represent an arbitrary signal f (t) as a linear combination of complex exponentials. The Fourier
series (Section 6.2) gives us this representation for periodic continuous time signals, while the (slightly more
complicated) Fourier transform8 lets us expand arbitrary continuous time signals.

8"Derivation of the Fourier Transform" <http://cnx.org/content/m0046/latest/>

108 CHAPTER 5. LINEAR ALGEBRA OVERVIEW

5.6 Fourier Transform Properties9

Short Table of Fourier Transform Pairs

s(t) S(f)

e−(at)u (t) 1
j2πf+a

e(−a)|t| 2a
4π2f2+a2

p (t) =

 1 if |t| < ∆
2

0 if |t| > ∆
2

sin(πf∆)
πf

sin(2πWt)
πt S (f) =

 1 if |f | < W

0 if |f | > W

Fourier Transform Properties

Time-Domain Frequency Domain

Linearity a1s1 (t) + a2s2 (t) a1S1 (f) + a2S2 (f)

Conjugate Symmetry s (t) ∈ R S (f) = S (−f)∗

Even Symmetry s (t) = s (−t) S (f) = S (−f)

Odd Symmetry s (t) = − (s (−t)) S (f) = − (S (−f))

Scale Change s (at) 1
|a|S

(
f
a

)
Time Delay s (t− τ) e−(j2πfτ)S (f)

Complex Modulation ej2πf0ts (t) S (f − f0)

Amplitude Modulation by Cosine s (t) cos (2πf0t)
S(f−f0)+S(f+f0)

2

Amplitude Modulation by Sine s (t) sin (2πf0t)
S(f−f0)−S(f+f0)

2j

Di�erentiation d
dts (t) j2πfS (f)

Integration
∫ t
−∞ s (α) dα 1

j2πf S (f) if S (0) = 0

Multiplication by t ts (t) 1
−(j2π)

d
df S (f)

Area
∫∞
−∞ s (t) dt S (0)

Value at Origin s (0)
∫∞
−∞ S (f) df

Parseval's Theorem
∫∞
−∞ (|s (t) |)2

dt
∫∞
−∞ (|S (f) |)2

df

9This content is available online at <http://cnx.org/content/m0045/2.8/>.

109

Solutions to Exercises in Chapter 5

Solution to Exercise 5.1 (p. 92)
By playing around with the vectors and doing a little trial and error, we will discover the following rela-
tionship:

x1 − x2 + 2x3 = 0

Thus we have found a linear combination of these three vectors that equals zero without setting the coe�cients
equal to zero. Therefore, these vectors are not linearly independent!

Solution to Exercise 5.2 (p. 95)

x =
3
2
h1 +

−1
2
h2

Solution to Exercise 5.3 (p. 97)
The eigenvectors you found should be:

v1 =

 1

0


v2 =

 0

1


And the corresponding eigenvalues are

λ1 = 3

λ2 = −1

Solution to Exercise 5.4 (p. 97)
In order to prove that these two vectors are eigenvectors, we will show that these statements meet the
requirements stated in the de�nition (De�nition: "eigenvector", p. 96).

Av1 =

 3 −1

−1 3

 1

1

 =

 2

2



Av2 =

 3 −1

−1 3

 1

−1

 =

 4

−4


These results show us that A only scales the two vectors (i.e. changes their length) and thus it proves that
(5.2) holds true for the following two eigenvalues that you were asked to �nd:

λ1 = 2

λ2 = 4

If you need more convincing, then one could also easily graph the vectors and their corresponding product
with A to see that the results are merely scaled versions of our original vectors, v1 and v2.

Solution to Exercise 5.5 (p. 100)
Direct Method (use basic matrix multiplication)

Ax =

 3 −1

−1 3

 5

3

 =

 12

4



110 CHAPTER 5. LINEAR ALGEBRA OVERVIEW

Eigenvectors (use the eigenvectors and eigenvalues we found earlier for this same matrix)

v1 =

 1

1



v2 =

 1

−1


λ1 = 2

λ2 = 4

As shown in (5.3), we want to represent x as a sum of its scaled eigenvectors. For this case, we have:

x = 4v1 + v2

x =

 5

3

 = 4

 1

1

+

 1

−1


Ax = A (4v1 + v2) = λi (4v1 + v2)

Therefore, we have

Ax = 4× 2

 1

1

+ 4

 1

−1

 =

 12

4


Notice that this method using eigenvectors required no matrix multiplication. This may have seemed more
complicated here, but just imagine A being really big, or even just a few dimensions larger!

Chapter 6

Continuous Time Fourier Series

6.1 Periodic Signals1

Recall that a periodic function is a function that repeats itself exactly after some given period, or cycle. We
represent the de�nition of a periodic function mathematically as:

f (t) = f (t+mT)m ∈ Z , (6.1)

where T > 0 represents the period. Because of this, you may also see a signal referred to as a T-periodic
signal. Any function that satis�es this equation is periodic.

We can think of periodic functions (with period T) two di�erent ways:
#1) as functions on all of R

Figure 6.1: Function over all of R where f (t0) = f (t0 + T)

#2) or, we can cut out all of the redundancy, and think of them as functions on an interval [0, T] (or,
more generally, [a, a+ T]). If we know the signal is T-periodic then all the information of the signal is
captured by the above interval.

1This content is available online at <http://cnx.org/content/m10744/2.6/>.

111

112 CHAPTER 6. CONTINUOUS TIME FOURIER SERIES

Figure 6.2: Remove the redundancy of the period function so that f (t) is unde�ned outside [0, T].

An aperiodic CT function f (t) does not repeat for any T ∈ R; i.e. there exists no T s.t. this equation
(6.1) holds.

Question: DT de�nitions?

6.1.1 Continuous-Time

6.1.2 Discrete-Time

Note: Circular vs. Line

This is an unsupported media type. To view, please see
http://cnx.org/content/m10744/latest/PhaseShift.llb

6.2 Fourier Series: Eigenfunction Approach2

6.2.1 Introduction

Since complex exponentials (Section 1.6) are eigenfunctions of linear time-invariant (LTI) systems (Sec-
tion 5.5), calculating the output of an LTI system H given est as an input amounts to simple multiplcation,
where H (s) ∈ C is a constant (that depends on s). In the �gure (Figure 6.3) below we have a simple
exponential input that yields the following output:

y (t) = H (s) est (6.2)

Figure 6.3: Simple LTI system.

2This content is available online at <http://cnx.org/content/m10496/2.21/>.

113

Using this and the fact that H is linear, calculating y (t) for combinations of complex exponentials is also
straightforward. This linearity property is depicted in the two equations below - showing the input to the
linear system H on the left side and the output, y (t), on the right:

1.
c1e

s1t + c2e
s2t → c1H (s1) es1t + c2H (s2) es2t

2. ∑
n

(
cne

snt
)
→
∑
n

(
cnH (sn) esnt

)
The action of H on an input such as those in the two equations above is easy to explain: H independently

scales each exponential component esnt by a di�erent complex number H (sn) ∈ C. As such, if we can write
a function f (t) as a combination of complex exponentials it allows us to:

• easily calculate the output of H given f (t) as an input (provided we know the eigenvalues H (s))
• interpret how H manipulates f (t)

6.2.2 Fourier Series

Joseph Fourier3 demonstrated that an arbitrary T-periodic function (Section 6.1) f (t) can be written as a
linear combination of harmonic complex sinusoids

f (t) =
∞∑

n=−∞

(
cne

jω0nt
)

(6.3)

where ω0 = 2π
T is the fundamental frequency. For almost all f (t) of practical interest, there exists cn to make

(6.3) true. If f (t) is �nite energy (f (t) ∈ L2 [0, T]), then the equality in (6.3) holds in the sense of energy
convergence; if f (t) is continuous, then (6.3) holds pointwise. Also, if f (t) meets some mild conditions (the
Dirichlet conditions), then (6.3) holds pointwise everywhere except at points of discontinuity.

The cn - called the Fourier coe�cients - tell us "how much" of the sinusoid ejω0nt is in f (t). (6.3)
essentially breaks down f (t) into pieces, each of which is easily processed by an LTI system (since it is
an eigenfunction of every LTI system). Mathematically, (6.3) tells us that the set of harmonic complex
exponentials

{
ejω0nt , n ∈ Z

}
form a basis for the space of T-periodic continuous time functions. Below

are a few examples that are intended to help you think about a given signal or function, f (t), in terms of
its exponential basis functions.

6.2.2.1 Examples

For each of the given functions below, break it down into its "simpler" parts and �nd its fourier coe�cients.
Click to see the solution.

Exercise 6.1 (Solution on p. 139.)

f (t) = cos (ω0t)

Exercise 6.2 (Solution on p. 139.)

f (t) = sin (2ω0t)

Exercise 6.3 (Solution on p. 139.)

f (t) = 3 + 4cos (ω0t) + 2cos (2ω0t)

3http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Fourier.html

114 CHAPTER 6. CONTINUOUS TIME FOURIER SERIES

6.2.3 Fourier Coe�cients

In general f (t), the Fourier coe�cients can be calculated from (6.3) by solving for cn, which requires a little
algebraic manipulation (for the complete derivation see the Fourier coe�cients derivation (Section 6.3)). The
end results will yield the following general equation for the fourier coe�cients:

cn =
1
T

∫ T

0

f (t) e−(jω0nt)dt (6.4)

The sequence of complex numbers {cn , n ∈ Z } is just an alternate representation of the function f (t).
Knowing the Fourier coe�cients cn is the same as knowing f (t) explicitly and vice versa. Given a periodic
function, we can transform it into it Fourier series representation using (6.4). Likewise, we can inverse
transform a given sequence of complex numbers, cn, using (6.3) to reconstruct the function f (t).

Along with being a natural representation for signals being manipulated by LTI systems, the Fourier
series provides a description of periodic signals that is convenient in many ways. By looking at the Fourier
series of a signal f (t), we can infer mathematical properties of f (t) such as smoothness, existence of certain
symmetries, as well as the physically meaningful frequency content.

6.2.3.1 Example: Using Fourier Coe�cient Equation

Here we will look at a rather simple example that almost requires the use of (6.4) to solve for the fourier
coe�cients. Once you understand the formula, the solution becomes a straightforward calculus problem.
Find the fourier coe�cients for the following equation:

Exercise 6.4 (Solution on p. 139.)

f (t) =

 1 if |t| ≤ T
0 otherwise

6.2.4 Summary: Fourier Series Equations

Our �rst equation (6.3) is the synthesis equation, which builds our function, f (t), by combining sinusoids.

Synthesis

f (t) =
∞∑

n=−∞

(
cne

jω0nt
)

(6.5)

And our second equation (6.4), termed the analysis equation, reveals how much of each sinusoid is in f (t).

Analysis

cn =
1
T

∫ T

0

f (t) e−(jω0nt)dt (6.6)

where we have stated that ω0 = 2π
T .

note: Understand that our interval of integration does not have to be [0, T] in our Analysis
Equation. We could use any interval [a, a+ T] of length T .

Example 6.1
This demonstration lets you synthesize a signal by combining sinusoids, similar to the synthesis
equation for the Fourier series. See here4 for instructions on how to use the demo.

4"How to use the LabVIEW demos" <http://cnx.org/content/m11550/latest/>

115

This is an unsupported media type. To view, please see
http://cnx.org/content/m10496/latest/FourierCompManip.llb

6.3 Derivation of Fourier Coe�cients Equation5

6.3.1 Introduction

You should already be familiar with the existence of the general Fourier Series equation (Section 6.2.2:
Fourier Series), which is written as:

f (t) =
∞∑

n=−∞

(
cne

jω0nt
)

(6.7)

What we are interested in here is how to determine the Fourier coe�cients, cn, given a function f (t). Below
we will walk through the steps of deriving the general equation for the Fourier coe�cients of a given function.

6.3.2 Derivation

To solve (6.7) for cn, we have to do a little algebraic manipulation. First of all we will multiply both sides
of (6.7) by e−(jω0kt), where k ∈ Z.

f (t) e−(jω0kt) =
∞∑

n=−∞

(
cne

jω0nte−(jω0kt)
)

(6.8)

Now integrate both sides over a given period, T :∫ T

0

f (t) e−(jω0kt)dt =
∫ T

0

∞∑
n=−∞

(
cne

jω0nte−(jω0kt)
)
dt (6.9)

On the right-hand side we can switch the summation and integral along with pulling out the constant out
of the integral. ∫ T

0

f (t) e−(jω0kt)dt =
∞∑

n=−∞

(
cn

∫ T

0

ejω0(n−k)tdt

)
(6.10)

Now that we have made this seemingly more complicated, let us focus on just the integral,
∫ T

0
ejω0(n−k)tdt,

on the right-hand side of the above equation. For this integral we will need to consider two cases: n = k and
n 6= k. For n = k we will have: ∫ T

0

ejω0(n−k)tdt = T , n = k (6.11)

For n 6= k, we will have:∫ T

0

ejω0(n−k)tdt =
∫ T

0

cos (ω0 (n− k) t) dt+ j

∫ T

0

sin (ω0 (n− k) t) dt , n 6= k (6.12)

5This content is available online at <http://cnx.org/content/m10733/2.6/>.

116 CHAPTER 6. CONTINUOUS TIME FOURIER SERIES

But cos (ω0 (n− k) t) has an integer number of periods, n − k, between 0 and T . Imagine a graph of the
cosine; because it has an integer number of periods, there are equal areas above and below the x-axis of the
graph. This statement holds true for sin (ω0 (n− k) t) as well. What this means is∫ T

0

cos (ω0 (n− k) t) dt = 0 (6.13)

as well as the integral involving the sine function. Therefore, we conclude the following about our integral
of interest: ∫ T

0

ejω0(n−k)tdt =

 T if n = k

0 otherwise
(6.14)

Now let us return our attention to our complicated equation, (6.10), to see if we can �nish �nding an
equation for our Fourier coe�cients. Using the facts that we have just proven above, we can see that the
only time (6.10) will have a nonzero result is when k and n are equal:∫ T

0

f (t) e−(jω0nt)dt = Tcn , n = k (6.15)

Finally, we have our general equation for the Fourier coe�cients:

cn =
1
T

∫ T

0

f (t) e−(jω0nt)dt (6.16)

6.3.2.1 Finding Fourier Coe�cients Steps

To �nd the Fourier coe�cients of periodic f (t):

1. For a given k, multiply f (t) by e−(jω0kt), and take the area under the curve (dividing by T).
2. Repeat step (1) for all k ∈ Z.

6.4 Fourier Series in a Nutshell6

6.4.1 Introduction

The convolution integral (Section 3.2) is the fundamental expression relating the input and output of an LTI
system. However, it has three shortcomings:

1. It can be tedious to calculate.
2. It o�ers only limited physical interpretation of what the system is actually doing.
3. It gives little insight on how to design systems to accomplish certain tasks.

The Fourier Series (Section 6.2), along with the Fourier Transform and Laplace Transofrm, provides a way
to address these three points. Central to all of these methods is the concept of an eigenfunction (Section 5.5)
(or eigenvector (Section 5.3)). We will look at how we can rewrite any given signal, f (t), in terms of complex
exponentials (Section 1.6).

In fact, by making our notions of signals and linear systems more mathematically abstract, we will be
able to draw enlightening parallels between signals and systems and linear algebra (Section 5.1).

6This content is available online at <http://cnx.org/content/m10751/2.3/>.

117

6.4.2 Eigenfunctions and LTI Systems

The action of a LTI system H [. . .] on one of its eigenfunctions est is

1. extremely easy (and fast) to calculate
H [st] = H [s] est (6.17)

2. easy to interpret: H [. . .] just scales est, keeping its frequency constant.

If only every function were an eigenfunction of H [. . .] ...

6.4.2.1 LTI System

... of course, not every function can be, but for LTI systems, their eigenfunctions span (Section 5.1.2: Span)
the space of periodic functions (Section 6.1), meaning that for (almost) any periodic function f (t) we can
�nd {cn} where n ∈ Z and ci ∈ C such that:

f (t) =
∞∑

n=−∞

(
cne

jω0nt
)

(6.18)

Given (6.18), we can rewrite H [t] = y (t) as the following system

Figure 6.4: Transfer Functions modeled as LTI System.

where we have:
f (t) =

∑
n

(
cne

jω0nt
)

y (t) =
∑
n

(
cnH (jω0n) ejω0nt

)
This transformation from f (t) to y (t) can also be illustrated through the process below. Note that each
arrow indicates an operation on our signal or coe�cients.

f (t)→ {cn} → {cnH (jω0n)} → y (t) (6.19)

where the three steps (arrows) in the above illustration represent the following three operations:

1. Transform with analysis (Fourier Coe�cient (Section 6.3) equation):

cn =
1
T

∫ T

0

f (t) e−(jω0nt)dt

2. Action of H on the Fourier series (Section 6.2) - equals a multiplication by H (jω0n)
3. Translate back to old basis - inverse transform using our synthesis equation from the Fourier series:

y (t) =
∞∑

n=−∞

(
cne

jω0nt
)

118 CHAPTER 6. CONTINUOUS TIME FOURIER SERIES

6.4.3 Physical Interpretation of Fourier Series

The Fourier series {cn} of a signal f (t), de�ned in (6.18), also has a very important physical interpretation.
Coe�cient cn tells us "how much" of frequency ω0n is in the signal.

Signals that vary slowly over time - smooth signals - have large cn for small n.

(a) (b)

Figure 6.5: We begin with our smooth signal f (t) on the left, and then use the Fourier series to �nd
our Fourier coe�cients - shown in the �gure on the right.

Signals that vary quickly with time - edgy or noisy signals - will have large cn for large n.

(a) (b)

Figure 6.6: We begin with our noisy signal f (t) on the left, and then use the Fourier series to �nd
our Fourier coe�cients - shown in the �gure on the right.

Example 6.2: Periodic Pulse
We have the following pulse function, f (t), over the interval

[
−
(
T
2

)
, T2
]
:

Figure 6.7: Periodic Signal f (t)

119

Using our formula for the Fourier coe�cients,

cn =
1
T

∫ T

0

f (t) e−(jω0nt)dt (6.20)

we can easily calculate our cn. We will leave the calculation as an exercise for you! After solving
the the equation for our f (t), you will get the following results:

cn =

 2T1
T if n = 0

2sin(ω0nT1)
nπ if n 6= 0

(6.21)

For T1 = T
8 , see the �gure below for our results:

Figure 6.8: Our Fourier coe�cients when T1 = T
8

Our signal f (t) is �at except for two edges (discontinuities). Because of this, cn around n = 0
are large and cn gets smaller as n approaches in�nity.

question: Why does cn = 0 for n = {. . . ,−4, 4, 8, 16, . . . }? (What part of e−(jω0nt) lies over the
pulse for these values of n?)

6.5 Fourier Series Properties7

We will begin by refreshing your memory of our basic Fourier series (Section 6.2) equations:

f (t) =
∞∑

n=−∞

(
cne

jω0nt
)

(6.22)

cn =
1
T

∫ T

0

f (t) e−(jω0nt)dt (6.23)

Let F {·} denote the transformation from f (t) to the Fourier coe�cients

F {f (t)} = cn , n ∈ Z

F {·} maps complex valued functions to sequences of complex numbers8.

7This content is available online at <http://cnx.org/content/m10740/2.7/>.
8"Complex Numbers" <http://cnx.org/content/m0081/latest/>

120 CHAPTER 6. CONTINUOUS TIME FOURIER SERIES

6.5.1 Linearity

F {·} is a linear transformation.
Theorem 6.1:
If F {f (t)} = cn and F {g (t)} = dn. Then

F {αf (t)} = αcn , α ∈ C

and
F {f (t) + g (t)} = cn + dn

Proof: Easy. Just linearity of integral.

F {f (t) + g (t)} =
∫ T

0
(f (t) + g (t)) e−(jω0nt)dt , n ∈ Z

= 1
T

∫ T
0
f (t) e−(jω0nt)dt+ 1

T

∫ T
0
g (t) e−(jω0nt)dt , n ∈ Z

= cn + dn , n ∈ Z

= cn + dn

(6.24)

6.5.2 Shifting

Shifting in time equals a phase shift of Fourier coe�cients (Section 6.3)
Theorem 6.2:
F {f (t− t0)} = e−(jω0nt0)cn if cn = |cn|ej∠cn , then

|e−(jω0nt0)cn| = |e−(jω0nt0)||cn| = |cn|

∠e−(jω0t0n) = ∠cn − ω0t0n

Proof:

F {f (t− t0)} = 1
T

∫ T
0
f (t− t0) e−(jω0nt)dt , n ∈ Z

= 1
T

∫ T−t0
−t0 f (t− t0) e−(jω0n(t−t0))e−(jω0nt0)dt , n ∈ Z

= 1
T

∫ T−t0
−t0 f

(∼
t
)
e
−
“
jω0n

∼
t
”
e−(jω0nt0)dt , n ∈ Z

= e
−
“
jω0n

∼
t
”
cn , n ∈ Z

(6.25)

6.5.3 Parseval's Relation

∫ T

0

(|f (t) |)2
dt = T

∞∑
n=−∞

(
(|cn|)2

)
(6.26)

Parseval's relation allows us to calculate the energy of a signal from its Fourier series.

note: Parseval tells us that the Fourier series maps L2 ([0, T]) to l2 (Z).

121

Figure 6.9

Exercise 6.5 (Solution on p. 140.)

For f (t) to have "�nite energy," what do the cn do as n→∞?

Exercise 6.6 (Solution on p. 140.)

If cn = 1
n , |n| > 0 , is f ∈ L2 ([0, T])?

Exercise 6.7 (Solution on p. 140.)

Now, if cn = 1√
n
, |n| > 0 , is f ∈ L2 ([0, T])?

The rate of decay of the Fourier series determines if f (t) has �nite energy.

6.5.4 Di�erentiation in Fourier Domain

F {f (t)} = cn ⇒ F
{
d

dt
f (t)

}
= jnω0cn (6.27)

Since

f (t) =
∞∑

n=−∞

(
cne

jω0nt
)

(6.28)

then
d
dtf (t) =

∑∞
n=−∞

(
cn

d
dt

(
ejω0nt

))
=

∑∞
n=−∞

(
cnjω0ne

jω0nt
) (6.29)

A di�erentiator attenuates the low frequencies in f (t) and accentuates the high frequencies. It removes
general trends and accentuates areas of sharp variation.

note: A common way to mathematically measure the smoothness of a function f (t) is to see how
many derivatives are �nite energy.

This is done by looking at the Fourier coe�cients of the signal, speci�cally how fast they decay as n→∞.
If F {f (t)} = cn and |cn| has the form 1

nk
, then F

{
dm

dtm f (t)
}

= (jnω0)mcn and has the form nm

nk
. So for

the mth derivative to have �nite energy, we need

∑((
|n
m

nk
|
)2
)
<∞

122 CHAPTER 6. CONTINUOUS TIME FOURIER SERIES

thus nm

nk
decays faster than 1

n which implies that

2k − 2m > 1

or

k >
2m+ 1

2
Thus the decay rate of the Fourier series dictates smoothness.

6.5.5 Integration in the Fourier Domain

If
F {f (t)} = cn (6.30)

then

F
{∫ t

−∞
f (τ) dτ

}
=

1
jω0n

cn (6.31)

note: If c0 6= 0, this expression doesn't make sense.

Integration accentuates low frequencies and attenuates high frequencies. Integrators bring out the general
trends in signals and suppress short term variation (which is noise in many cases). Integrators are much
nicer than di�erentiators.

6.5.6 Signal Multiplication

Given a signal f (t) with Fourier coe�cients cn and a signal g (t) with Fourier coe�cients dn, we can de�ne
a new signal, y (t), where y (t) = f (t) g (t). We �nd that the Fourier Series representation of y (t), en, is
such that en =

∑∞
k=−∞ (ckdn−k). This is to say that signal multiplication in the time domain is equivalent

to discrete-time convolution (Section 4.2) in the frequency domain. The proof of this is as follows

en = 1
T

∫ T
0
f (t) g (t) e−(jω0nt)dt

= 1
T

∫ T
0

(∑∞
k=−∞

(
cke

jω0kt
))
g (t) e−(jω0nt)dt

=
∑∞
k=−∞

(
ck

(
1
T

∫ T
0
g (t) e−(jω0(n−k)t)dt

))
=

∑∞
k=−∞ (ckdn−k)

(6.32)

6.6 Symmetry Properties of the Fourier Series9

6.6.1 Symmetry Properties

6.6.1.1 Real Signals

Real signals have a conjugate symmetric Fourier series.

Theorem 6.3:
If f (t) is real it implies that f (t) = f (t)∗ (f (t)∗ is the complex conjugate of f (t)), then cn = c−n

∗

which implies that Re (cn) = Re (c−n), i.e. the real part of cn is even, and Im (cn) = − (Im (c−n)),
i.e. the imaginary part of cn is odd. See Figure 6.10. It also implies that |cn| = |c−n|, i.e. that
magnitude is even, and that ∠cn = (∠− c−n), i.e. the phase is odd.

9This content is available online at <http://cnx.org/content/m10838/2.4/>.

123

Proof:

c−n = 1
T

∫ T
0
f (t) ejω0ntdt

= 1
T

∫ T
0
f (t)∗e−(jω0nt)dt

∗
, f (t) = f (t)∗

= 1
T

∫ T
0
f (t) e−(jω0nt)dt

∗

= cn
∗

(6.33)

(a)

(b)

Figure 6.10: Re (cn) = Re (c−n), and Im (cn) = − (Im (c−n)).

124 CHAPTER 6. CONTINUOUS TIME FOURIER SERIES

(a)

(b)

Figure 6.11: |cn| = |c−n|, and ∠cn = (∠− c−n).

6.6.1.2 Real and Even Signals

Real and even signals have real and even Fourier series.

Theorem 6.4:
If f (t) = f (t)∗ and f (t) = (f (−t)), i.e. the signal is real and even, then cn = c−n and cn = cn

∗.
Proof:

cn = 1
T

∫ T
2

−(T2) f (t) e−(jω0nt)dt

= 1
T

∫ 0

−(T2) f (t) e−(jω0nt)dt+ 1
T

∫ T
2

0
f (t) e−(jω0nt)dt

= 1
T

∫ T
2

0
f (−t) ejω0ntdt+ 1

T

∫ T
2

0
f (t) e−(jω0nt)dt

= 2
T

∫ T
2

0
f (t) cos (ω0nt) dt

(6.34)

f (t) and cos (ω0nt) are both real which implies that cn is real. Also cos (ω0nt) = cos (− (ω0nt)) so
cn = c−n. It is also easy to show that f (t) = 2

∑∞
n=0 (cncos (ω0nt)) since f (t), cn, and cos (ω0nt)

125

are all real and even.

6.6.1.3 Real and Odd Signals

Real and odd signals have Fourier Series that are odd and purely imaginary.

Theorem 6.5:
If f (t) = − (f (−t)) and f (t) = f (t)∗, i.e. the signal is real and odd, then cn = −c−n and
cn = − (cn∗), i.e. cn is odd and purely imaginary.
Proof: Do it at home.

If f (t) is odd, then we can expand it in terms of sin (ω0nt):

f (t) =
∞∑
n=1

(2cnsin (ω0nt))

6.6.2 Summary

In summary, we can �nd fe (t), an even function, and fo (t), an odd function, such that

f (t) = fe (t) + fo (t) (6.35)

which implies that, for any f (t), we can �nd {an} and {bn} such that

f (t) =
∞∑
n=0

(ancos (ω0nt)) +
∞∑
n=1

(bnsin (ω0nt)) (6.36)

Example 6.3: Triangle Wave

Figure 6.12: T = 1 and ω0 = 2π.

126 CHAPTER 6. CONTINUOUS TIME FOURIER SERIES

f (t) is real and odd.

cn =


4A

jπ2n2 if n = {. . . ,−11,−7,−3, 1, 5, 9, . . . }
−
(

4A
jπ2n2

)
if n = {. . . ,−9,−5,−1, 3, 7, 11, . . . }

0 if n = {. . . ,−4,−2, 0, 2, 4, . . . }

Does cn = −c−n?

Figure 6.13: The Fourier series of a triangle wave.

Note: We can often gather information about the smoothness of a signal by examining its Fourier
coe�cients.

Take a look at the above examples. The pulse and sawtooth waves are not continuous and there Fourier
series' fall o� like 1

n . The triangle wave is continuous, but not di�erentiable and its Fourier series falls o�
like 1

n2 .
The next 3 properties will give a better feel for this.

6.7 Circular Convolution Property of Fourier Series10

6.7.1 Signal Circular Convolution

Given a signal f (t) with Fourier coe�cients cn and a signal g (t) with Fourier coe�cients dn, we can de�ne
a new signal, v (t), where v (t) = (f (t) ~ g (t)) We �nd that the Fourier Series (Section 6.2) representation
of y (t), an, is such that an = cndn. (f (t) ~ g (t)) is the circular convolution (Section 4.3) of two periodic

signals and is equivalent to the convolution over one interval, i.e. (f (t) ~ g (t)) =
∫ T

0

∫ T
0
f (τ) g (t− τ) dτdt.

note: Circular convolution in the time domain is equivalent to multiplication of the Fourier
coe�cients.

10This content is available online at <http://cnx.org/content/m10839/2.4/>.

127

This is proved as follows

an = 1
T

∫ T
0
v (t) e−(jω0nt)dt

= 1
T 2

∫ T
0

∫ T
0
f (τ) g (t− τ) dτe−(jω0nt)dt

= 1
T

∫ T
0
f (τ)

(
1
T

∫ T
0
g (t− τ) e−(jω0nt)dt

)
dτ

= 1
T

∫ T
0
f (τ)

(
1
T

∫ T−τ
−τ g (ν) e−(jω0(ν+τ))dν

)
dτ , ν = t− τ

= 1
T

∫ T
0
f (τ)

(
1
T

∫ T−τ
−τ g (ν) e−(jω0nν)dν

)
e−(jω0nτ)dτ

= 1
T

∫ T
0
f (τ) dne−(jω0nτ)dτ

= dn

(
1
T

∫ T
0
f (τ) e−(jω0nτ)dτ

)
= cndn

(6.37)

Example 6.4
Take a look at a square pulse with a period, T1 = T

4 :

Figure 6.14

For this signal

cn =


1
T if n = 0

1
2

sin(π2 n)
π
2 n

otherwise

Exercise 6.8 (Solution on p. 140.)

What signal has Fourier coe�cients an = cn
2 = 1

4

sin2(π2 n)
(π2 n)2 ?

6.8 Fourier Series and LTI Systems11

6.8.1 Introducing the Fourier Series to LTI Systems

Before looking at this module, one should be familiar with the concepts of eigenfunction and LTI systems
(Section 5.5). Recall, for H LTI system we get the following relationship

11This content is available online at <http://cnx.org/content/m10752/2.7/>.

128 CHAPTER 6. CONTINUOUS TIME FOURIER SERIES

Figure 6.15: Input and output signals to our LTI system.

where est is an eigenfunction of H. Its corresponding eigenvalue (Section 5.2) H (s) can be calculated
using the impulse response (Section 1.5) h (t)

H (s) =
∫ ∞
−∞

h (τ) e−(sτ)dτ

So, using the Fourier Series (Section 6.2) expansion for periodic (Section 6.1) f (t) where we input

f (t) =
∑
n

(
cne

jω0nt
)

into the system,

Figure 6.16: LTI system

our output y (t) will be
y (t) =

∑
n

(
H (jω0n) cnejω0nt

)
So we can see that by applying the fourier series expansion equations, we can go from f (t) to cn and vice
versa, and we do the same for our output, y (t)

6.8.2 E�ects of Fourier Series

We can think of an LTI system as shaping the frequency content of the input. Keep in mind the basic
LTI system we presented above in Figure 6.16. The LTI system, H, simply multiplies all of our Fourier
coe�cients and scales them.

Given the Fourier coe�cients {cn} of the input and the eigenvalues of the system {H (jw0n)}, the Fourier
series of the output is {H (jw0n) cn} (simple term-by-term multiplication).

note: The eigenvalues H (jw0n) completely describe what a LTI system does to periodic signals
with period T = 2πw0

129

Example 6.5
What does this system do?

Figure 6.17

Example 6.6
What about this system?

(a) (b)

Figure 6.18

6.8.3 Examples

Example 6.7: RC Circuit

h (t) =
1
RC

e
−t
RC u (t)

What does this system do to the Fourier Series of an input f (t)?
Calculate the eigenvalues of this system

H (s) =
∫∞
−∞ h (τ) e−(sτ)dτ

=
∫∞

0
1
RC e

−τ
RC e−(sτ)dτ

= 1
RC

∫∞
0
e(−τ)(1

RC+s)dτ

= 1
RC

1
1
RC+s

e(−τ)(1
RC+s)|∞τ=0

= 1
1+RCs

(6.38)

Now, say we feed the RC circuit a periodic (period T = 2πw0) input f (t).

130 CHAPTER 6. CONTINUOUS TIME FOURIER SERIES

Look at the eigenvalues for s = jw0n

|H (jw0n) | = 1
|1 +RCjw0n|

=
1√

1 +R2C2w0
2n2

The RC circuit is a lowpass system: it passes low frequencies (n around 0) and attenuates high
frequencies (large n).

Example 6.8: Square pulse wave through RC circuit

• Input Signal: Taking the fourier series of f (t)

cn =
1
2
sin
(
π
2n
)

π
2n

1
t at n = 0

• System: eigenvalues

H (jw0n) =
1

1 + jRCw0n

• Output Signal: Taking the fourier series of y (t)

dn = H (jw0n) cn =
1

1 + jRCw0n

1
2
sin
(
π
2n
)

π
2n

dn =
1

1 + jRCw0n

1
2
sin
(
π
2n
)

π
2n

y (t) =
∑(

dne
jw0nt

)
What can we infer about y (t) from {dn}?

1. Is y (t) real?
2. Is y (t) even symmetric? odd symmetric?
3. Qualitatively, what does y (t) look like? Is it "smoother" than f (t)? (decay rate of dn vs. cn)

dn =
1

1 + jRCw0n

1
2
sin
(
π
2n
)

π
2n

|dn| =
1√

1 + (RCw0)2
n2

1
2
sin
(
π
2n
)

π
2n

6.9 Convergence of Fourier Series12

6.9.1 Introduction

Before looking at this module, hopefully you have become fully convinced of the fact that any periodic
function, f (t), can be represented as a sum of complex sinusoids (Section 1.4). If you are not, then try
looking back at eigen-stu� in a nutshell (Section 5.4) or eigenfunctions of LTI systems (Section 5.5). We

12This content is available online at <http://cnx.org/content/m10745/2.3/>.

131

have shown that we can represent a signal as the sum of exponentials through the Fourier Series (Section 6.2)
equations below:

f (t) =
∑
n

(
cne

jω0nt
)

(6.39)

cn =
1
T

∫ T

0

f (t) e−(jω0nt)dt (6.40)

Joseph Fourier13 insisted that these equations were true, but could not prove it. Lagrange publicly ridiculed
Fourier, and said that only continuous functions can be represented by (6.39) (indeed he proved that (6.39)
holds for continuous-time functions). However, we know now that the real truth lies in between Fourier and
Lagrange's positions.

6.9.2 Understanding the Truth

Formulating our question mathematically, let

fN
′ (t) =

N∑
n=−N

(
cne

jω0nt
)

where cn equals the Fourier coe�cients of f (t) (see (6.40)).
fN
′ (t) is a "partial reconstruction" of f (t) using the �rst 2N+1 Fourier coe�cients. fN ′ (t) approximates

f (t), with the approximation getting better and better as N gets large. Therefore, we can think of the set{
fN
′ (t) , N = {0, 1, . . . }

}
as a sequence of functions, each one approximating f (t) better than the

one before.
The question is, does this sequence converge to f (t)? Does fN

′ (t) → f (t) as N → ∞? We will try to
answer this question by thinking about convergence in two di�erent ways:

1. Looking at the energy of the error signal:

eN (t) = f (t)− fN ′ (t)

2. Looking at lim
N→∞

fN
′ (t) at each point and comparing to f (t).

6.9.2.1 Approach #1

Let eN (t) be the di�erence (i.e. error) between the signal f (t) and its partial reconstruction fN
′ (t)

eN (t) = f (t)− fN ′ (t) (6.41)

If f (t) ∈ L2 ([0, T]) (�nite energy), then the energy of eN (t)→ 0 as N →∞ is∫ T

0

(|eN (t) |)2
dt =

∫ T

0

(
f (t)− fN ′ (t)

)2
dt→ 0 (6.42)

We can prove this equation using Parseval's relation:

lim
N→∞

∫ T

0

(
|f (t)− fN ′ (t) |

)2
dt = lim

N→∞

∞∑
N=−∞

((
|Fnf (t)−FnfN ′ (t) |

)2) = lim
N→∞

∑
|n|>N

(
(|cn|)2

)
= 0

where the last equation before zero is the tail sum of the Fourier Series, which approaches zero because f (t) ∈
L2 ([0, T]). Since physical systems respond to energy, the Fourier Series provides an adequate representation
for all f (t) ∈ L2 ([0, T]) equaling �nite energy over one period.

13http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Fourier.html

132 CHAPTER 6. CONTINUOUS TIME FOURIER SERIES

6.9.2.2 Approach #2

The fact that eN → 0 says nothing about f (t) and lim
N→∞

fN
′ (t) being equal at a given point. Take the two

functions graphed below for example:

(a) (b)

Figure 6.19

Given these two functions, f (t) and g (t), then we can see that for all t, f (t) 6= g (t), but∫ T

0

(|f (t)− g (t) |)2
dt = 0

From this we can see the following relationships:

energyconvergence 6= pointwiseconvergence

pointwiseconvergence⇒ convergenceinL2 ([0, T])

However, the reverse of the above statement does not hold true.
It turns out that if f (t) has a discontinuity (as can be seen in �gure of g (t) above) at t0, then

f (t0) 6= lim
N→∞

fN
′ (t0)

But as long as f (t) meets some other fairly mild conditions, then

f (t′) = lim
N→∞

fN
′ (t′)

if f (t) is continuous at t = t′.

6.10 Dirichlet Conditions14

Named after the German mathematician, Peter Dirichlet, the Dirichlet conditions are the su�cient condi-
tions to guarantee existence and convergence of the Fourier series (Section 6.2) or the Fourier transform15.

14This content is available online at <http://cnx.org/content/m10089/2.9/>.
15"Derivation of the Fourier Transform" <http://cnx.org/content/m0046/latest/>

133

6.10.1 The Weak Dirichlet Condition for the Fourier Series

Condition 6.1: The Weak Dirichlet Condition
For the Fourier Series to exist, the Fourier coe�cients must be �nite. The Weak Dirichlet
Condition guarantees this existence. It essentially says that the integral of the absolute value of
the signal must be �nite. The limits of integration are di�erent for the Fourier Series case than for
the Fourier Transform case. This is a direct result of the di�ering de�nitions of the two.
Proof: The Fourier Series exists (the coe�cients are �nite) if

Weak Dirichlet Condition for the Fourier Series∫ T

0

|f (t) |dt <∞ (6.43)

This can be shown from the initial condition that the Fourier Series coe�cients be �nite.

|cn| = |
1
T

∫ T

0

f (t) e−(jω0nt)dt| ≤ 1
T

∫ T

0

|f (t) ||e−(jω0nt)|dt (6.44)

Remembering our complex exponentials (Section 1.6), we know that in the above equation
|e−(jω0nt)| = 1, which gives us

1
T

∫ T

0

|f (t) |dt =
1
T

∫ T

0

|f (t) |dt (6.45)

<∞ (6.46)

note: If we have the function:

f (t) =
1
t
, 0 < t ≤ T

then you should note that this functions fails the above condition.

6.10.1.1 The Weak Dirichlet Condition for the Fourier Transform

Condition 6.2:
The Fourier Transform exists if

Weak Dirichlet Condition for the Fourier Transform∫ ∞
−∞
|f (t) |dt <∞ (6.47)

This can be derived the same way the weak Dirichlet for the Fourier Series was derived, by beginning
with the de�nition and showing that the Fourier Transform must be less than in�nity everywhere.

6.10.2 The Strong Dirichlet Conditions

The Fourier Transform exists if the signal has a �nite number of discontinuities and a �nite number of
maxima and minima. For the Fourier Series to exist, the following two conditions must be satis�ed (along
with the Weak Dirichlet Condition):

1. In one period, f (t) has only a �nite number of minima and maxima.
2. In one period, f (t) has only a �nite number of discontinuities and each one is �nite.

These are what we refer to as the Strong Dirichlet Conditions. In theory we can think of signals that
violate these conditions, sin (logt) for instance. However, it is not possible to create a signal that violates
these conditions in a lab. Therefore, any real-world signal will have a Fourier representation.

134 CHAPTER 6. CONTINUOUS TIME FOURIER SERIES

6.10.2.1 Example

Let us assume we have the following function and equality:

f ′ (t) = lim
N→∞

fN
′ (t) (6.48)

If f (t) meets all three conditions of the Strong Dirichlet Conditions, then

f (τ) = f ′ (τ)

at every τ at which f (t) is continuous. And where f (t) is discontinuous, f ′ (t) is the average of the values
on the right and left. See Figure 6.20 as an example:

(a) (b)

Figure 6.20: Discontinuous functions, f (t).

note: The functions that fail the Dirchlet conditions are pretty pathological - as engineers, we
are not too interested in them.

6.11 Gibbs's Phenomena16

6.11.1 Introduction

The Fourier Series (Section 6.2) is the representation of continuous-time, periodic signals in terms of complex
exponentials. The Dirichlet conditions (Section 6.10) suggest that discontinuous signals may have a Fourier
Series representation so long as there are a �nite number of discontinuities. This seems counter-intuitive,
however, as complex exponentials (Section 1.6) are continuous functions. It does not seem possible to exactly
reconstruct a discontinuous function from a set of continuous ones. In fact, it is not. However, it can be if
we relax the condition of 'exactly' and replace it with the idea of 'almost everywhere'. This is to say that the
reconstruction is exactly the same as the original signal except at a �nite number of points. These points,
not necessarily surprisingly, occur at the points of discontinuities.

6.11.1.1 History

In the late 1800s, many machines were built to calculate Fourier coe�cients and re-synthesize:

fN
′ (t) =

N∑
n=−N

(
cne

jω0nt
)

(6.49)

16This content is available online at <http://cnx.org/content/m10092/2.9/>.

135

Albert Michelson (an extraordinary experimental physicist) built a machine in 1898 that could compute
cnup to n = ±79, and he re-synthesized

f79
′ (t) =

79∑
n=−79

(
cne

jω0nt
)

(6.50)

The machine performed very well on all tests except those involving discontinuous functions. When a
square wave, like that shown in Figure 6.21 (Fourier series approximation of a square wave), was inputed into
the machine, "wiggles" around the discontinuities appeared, and even as the number of Fourier coe�cients
approached in�nity, the wiggles never disappeared - these can be seen in the last plot in Figure 6.21 (Fourier
series approximation of a square wave). J. Willard Gibbs �rst explained this phenomenon in 1899, and
therefore these discontinuous points are referred to as Gibbs Phenomenon.

6.11.2 Explanation

We begin this discussion by taking a signal with a �nite number of discontinuities (like a square pulse) and
�nding its Fourier Series representation. We then attempt to reconstruct it from these Fourier coe�cients.
What we �nd is that the more coe�cients we use, the more the signal begins to resemble the original.
However, around the discontinuities, we observe rippling that does not seem to subside. As we consider even
more coe�cients, we notice that the ripples narrow, but do not shorten. As we approach an in�nite number
of coe�cients, this rippling still does not go away. This is when we apply the idea of almost everywhere.
While these ripples remain (never dropping below 9% of the pulse height), the area inside them tends to zero,
meaning that the energy of this ripple goes to zero. This means that their width is approaching zero and
we can assert that the reconstruction is exactly the original except at the points of discontinuity. Since the
Dirichlet conditions assert that there may only be a �nite number of discontinuities, we can conclude that the
principle of almost everywhere is met. This phenomenon is a speci�c case of nonuniform convergence.

Below we will use the square wave, along with its Fourier Series representation, and show several �gures
that reveal this phenomenon more mathematically.

6.11.2.1 Square Wave

The Fourier series representation of a square signal below says that the left and right sides are "equal." In
order to understand Gibbs Phenomenon we will need to rede�ne the way we look at equality.

s (t) = a0 +
∞∑
k=1

(
akcos

(
2πkt
T

))
+
∞∑
k=1

(
bksin

(
2πkt
T

))
(6.51)

6.11.2.2 Example

Figure 6.21 (Fourier series approximation of a square wave) shows several Fourier series approximation of
the square wave17 using a varied number of terms, denoted by K:

17"Fourier Series Approximation of a Square Wave" <http://cnx.org/content/m0041/latest/>

136 CHAPTER 6. CONTINUOUS TIME FOURIER SERIES

Fourier series approximation of a square wave

Figure 6.21: Fourier series approximation to sq (t). The number of terms in the Fourier sum is indicated
in each plot, and the square wave is shown as a dashed line over two periods.

When comparing the square wave to its Fourier series representation in Figure 6.21 (Fourier series ap-
proximation of a square wave), it is not clear that the two are equal. The fact that the square wave's Fourier
series requires more terms for a given representation accuracy is not important. However, close inspection of
Figure 6.21 (Fourier series approximation of a square wave) does reveal a potential issue: Does the Fourier
series really equal the square wave at all values of t? In particular, at each step-change in the square wave,
the Fourier series exhibits a peak followed by rapid oscillations. As more terms are added to the series,
the oscillations seem to become more rapid and smaller, but the peaks are not decreasing. Consider this
mathematical question intuitively: Can a discontinuous function, like the square wave, be expressed as a
sum, even an in�nite one, of continuous ones? One should at least be suspicious, and in fact, it can't be
thus expressed. This issue brought Fourier18 much criticism from the French Academy of Science (Laplace,
Legendre, and Lagrange comprised the review committee) for several years after its presentation on 1807.
It was not resolved for also a century, and its resolution is interesting and important to understand from a

18http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Fourier.html

137

practical viewpoint.
The extraneous peaks in the square wave's Fourier series never disappear; they are termed Gibb's

phenomenon after the American physicist Josiah Willard Gibbs. They occur whenever the signal is dis-
continuous, and will always be present whenever the signal has jumps.

6.11.2.3 Rede�ne Equality

Let's return to the question of equality; how can the equal sign in the de�nition of the Fourier series be
justi�ed? The partial answer is that pointwise�each and every value of t�equality is not guaranteed. What
mathematicians later in the nineteenth century showed was that the rms error of the Fourier series was
always zero.

lim
K→∞

rms (εK) = 0 (6.52)

What this means is that the di�erence between an actual signal and its Fourier series representation may
not be zero, but the square of this quantity has zero integral! It is through the eyes of the rms value that
we de�ne equality: Two signals s1 (t), s2 (t) are said to be equal in the mean square if rms (s1 − s2) = 0.
These signals are said to be equal pointwise if s1 (t) = s2 (t) for all values of t. For Fourier series, Gibb's
phenomenon peaks have �nite height and zero width: The error di�ers from zero only at isolated points�
whenever the periodic signal contains discontinuities�and equals about 9% of the size of the discontinuity.
The value of a function at a �nite set of points does not a�ect its integral. This e�ect underlies the reason
why de�ning the value of a discontinuous function at its discontinuity is meaningless. Whatever you pick
for a value has no practical relevance for either the signal's spectrum or for how a system responds to the
signal. The Fourier series value "at" the discontinuity is the average of the values on either side of the jump.

This is an unsupported media type. To view, please see
http://cnx.org/content/m10092/latest/FFTSymbolic.llb

6.12 Fourier Series Wrap-Up19

Below we will highlight some of the most important concepts about the Fourier Series (Section 6.2) and
our understanding of it through eigenfunctions and eigenvalues. Hopefully you are familiar with all of this
material, so this document will simply serve as a refresher, but if not, then refer to the many links below for
more information on the various ideas and topics.

1. We can represent a periodic function (Section 6.1) (or a function on an interval) f (t) as a combination
of complex exponentials (Section 1.6):

f (t) =
∞∑

n=−∞

(
cne

jω0nt
)

(6.53)

cn =
1
T

∫ T

0

f (t) e−(jω0nt)dt (6.54)

Where the fourier coe�cients, cn, approximately equal how much of frequency ω0n is in the signal.
2. Since ejω0nt are eigenfunctions of LTI systems (Section 5.5), we can interpret the action of a system

on a signal in terms of its eigenvalues (Section 5.2):

H (jω0n) =
∫ ∞
−∞

h (t) e−(jω0nt)dt (6.55)

19This content is available online at <http://cnx.org/content/m10749/2.4/>.

138 CHAPTER 6. CONTINUOUS TIME FOURIER SERIES

• |H (jω0n) | is large ⇒ system accentuates frequency ω0n
• |H (jω0n) | is small ⇒ system attenuates frequency ω0n

3. In addition, the {cn} of a periodic function f (t) can tell us about:

• symmetries in f (t)
• smoothness of f (t), where smoothness can be interpreted as the decay rate of |cn|.

4. We can approximate a function by re-synthesizing using only some of the Fourier coe�cients (truncating
the F.S.)

fN
′ (t) =

∑
n≤|N |

(
cne

jω0nt
)

(6.56)

This approximation works well where f (t) is continuous, but not so well where f (t) is discontinuous.
This idea is explained by Gibb's Phenomena.

This is an unsupported media type. To view, please see
http://cnx.org/content/m10749/latest/TransferFunctions.llb

139

Solutions to Exercises in Chapter 6

Solution to Exercise 6.1 (p. 113)
The tricky part of the problem is �nding a way to represent the above function in terms of its basis, ejω0nt.
To do this, we will use our knowledge of Euler's Relation (Section 1.6.2: Euler's Relation) to represent our
cosine function in terms of the exponential.

f (t) =
1
2

(
ejω0t + e−(jω0t)

)
Now from this form of our function and from (6.3), by inspection we can see that our fourier coe�cients will
be:

cn =

 1
2 if |n| = 1

0 otherwise

Solution to Exercise 6.2 (p. 113)
As done in the previous example, we will again use Euler's Relation (Section 1.6.2: Euler's Relation) to
represent our sine function in terms of exponential functions.

f (t) =
1
2j

(
ejω0t − e−(jω0t)

)
And so our fourier coe�cients are

cn =


−j
2 if n = −1
j
2 if n = 1

0 otherwise

Solution to Exercise 6.3 (p. 113)
Once again we will use the same technique as was used in the previous two problems. The break down of
our function yields

f (t) = 3 + 4
(

1
2

)(
ejω0t + e−(jω0t)

)
+ 2

(
1
2

)(
ej2ω0t + e−(j2ω0t)

)
And from this we can �nd our fourier coe�cients to be:

cn =


3 if n = 0

2 if |n| = 1

1 if |n| = 2

0 otherwise

Solution to Exercise 6.4 (p. 114)
We will begin by plugging our above function, f (t), into (6.4). Our interval of integration will now change
to match the interval speci�ed by the function.

cn =
1
T

∫ T1

−T1

(1) e−(jω0nt)dt

Notice that we must consider two cases: n = 0 and n 6= 0. For n = 0 we can tell by inspection that we will
get

cn =
2T1

T
, n = 0

140 CHAPTER 6. CONTINUOUS TIME FOURIER SERIES

For n 6= 0, we will need to take a few more steps to solve. We can begin by looking at the basic integral of
the exponential we have. Remembering our calculus, we are ready to integrate:

cn =
1
T

(
1

jω0n

)
e−(jω0nt)|T1

t=−T1

Let us now evaluate the exponential functions for the given limits and expand our equation to:

cn =
1
T

(
1

− (jω0n)

)(
e−(jω0nT1) − ejω0nT1

)
Now if we multiple the right side of our equation by 2j

2j and distribute our negative sign into the parenthesis,

we can utilize Euler's Relation (Section 1.6.2: Euler's Relation) to greatly simplify our expression into:

cn =
1
T

(
2j
jω0n

)
sin (ω0nT1)

Now, recall earlier that we de�ned ω0 = 2π
T . We can solve this equation for T and substitute in.

cn =
2jω0

jω0n2π
sin (ω0nT1)

And �nally, if we make a few simple cancellations we will arrive at our �nal answer for the Fourier coe�cients
of f (t):

cn =
sin (ω0nT1)

nπ
, n 6= 0

Solution to Exercise 6.5 (p. 121)

(|cn|)2
<∞ for f (t) to have �nite energy.

Solution to Exercise 6.6 (p. 121)

Yes, because (|cn|)2 = 1
n2 , which is summable.

Solution to Exercise 6.7 (p. 121)

No, because (|cn|)2 = 1
n , which is not summable.

Solution to Exercise 6.8 (p. 127)

Figure 6.22: A triangle pulse train with a period of T
4
.

Chapter 7

Discrete Fourier Transform

7.1 Fourier Analysis1

Fourier analysis is fundamental to understanding the behavior of signals and systems. This is a result of
the fact that sinusoids are Eigenfunctions (Section 5.5) of linear, time-invariant (LTI) (Section 2.1) systems.
This is to say that if we pass any particular sinusoid through a LTI system, we get a scaled version of
that same sinusoid on the output. Then, since Fourier analysis allows us to rede�ne the signals in terms
of sinusoids, all we need to do is determine how any given system e�ects all possible sinusoids (its transfer
function2) and we have a complete understanding of the system. Furthermore, since we are able to de�ne
the passage of sinusoids through a system as multiplication of that sinusoid by the transfer function at the
same frequency, we can convert the passage of any signal through a system from convolution (Section 3.3)
(in time) to multiplication (in frequency). These ideas are what give Fourier analysis its power.

Now, after hopefully having sold you on the value of this method of analysis, we must examine exactly
what we mean by Fourier analysis. The four Fourier transforms that comprise this analysis are the Fourier
Series3, Continuous-Time Fourier Transform (Section 11.1), Discrete-Time Fourier Transform (Section 10.4)
and Discrete Fourier Transform4. For this document, we will view the Laplace Transform (Section 13.1)
and Z-Transform (Section 14.2) as simply extensions of the CTFT and DTFT respectively. All of these
transforms act essentially the same way, by converting a signal in time to an equivalent signal in frequency
(sinusoids). However, depending on the nature of a speci�c signal i.e. whether it is �nite- or in�nite-length
and whether it is discrete- or continuous-time) there is an appropriate transform to convert the signal into
the frequency domain. Below is a table of the four Fourier transforms and when each is appropriate. It also
includes the relevant convolution for the speci�ed space.

1This content is available online at <http://cnx.org/content/m10096/2.10/>.
2"Transfer Functions" <http://cnx.org/content/m0028/latest/>
3"Continuous-Time Fourier Series (CTFS)" <http://cnx.org/content/m10097/latest/>
4"Discrete Fourier Transform(DTFT)" <http://cnx.org/content/m0502/latest/>

141

142 CHAPTER 7. DISCRETE FOURIER TRANSFORM

Table of Fourier Representations

Transform Time Domain Frequency Domain Convolution

Continuous-Time
Fourier Series

L2 ([0, T)) l2 (Z) Continuous-Time Cir-
cular

Continuous-Time
Fourier Transform

L2 (R) L2 (R) Continuous-Time Lin-
ear

Discrete-Time Fourier
Transform

l2 (Z) L2 ([0, 2π)) Discrete-Time Linear

Discrete Fourier Trans-
form

l2 ([0, N − 1]) l2 ([0, N − 1]) Discrete-Time Circular

7.2 Fourier Analysis in Complex Spaces5

7.2.1 Introduction

By now you should be familiar with the derivation of the Fourier series (Section 6.2) for continuous-time,
periodic (Section 6.1) functions. This derivation leads us to the following equations that you should be quite
familiar with:

f (t) =
∑
n

(
cne

jω0nt
)

(7.1)

cn = 1
T

∫
n

f (t) e−(jω0nt)dt

= 1
T < f, ejω0nt >

(7.2)

where cn tells us the amount of frequency ω0n in f (t).
In this module, we will derive a similar expansion for discrete-time, periodic functions. In doing so, we

will derive the Discrete Time Fourier Series (DTFS), or the Discrete Fourier Transform (Section 10.2)
(DFT).

7.2.2 Derivation of DTFS

Much like a periodic, continuous-time function can be thought of as a function on the interval [0, T]

5This content is available online at <http://cnx.org/content/m10784/2.7/>.

143

T

f(t)

(a)

T

(b)

Figure 7.1: We will just consider one interval of the periodic function throughout this section. (a)
Periodic Function (b) Function on the interval [0, T]

A periodic, discrete-time signal (with period N) can be thought of as a �nite set of numbers. For example,
say we have the following set of numbers that describe a periodic, discrete-time signal, where N = 4:

{. . . , 3, 2,−2, 1, 3, . . . }

We can represent this signal as either a periodic signal or as just a single interval as follows:

f[n]

n

(a)

n

(b)

Figure 7.2: Here we can look at just one period of the signal that has a vector length of four and is
contained in C4. (a) Periodic Function (b) Function on the interval [0, T]

note: The set of discrete time signals with period N equal CN .

Just like the continuous case, we are going to form a basis using harmonic sinusoids. Before we look into
this, it will be worth our time to look at the discrete-time, complex sinusoids in a little more detail.

7.2.2.1 Complex Sinusoids

If you are familiar with the basic sinusoid signal6 and with complex exponentials (Section 1.6) then you
should not have any problem understanding this section. In most texts, you will see the the discrete-time,
complex sinusoid noted as:

ejωn

6"Elemental Signals" <http://cnx.org/content/m0004/latest/>

144 CHAPTER 7. DISCRETE FOURIER TRANSFORM

Example 7.1

Figure 7.3: Complex sinusoid with frequency ω = 0

Example 7.2

Figure 7.4: Complex sinusoid with frequency ω = π
4

7.2.2.1.1 In the Complex Plane

The complex sinusoid can be directly mapped onto our complex plane7, which allows us to easily visualize
changes to the complex sinusoid and extract certain properties. The absolute value of our complex sinusoid
has the following characteristic:

|ejωn| = 1 , n ∈ R (7.3)

which tells that our complex sinusoid only takes values on the unit circle. As for the angle, the following
statement holds true:

∠ejωn = wn (7.4)

As n increases, we can picture ejωn equaling the values we get moving counterclockwise around the unit
circle. See Figure 7.5 for an illustration:

7"The Complex Plane" <http://cnx.org/content/m10596/latest/>

145

(a) (b) (c)

Figure 7.5: These images show that as n increases, the value of ejωn moves around the unit circle
counterclockwise. (a) n = 0 (b) n = 1 (c) n = 2

note: For ejωn to be periodic (Section 6.1), we need ejωN = 1 for some N .

Example 7.3
For our �rst example let us look at a periodic signal where ω = 2π

7 and N = 7.

(a) (b)

Figure 7.6: (a) N = 7 (b) Here we have a plot of Re
“
ej

2π
7 n
”
.

Example 7.4
Now let us look at the results of plotting a non-periodic signal where ω = 1 and N = 7.

146 CHAPTER 7. DISCRETE FOURIER TRANSFORM

(a) (b)

Figure 7.7: (a) N = 7 (b) Here we have a plot of Re
`
ejn
´
.

7.2.2.1.2 Aliasing

Our complex sinusoids have the following property:

ejωn = ej(ω+2π)n (7.5)

Given this property, if we have a sinusoid with frequency ω + 2π, then this signal "aliases" to a sinusoid
with frequency ω.

note: Each ejωn is unique for ω ∈ [0, 2π)

7.2.2.1.3 "Negative" Frequencies

If we are given a signal with frequency π < ω < 2π, then this signal will be represented on our complex
plane as:

(a) (b)

Figure 7.8: Plot of our complex sinusoid with a frequency greater than π.

From the above images, the value of our complex sinusoid on the complex plane may be more easily
interpreted as cycling "backwards" (clockwise) around the unit circle with frequency 2π − ω. Rotating
counterclockwise by w is the same as rotating clockwise by 2π − ω.

147

Example 7.5
Let us plot our complex sinusoid, ejωn, where we have ω = 5π

4 and n = 1.

Figure 7.9: The above plot of our given frequency is identical to that of one where ω = −
`

3π
4

´
.

This plot is the same as a sinusoid with "negative" frequency −
(

3π
4

)
.

point: It makes more physical sense to chose [−π, π) as the interval for ω.

Remember that ejωn and e−(jωn) are conjugates. This gives us the following notation and property:

ejωn
∗

= e−(jωn) (7.6)

The real parts of of both exponentials in the above equation are the same; the imaginary parts are negative
of one another. This idea is the basic de�nition of a conjugate.

Now that we have looked over the concepts of complex sinusoids, let us turn our attention back to �nding
a basis for discrete-time, periodic signals. After looking at all the complex sinusoids, we must answer the
question of which discrete-time sinusoids do we need to represent periodic sequences with a period N .

Equivalent Question: Find a set of vectors bk = ejωkn , n = {0, . . . , N − 1} such that {bk}
are a basis for Cn

In answer to the above question, let us try the "harmonic" sinusoids with a fundamental frequency ω0 = 2π
N :

Harmonic Sinusoid
ej

2π
N kn (7.7)

(a) (b) (c)

Figure 7.10: Examples of our Harmonic Sinusoids (a) Harmonic sinusoid with k = 0 (b) Imaginary

part of sinusoid, Im
“
ej

2π
N

1n
”
, with k = 1 (c) Imaginary part of sinusoid, Im

“
ej

2π
N

2n
”
, with k = 2

148 CHAPTER 7. DISCRETE FOURIER TRANSFORM

ej
2π
N kn is periodic with period N and has k "cycles" between n = 0 and n = N − 1.
Theorem 7.1:
If we let

bk [n] =
1√
N
ej

2π
N kn , n = {0, . . . , N − 1}

where the exponential term is a vector in CN , then {bk} |k={0,...,N−1} is an orthonormal basis
(Section 15.7.3: Orthonormal Basis) for CN .
Proof: First of all, we must show {bk} is orthonormal, i.e. < bk, bl >= δkl

< bk, bl >=
N−1∑
n=0

(
bk [n] bl [n]∗

)
=

1
N

N−1∑
n=0

(
ej

2π
N kne−(j 2π

N ln)
)

< bk, bl >=
1
N

N−1∑
n=0

(
ej

2π
N (l−k)n

)
(7.8)

If l = k, then

< bk, bl > = 1
N

∑N−1
n=0 (1)

= 1
(7.9)

If l 6= k, then we must use the "partial summation formula" shown below:

N−1∑
n=0

(αn) =
∞∑
n=0

(αn)−
∞∑
n=N

(αn) =
1

1− α
− αN

1− α
=

1− αN

1− α

< bk, bl >=
1
N

N−1∑
n=0

(
ej

2π
N (l−k)n

)
where in the above equation we can say that α = ej

2π
N (l−k), and thus we can see how this is in the

form needed to utilize our partial summation formula.

< bk, bl >=
1
N

(
1− ej 2π

N (l−k)N

1− ej 2π
N (l−k)

)
=

1
N

(
1− 1

1− ej 2π
N (l−k)

)
= 0

So,

< bk, bl >=

 1 if k = l

0 if k 6= l
(7.10)

Therefore: {bk} is an orthonormal set. {bk} is also a basis (Section 5.1.3: Basis), since there are N
vectors which are linearly independent (Section 5.1.1: Linear Independence) (orthogonality implies
linear independence).

And �nally, we have shown that the harmonic sinusoids
{

1√
N
ej

2π
N kn

}
form an orthonormal basis

for Cn

149

7.2.2.2 Discrete-Time Fourier Series (DTFS)

Using the steps shown above in the derivation and our previous understanding of Hilbert Spaces (Section 15.3)
and Orthogonal Expansions (Section 15.8), the rest of the derivation is automatic. Given a discrete-time,
periodic signal (vector in Cn) f [n], we can write:

f [n] =
1√
N

N−1∑
k=0

(
cke

j 2π
N kn

)
(7.11)

ck =
1√
N

N−1∑
n=0

(
f [n] e−(j 2π

N kn)
)

(7.12)

Note: Most people collect both the 1√
N

terms into the expression for ck.

Discrete Time Fourier Series: Here is the common form of the DTFS with the above note
taken into account:

f [n] =
N−1∑
k=0

(
cke

j 2π
N kn

)

ck =
1
N

N−1∑
n=0

(
f [n] e−(j 2π

N kn)
)

This what the fft command in MATLAB does.

7.3 Matrix Equation for the DTFS8

The DTFS (Section 7.2.2.2: Discrete-Time Fourier Series (DTFS)) is just a change of basis (Section 5.1.3:
Basis) in CN . To start, we have f [n] in terms of the standard basis.

f [n] = f [0] e0 + f [1] e1 + · · ·+ f [N − 1] eN−1

=
∑n−1
k=0 (f [k] δ [k − n])

(7.13)



f [0]

f [1]

f [2]
...

f [N − 1]


=



f [0]

0

0
...

0


+



0

f [1]

0
...

0


+



0

0

f [2]
...

0


+ · · ·+



0

0

0
...

f [N − 1]


(7.14)

Taking the DTFS, we can write f [n] in terms of the sinusoidal Fourier basis

f [n] =
N−1∑
k=0

(
cke

j 2π
N kn

)
(7.15)



f [0]

f [1]

f [2]
...

f [N − 1]


= c0



1

1

1
...

1


+ c1



1

ej
2π
N

ej
4π
N

...

ej
2π
N (N−1)


+ c2



1

ej
4π
N

ej
8π
N

...

ej
4π
N (N−1)


+ . . . (7.16)

8This content is available online at <http://cnx.org/content/m10771/2.6/>.

150 CHAPTER 7. DISCRETE FOURIER TRANSFORM

We can form the basis matrix (we'll call it W here instead of B) by stacking the basis vectors in as columns

W =
(
b0 [n] b1 [n] . . . bN−1 [n]

)

=



1 1 1 . . . 1

1 ej
2π
N ej

4π
N . . . ej

2π
N (N−1)

1 ej
4π
N ej

8π
N . . . ej

2π
N 2(N−1)

...
...

...
...

...

1 ej
2π
N (N−1) ej

2π
N 2(N−1) . . . ej

2π
N (N−1)(N−1)


(7.17)

with bk [n] = ej
2π
N kn

note: the entry in the k-th row and n-th column is Wj,k = ej
2π
N kn = Wn,k

So, here we have an additional symmetry

W = WT ⇒WT ∗ = W ∗ =
1
N
W−1

(since {bk [n]} are orthogonal)
We can now rewrite the DTFS equations in matrix form where we have:

• f = signal (vector in CN)
• c = DTFS coe�s. (vector in CN)

"synthesis" f = Wc f [n] =< c, bn∗ >

"analysis" c = WT ∗f = W ∗f c [k] =< f , bk >

Finding (and inverting) the DTFS is just matrix multiplication.
Everything in CN is clean: no limits, no convergence questions, just good ole matrix arithmetic.

7.4 Periodic Extension to DTFS9

7.4.1 Introduction

Now that we have an understanding of the discrete-time Fourier series (DTFS) (Section 7.2.2.2: Discrete-
Time Fourier Series (DTFS)), we can consider the periodic extension of c [k] (the Discrete-time Fourier
coe�cients). Figure 7.11 shows a simple illustration of how we can represent a sequence as a periodic signal
mapped over an in�nite number of intervals.

9This content is available online at <http://cnx.org/content/m10778/2.8/>.

151

(a)

(b)

Figure 7.11: (a) vectors (b) periodic sequences

Exercise 7.1 (Solution on p. 163.)

Why does a periodic (Section 6.1) extension to the DTFS coe�cients c [k] make sense?

7.4.2 Examples

Example 7.6: Discrete time square wave

152 CHAPTER 7. DISCRETE FOURIER TRANSFORM

Figure 7.12

Calculate the DTFS c [k] using:

c [k] =
1
N

N−1∑
n=0

(
f [n] e−(j 2π

N kn)
)

(7.18)

Just like continuous time Fourier series, we can take the summation over any interval, so we have

ck =
1
N

N1∑
n=−N1

(
e−(j 2π

N kn)
)

(7.19)

Let m = n+N1 (so we can get a geometric series starting at 0)

ck = 1
N

∑2N1
m=0

(
e−(j 2π

N (m−N1)k)
)

= 1
N e

j 2π
N k
∑2N1
m=0

(
e−(j 2π

N mk)
) (7.20)

Now, using the "partial summation formula"

M∑
n=0

(an) =
1− aM+1

1− a
(7.21)

ck = 1
N e

j 2π
N N1k

∑2N1
m=0

((
e−(j 2π

N k)
)m)

= 1
N e

j 2π
N N1k 1−e−(j 2π

N
(2N1+1))

1−e−(jk 2π
N)

(7.22)

Manipulate to make this look like a sinc function (distribute):

ck = 1
N

e
−(jk 2π

2N)
„
e
jk 2π
N (N1+ 1

2)−e−(jk 2π
N (N1+ 1

2))
«

e
−(jk 2π

2N)
„
ejk

2π
N

1
2−e−(jk 2π

N
1
2)
«

= 1
N

sin

2πk(N1+ 1

2)
N

!
sin(πkN)

= digital sinc

(7.23)

153

note: It's periodic! Figure 7.13, Figure 7.14, and Figure 7.15show our above function and
coe�cients for various values of N1.

(a) (b)

Figure 7.13: N1 = 1 (a) Plot of f [n]. (b) Plot of c [k].

(a) (b)

Figure 7.14: N1 = 3 (a) Plot of f [n]. (b) Plot of c [k].

(a) (b)

Figure 7.15: N1 = 7 (a) Plot of f [n]. (b) Plot of c [k].

154 CHAPTER 7. DISCRETE FOURIER TRANSFORM

7.5 Circular Shifts10

The many properties of the DFT (Section 7.2.2.2: Discrete-Time Fourier Series (DTFS)) become really
straightforward (very similar to the Fourier Series (Section 6.2)) once we have once concept down: Circular
Shifts.

7.5.1 Circular shifts

We can picture periodic (Section 6.1) sequences as having discrete points on a circle as the domain

Figure 7.16

Shifting by m, f (n+m), corresponds to rotating the cylinder m notches ACW (counter clockwise). For
m = −2, we get a shift equal to that in the following illustration:

Figure 7.17: for m = −2

10This content is available online at <http://cnx.org/content/m10780/2.6/>.

155

Figure 7.18

To cyclic shift we follow these steps:
1) Write f (n) on a cylinder, ACW

Figure 7.19: N = 8

156 CHAPTER 7. DISCRETE FOURIER TRANSFORM

2) To cyclic shift by m, spin cylinder m spots ACW

(f [n]→ f [((n+m))N])

Figure 7.20: m = −3

Example 7.7
If f (n) = [0, 1, 2, 3, 4, 5, 6, 7], then f (((n− 3))N) = [3, 4, 5, 6, 7, 0, 1, 2]

It's called circular shifting, since we're moving around the circle. The usual shifting is called
"linear shifting" (shifting along a line).

7.5.1.1 Notes on circular shifting

f [((n+N))N] = f [n]

Spinning N spots is the same as spinning all the way around, or not spinning at all.

f [((n+N))N] = f [((n− (N −m)))N]

Shifting ACW m is equivalent to shifting CW N −m

157

Figure 7.21

f [((−n))N]

The above expression, simply writes the values of f [n] clockwise.

158 CHAPTER 7. DISCRETE FOURIER TRANSFORM

(a) (b)

Figure 7.22: (a) f [n] (b) f
ˆ
((−n))N

˜

7.5.2 Circular shifts and the DFT

Theorem 7.2: Circular Shifts and DFT
If

f [n] DFT↔ F [k]

then
f [((n−m))N] DFT↔ e−(j 2π

N km)F [k]

(i.e. circular shift in time domain = phase shift in DFT)
Proof:

f [n] =
1
N

N−1∑
k=0

(
F [k] ej

2π
N kn

)
(7.24)

so phase shifting the DFT

f [n] = 1
N

∑N−1
k=0

(
F [k] e−(j 2π

N kn)ej
2π
N kn

)
= 1

N

∑N−1
k=0

(
F [k] ej

2π
N k(n−m)

)
= f [((n−m))N]

(7.25)

7.6 Circular Convolution and the DFT11

7.6.1 Introduction

You should be familiar with Discrete-Time Convolution (Section 4.2), which tells us that given two discrete-
time signals x [n], the system's input, and h [n], the system's response, we de�ne the output of the system
as

y [n] = x [n] ∗ h [n]

=
∑∞
k=−∞ (x [k]h [n− k])

(7.26)

11This content is available online at <http://cnx.org/content/m10786/2.8/>.

159

When we are given two DFTs (�nite-length sequences usually of length N), we cannot just multiply them
together as we do in the above convolution formula, often referred to as linear convolution. Because the
DFTs are periodic, they have nonzero values for n ≥ N and thus the multiplication of these two DFTs will be
nonzero for n ≥ N . We need to de�ne a new type of convolution operation that will result in our convolved
signal being zero outside of the range n = {0, 1, . . . , N − 1}. This idea led to the development of circular
convolution, also called cyclic or periodic convolution.

7.6.2 Circular Convolution Formula

What happens when we multiply two DFT's together, where Y [k] is the DFT of y [n]?

Y [k] = F [k]H [k] (7.27)

when 0 ≤ k ≤ N − 1
Using the DFT synthesis formula for y [n]

y [n] =
1
N

N−1∑
k=0

(
F [k]H [k] ej

2π
N kn

)
(7.28)

And then applying the analysis formula F [k] =
∑N−1
m=0

(
f [m] e(−j) 2π

N kn
)

y [n] = 1
N

∑N−1
k=0

((∑N−1
m=0

(
f [m] e(−j) 2π

N kn
))

H [k] ej
2π
N kn

)
=

∑N−1
m=0

(
f [m]

(
1
N

∑N−1
k=0

(
H [k] ej

2π
N k(n−m)

))) (7.29)

where we can reduce the second summation found in the above equation into h [((n−m))N] =
1
N

∑N−1
k=0

(
H [k] ej

2π
N k(n−m)

)
y [n] =

N−1∑
m=0

(f [m]h [((n−m))N])

which equals circular convolution! When we have 0 ≤ n ≤ N − 1 in the above, then we get:

y [n] ≡ (f [n] ~ h [n]) (7.30)

note: The notation ~ represents cyclic convolution "mod N".

7.6.2.1 Steps for Cyclic Convolution

Steps for cyclic convolution are the same as the usual convo, except all index calculations are done "mod N"
= "on the wheel"

Steps for Cyclic Convolution

• Step 1: "Plot" f [m] and h [((−m))N]

160 CHAPTER 7. DISCRETE FOURIER TRANSFORM

(a) (b)

Figure 7.23: Step 1

• Step 2: "Spin" h [((−m))N] n notches ACW (counter-clockwise) to get h [((n−m))N] (i.e. Simply
rotate the sequence, h [n], clockwise by n steps).

Figure 7.24: Step 2

• Step 3: Pointwise multiply the f [m] wheel and the h [((n−m))N] wheel.

sum = y [n]

• Step 4: Repeat for all 0 ≤ n ≤ N − 1

Example 7.8: Convolve (n = 4)

(a) (b)

Figure 7.25: Two discrete-time signals to be convolved.

161

• h [((−m))N]

Figure 7.26

Multiply f [m] and sum to yield: y [0] = 3

• h [((1−m))N]

Figure 7.27

Multiply f [m] and sum to yield: y [1] = 5

• h [((2−m))N]

Figure 7.28

Multiply f [m] and sum to yield: y [2] = 3

• h [((3−m))N]

162 CHAPTER 7. DISCRETE FOURIER TRANSFORM

Figure 7.29

Multiply f [m] and sum to yield: y [3] = 1

Example 7.9
The following demonstration allows you to explore this algorithm for circular convolution. See
here12 for instructions on how to use the demo.

This is an unsupported media type. To view, please see
http://cnx.org/content/m10786/latest/DTCircularConvolution.llb

7.6.2.2 Alternative Algorithm

Alternative Circular Convolution Algorithm

• Step 1: Calculate the DFT of f [n] which yields F [k] and calculate the DFT of h [n] which yields H [k].
• Step 2: Pointwise multiply Y [k] = F [k]H [k]
• Step 3: Inverse DFT Y [k] which yields y [n]

Seems like a roundabout way of doing things, but it turns out that there are extremely fast ways to calculate
the DFT of a sequence.

To circularily convolve 2 N -point sequences:

y [n] =
N−1∑
m=0

(f [m]h [((n−m))N])

For each n : N multiples, N − 1 additions
N points implies N2 multiplications, N (N − 1) additions implies O

(
N2
)
complexity.

12"How to use the LabVIEW demos" <http://cnx.org/content/m11550/latest/>

163

Solutions to Exercises in Chapter 7

Solution to Exercise 7.1 (p. 151)

Aliasing: bk = ej
2π
N kn

bk+N = ej
2π
N (k+N)n

= ej
2π
N knej2πn

= ej
2π
N n

= bk

(7.31)

→ DTFS coe�cients are also periodic with period N .

164 CHAPTER 7. DISCRETE FOURIER TRANSFORM

Chapter 8

Fast Fourier Transform (FFT)

8.1 DFT: Fast Fourier Transform1

We now have a way of computing the spectrum for an arbitrary signal: The Discrete Fourier Transform
(DFT)2 computes the spectrum at N equally spaced frequencies from a length- N sequence. An issue that
never arises in analog "computation," like that performed by a circuit, is how much work it takes to perform
the signal processing operation such as �ltering. In computation, this consideration translates to the number
of basic computational steps required to perform the needed processing. The number of steps, known as
the complexity, becomes equivalent to how long the computation takes (how long must we wait for an
answer). Complexity is not so much tied to speci�c computers or programming languages but to how many
steps are required on any computer. Thus, a procedure's stated complexity says that the time taken will be
proportional to some function of the amount of data used in the computation and the amount demanded.

For example, consider the formula for the discrete Fourier transform. For each frequency we chose, we
must multiply each signal value by a complex number and add together the results. For a real-valued signal,
each real-times-complex multiplication requires two real multiplications, meaning we have 2N multiplications
to perform. To add the results together, we must keep the real and imaginary parts separate. Adding N
numbers requires N − 1 additions. Consequently, each frequency requires 2N + 2 (N − 1) = 4N − 2 basic
computational steps. As we have N frequencies, the total number of computations is N (4N − 2).

In complexity calculations, we only worry about what happens as the data lengths increase, and take the
dominant term�here the 4N2 term�as re�ecting how much work is involved in making the computation.
As multiplicative constants don't matter since we are making a "proportional to" evaluation, we �nd the
DFT is an O

(
N2
)
computational procedure. This notation is read "order N -squared". Thus, if we double

the length of the data, we would expect that the computation time to approximately quadruple.

Exercise 8.1 (Solution on p. 170.)

In making the complexity evaluation for the DFT, we assumed the data to be real. Three ques-
tions emerge. First of all, the spectra of such signals have conjugate symmetry, meaning that
negative frequency components (k =

[
N
2 + 1, ..., N + 1

]
in the DFT3) can be computed from the

corresponding positive frequency components. Does this symmetry change the DFT's complexity?
Secondly, suppose the data are complex-valued; what is the DFT's complexity now?
Finally, a less important but interesting question is suppose we want K frequency values instead

of N ; now what is the complexity?

1This content is available online at <http://cnx.org/content/m0504/2.8/>.
2"Discrete Fourier Transform(DTFT)", (1) : Discrete Fourier transform <http://cnx.org/content/m0502/latest/#eqn1>
3"Discrete Fourier Transform(DTFT)", (1) : Discrete Fourier transform <http://cnx.org/content/m0502/latest/#eqn1>

165

166 CHAPTER 8. FAST FOURIER TRANSFORM (FFT)

8.2 The Fast Fourier Transform (FFT)4

8.2.1 Introduction

The Fast Fourier Transform (FFT) is an e�cient O(NlogN) algorithm for calculating DFTs

• originally discovered by Gauss in the early 1800's
• rediscovered by Cooley and Tukey at IBM in the 1960's
• C.S. Burrus, Rice University's very own Dean of Engineering, literally "wrote the book" on fast DFT

algorithms.

The FFT 5exploits symmetries in the W matrix to take a "divide and conquer" approach. We won't talk
about the actual FFT algorithm here, see these notes6 if you are interested in reading a little more on the
idea behind FFT.

8.2.2 Speed Comparison

How much better is O(NlogN) than O(N2)?

Figure 8.1: This �gure shows how much slower the computation time of an O(NlogN) process grows.

N 10 100 1000 106 109

N2 100 104 106 1012 1018

NlogN 1 200 3000 6× 106 9× 109

Say you have a 1 MFLOP machine (a million "�oating point" operations per second). LetN = 1million =
106.

An O(N2) algorithm takes 1012 �ors → 106 seconds ' 11.5 days.
An O(NlogN) algorithm takes 6× 106 Flors → 6 seconds.

note: N = 1million is not unreasonable.

Example 8.1
3 megapixel digital camera spits out 3×106 numbers for each picture. So for two N point sequences
f [n] and h [n]. If computing (f [n] ~ h [n]) directly: O(N2) operations.

taking FFTs � O(NlogN)
multiplying FFTs � O(N)

4This content is available online at <http://cnx.org/content/m10783/2.5/>.
5"Fast Fourier Transform (FFT)" <http://cnx.org/content/m10250/latest/>
6"Fast Fourier Transform (FFT)" <http://cnx.org/content/m10250/latest/>

167

inverse FFTs � O(NlogN).
the total complexity is O(NlogN).

note: FFT + digital computer were almost completely responsible for the "explosion" of DSP in
the 60's.

note: Rice was (and still is) one of the places to do research in DSP.

8.3 Deriving the Fast Fourier Transform7

To derive the FFT, we assume that the signal's duration is a power of two: N = 2l . Consider what happens
to the even-numbered and odd-numbered elements of the sequence in the DFT calculation.

S (k) = s (0) + s (2) e(−j) 2π2k
N + · · · + s (N − 2) e(−j)

2π(N−2)k
N +

s (1) e(−j) 2πk
N + s (3) e(−j)

2π(2+1)k
N + · · · + s (N − 1) e(−j)

2π(N−2+1)k
N =

s (0) + s (2) e
(−j) 2πk

N
2 + · · · + s (N − 2) e

(−j)
2π(N2 −1)k

N
2 +s (1) + s (3) e

(−j) 2πk
N
2 + · · ·+ s (N − 1) e

(−j)
2π(N2 −1)k

N
2

 e
−(j2πk)

N

(8.1)

Each term in square brackets has the form of a N
2 -length DFT. The �rst one is a DFT of the even-

numbered elements, and the second of the odd-numbered elements. The �rst DFT is combined with the

second multiplied by the complex exponential e
−(j2πk)

N . The half-length transforms are each evaluated at
frequency indices k ∈ {0, . . . , N − 1} . Normally, the number of frequency indices in a DFT calculation range
between zero and the transform length minus one. The computational advantage of the FFT comes from
recognizing the periodic nature of the discrete Fourier transform. The FFT simply reuses the computations

made in the half-length transforms and combines them through additions and the multiplication by e
−(j2πk)

N

, which is not periodic over N
2 , to rewrite the length-N DFT. Figure 8.2 (Length-8 DFT decomposition)

illustrates this decomposition. As it stands, we now compute two length- N2 transforms (complexity 2O
(
N2

4

)
), multiply one of them by the complex exponential (complexity O (N)), and add the results (complexity
O (N)). At this point, the total complexity is still dominated by the half-length DFT calculations, but the
proportionality coe�cient has been reduced.

Now for the fun. Because N = 2l , each of the half-length transforms can be reduced to two quarter-length
transforms, each of these to two eighth-length ones, etc. This decomposition continues until we are left with
length-2 transforms. This transform is quite simple, involving only additions. Thus, the �rst stage of the
FFT has N

2 length-2 transforms (see the bottom part of Figure 8.2 (Length-8 DFT decomposition)). Pairs
of these transforms are combined by adding one to the other multiplied by a complex exponential. Each pair
requires 4 additions and 4 multiplications, giving a total number of computations equaling 8N4 = N

2 . This
number of computations does not change from stage to stage. Because the number of stages, the number of
times the length can be divided by two, equals log2N , the complexity of the FFT is O (NlogN) .

7This content is available online at <http://cnx.org/content/m0528/2.7/>.

168 CHAPTER 8. FAST FOURIER TRANSFORM (FFT)

Length-8 DFT decomposition

(a)

(b)

Figure 8.2: The initial decomposition of a length-8 DFT into the terms using even- and odd-indexed
inputs marks the �rst phase of developing the FFT algorithm. When these half-length transforms are
successively decomposed, we are left with the diagram shown in the bottom panel that depicts the
length-8 FFT computation.

169

Doing an example will make computational savings more obvious. Let's look at the details of a length-8
DFT. As shown on Figure 8.2 (Length-8 DFT decomposition), we �rst decompose the DFT into two length-
4 DFTs, with the outputs added and subtracted together in pairs. Considering Figure 8.2 (Length-8 DFT
decomposition) as the frequency index goes from 0 through 7, we recycle values from the length-4 DFTs
into the �nal calculation because of the periodicity of the DFT output. Examining how pairs of outputs are
collected together, we create the basic computational element known as a butter�y (Figure 8.3 (Butter�y)).

Butter�y

Figure 8.3: The basic computational element of the fast Fourier transform is the butter�y. It takes
two complex numbers, represented by a and b, and forms the quantities shown. Each butter�y requires
one complex multiplication and two complex additions.

By considering together the computations involving common output frequencies from the two half-length
DFTs, we see that the two complex multiplies are related to each other, and we can reduce our computational
work even further. By further decomposing the length-4 DFTs into two length-2 DFTs and combining their
outputs, we arrive at the diagram summarizing the length-8 fast Fourier transform (Figure 8.2 (Length-8
DFT decomposition)). Although most of the complex multiplies are quite simple (multiplying by e−(jπ)

means negating real and imaginary parts), let's count those for purposes of evaluating the complexity as full
complex multiplies. We have N

2 = 4 complex multiplies and 2N = 16 additions for each stage and log2N = 3
stages, making the number of basic computations 3N

2 log2N as predicted.

Exercise 8.2 (Solution on p. 170.)

Note that the ordering of the input sequence in the two parts of Figure 8.2 (Length-8 DFT
decomposition) aren't quite the same. Why not? How is the ordering determined?

Other "fast" algorithms were discovered, all of which make use of how many common factors the transform
length N has. In number theory, the number of prime factors a given integer has measures how composite
it is. The numbers 16 and 81 are highly composite (equaling 24 and 34 respectively), the number 18 is less so
(2132), and 17 not at all (it's prime). In over thirty years of Fourier transform algorithm development, the
original Cooley-Tukey algorithm is far and away the most frequently used. It is so computationally e�cient
that power-of-two transform lengths are frequently used regardless of what the actual length of the data.

170 CHAPTER 8. FAST FOURIER TRANSFORM (FFT)

Solutions to Exercises in Chapter 8

Solution to Exercise 8.1 (p. 165)
When the signal is real-valued, we may only need half the spectral values, but the complexity remains
unchanged. If the data are complex-valued, which demands retaining all frequency values, the complexity is
again the same. When only K frequencies are needed, the complexity is O (KN).

Solution to Exercise 8.2 (p. 169)
The upper panel has not used the FFT algorithm to compute the length-4 DFTs while the lower one has.
The ordering is determined by the algorithm.

Chapter 9

Convergence

9.1 Convergence of Sequences1

9.1.1 What is a Sequence?

De�nition 9: sequence
A sequence is a function gn de�ned on the positive integers 'n'. We often denote a sequence by
{gn} |∞n=1

Example
A real number sequence:

gn =
1
n

Example
A vector sequence:

gn =

 sin
(
nπ
2

)
cos
(
nπ
2

)


Example
A function sequence:

gn (t) =

 1 if 0 ≤ t < 1
n

0 otherwise

note: A function can be thought of as an in�nite dimensional vector where for each value of 't'
we have one dimension

9.1.2 Convergence of Real Sequences

De�nition 10: limit
A sequence {gn} |∞n=1 converges to a limit g ∈ R if for every ε > 0 there is an integer N such that

|gi − g| < ε , i ≥ N
1This content is available online at <http://cnx.org/content/m10883/2.4/>.

171

172 CHAPTER 9. CONVERGENCE

We usually denote a limit by writing
lim
i→∞

gi = g

or
gi → g

The above de�nition means that no matter how small we make ε, except for a �nite number of gi's, all
points of the sequence are within distance ε of g.

Example 9.1
We are given the following convergent sequence:

gn =
1
n

(9.1)

Intuitively we can assume the following limit:

lim
n→∞

gn = 0

Let us prove this rigorously. Say that we are given a real number ε > 0. Let us choose N = d 1
ε e,

where dxe denotes the smallest integer larger than x. Then for n ≥ N we have

|gn − 0| = 1
n
≤ 1
N

< ε

Thus,
lim
n→∞

gn = 0

Example 9.2
Now let us look at the following non-convergent sequence

gn =

 1 if n = even

−1 if n = odd

This sequence oscillates between 1 and -1, so it will therefore never converge.

9.1.2.1 Problems

For practice, say which of the following sequences converge and give their limits if they exist.

1. gn = n

2. gn =

 1
n if n = even

−1
n if n = odd

3. gn =

 1
n if n 6= powerof10

1 otherwise

4. gn =

 n if n < 105

1
n if n ≥ 105

5. gn = sin
(
π
n

)
6. gn = jn

173

9.2 Convergence of Vectors2

9.2.1 Convergence of Vectors

We now discuss pointwise and norm convergence of vectors. Other types of convergence also exist, and one
in particular, uniform convergence (Section 9.3), can also be studied. For this discussion , we will assume
that the vectors belong to a normed vector space (Section 15.2).

9.2.1.1 Pointwise Convergence

A sequence (Section 9.1) {gn} |∞n=1 converges pointwise to the limit g if each element of gn converges to
the corresponding element in g. Below are few examples to try and help illustrate this idea.

Example 9.3

gn =

 gn [1]

gn [2]

 =

 1 + 1
n

2− 1
n


First we �nd the following limits for our two gn's:

lim
n→∞

(gn [1]) = 1

lim
n→∞

(gn [2]) = 2

Therefore we have the following,
lim
n→∞

gn = g

pointwise, where g =

 1

2

.
Example 9.4

gn (t) =
t

n
, t ∈ R

As done above, we �rst want to examine the limit

lim
n→∞

gn (t0) = lim
n→∞

t0
n

= 0

where t0 ∈ R. Thus lim
n→∞

gn = g pointwise where g (t) = 0 for all t ∈ R.

9.2.1.2 Norm Convergence

The sequence (Section 9.1) {gn} |∞n=1 converges to g in norm if lim
n→∞

‖ gn − g ‖= 0. Here ‖ · ‖ is the norm
(Section 15.2) of the corresponding vector space of gn's. Intuitively this means the distance between vectors
gn and g decreases to 0.

Example 9.5

gn =

 1 + 1
n

2− 1
n


2This content is available online at <http://cnx.org/content/m10894/2.2/>.

174 CHAPTER 9. CONVERGENCE

Let g =

 1

2


‖ gn − g ‖ =

√(
1 + 1

n − 1
)2 + (−1)2

=
√

1
n2 + 1

n2

=
√

2
n

(9.2)

Thus lim
n→∞

‖ gn − g ‖= 0 Therefore, gn → g in norm.

Example 9.6

gn (t) =

 t
n if 0 ≤ t ≤ 1

0 otherwise

Let g (t) = 0 for all t.

‖ gn (t)− g (t) ‖ =
∫ 1

0
t2

n2 dt

= t3

3n2 |1n=0

= 1
3n2

(9.3)

Thus lim
n→∞

‖ gn (t)− g (t) ‖= 0 Therefore, gn (t)→ g (t) in norm.

9.2.2 Pointwise vs. Norm Convergence

Theorem 9.1:
For Rm, pointwise and norm convergence are equivalent.
Proof: Pointwise ⇒ Norm

gn [i]→ g [i]

Assuming the above, then

(‖ gn − g ‖)2 =
m∑
i=1

(
(gn [i]− g [i])2

)
Thus,

lim
n→∞

(‖ gn − g ‖)2 = lim
n→∞

∑m
i=1 2

=
∑m
i=1

(
lim
n→∞

2
)

= 0

(9.4)

Proof: Norm ⇒ Pointwise
‖ gn − g ‖→ 0

lim
n→∞

∑m
i=1 2 =

∑m
i=1

(
lim
n→∞

2
)

= 0
(9.5)

Since each term is greater than or equal zero, all 'm' terms must be zero. Thus,

lim
n→∞

2 = 0

175

forall i. Therefore,
gn → gpointwise

note: In in�nite dimensional spaces the above theorem is no longer true. We prove this with
counter examples shown below.

9.2.2.1 Counter Examples

Example 9.7: Pointwise [U+21CF] Norm
We are given the following function:

gn (t) =

 n if 0 < t < 1
n

0 otherwise

Then lim
n→∞

gn (t) = 0 This means that,

gn (t)→ g (t)

where for all t g (t) = 0.
Now,

(‖ gn ‖)2 =
∫∞
−∞ (|gn (t) |)2

dt

=
∫ 1
n

0
n2dt

= n→∞

(9.6)

Since the function norms blow up, they cannot converge to any function with �nite norm.

Example 9.8: Norm [U+21CF] Pointwise
We are given the following function:

gn (t) =

 1 if 0 < t < 1
n

0 otherwise
if n is even

gn (t) =

 −1 if 0 < t < 1
n

0 otherwise
if n is odd

Then,

‖ gn − g ‖=
∫ 1

n

0

1dt =
1
n
→ 0

where g (t) = 0 for all t. Therefore,
gn → gin norm

However, at t = 0, gn (t) oscillates between -1 and 1, and so it does not converge. Thus, gn (t) does
not converge pointwise.

176 CHAPTER 9. CONVERGENCE

9.2.2.2 Problems

Prove if the following sequences are pointwise convergent, norm convergent, or both and then state their
limits.

1. gn (t) =

 1
nt if 0 < t

0 if t ≤ 0

2. gn (t) =

 e−(nt) if t ≥ 0

0 if t < 0

9.3 Uniform Convergence of Function Sequences3

9.3.1 Uniform Convergence of Function Sequences

For this discussion, we will only consider functions with gn where

R→ R

De�nition 11: Uniform Convergence
The sequence (Section 9.1) {gn} |∞n=1 converges uniformly to function g if for every ε > 0 there is
an integer N such that n ≥ N implies

|gn (t)− g (t) | ≤ ε (9.7)

for all t ∈ R.
Obviously every uniformly convergent sequence is pointwise (Section 9.2) convergent. The di�erence

between pointwise and uniform convergence is this: If {gn} converges pointwise to g, then for every ε > 0
and for every t ∈ R there is an integer N depending on ε and t such that (9.7) holds if n ≥ N . If {gn}
converges uniformly to g, it is possible for each ε > 0 to �nd one integer N that will do for all t ∈ R.

Example 9.9

gn (t) =
1
n

, t ∈ R

Let ε > 0 be given. Then choose N = d 1
ε e. Obviously,

|gn (t)− 0| ≤ ε , n ≥ N

for all t. Thus, gn (t) converges uniformly to 0.

Example 9.10

gn (t) =
t

n
, t ∈ R

Obviously for any ε > 0 we cannot �nd a single function gn (t) for which (9.7) holds with g (t) = 0
for all t. Thus gn is not uniformly convergent. However we do have:

gn (t)→ g (t) pointwise

conclusion: Uniform convergence always implies pointwise convergence, but pointwise conver-
gence does not guarantee uniform convergence.

3This content is available online at <http://cnx.org/content/m10895/2.5/>.

177

9.3.1.1 Problems

Rigorously prove if the following functions converge pointwise, uniformly, or both.

1. gn (t) = sin(t)
n

2. gn (t) = e
t
n

3. gn (t) =

 1
nt if t > 0

0 if t ≤ 0

178 CHAPTER 9. CONVERGENCE

Chapter 10

Discrete Time Fourier Transform
(DTFT)

10.1 Discrete Fourier Transformation1

10.1.1 N-point Discrete Fourier Transform (DFT)

X [k] =
N−1∑
n=0

(
x [n] e(−j) 2π

n kn
)

, k = {0, . . . , N − 1} (10.1)

x [n] =
1
N

N−1∑
k=0

(
X [k] ej

2π
n kn

)
, n = {0, . . . , N − 1} (10.2)

Note that:

• X [k] is the DTFT evaluated at ω = 2π
N k , k = {0, . . . , N − 1}

• Zero-padding x [n] to M samples prior to the DFT yields an M -point uniform sampled version of the
DTFT:

X
(
ej

2π
M k
)

=
N−1∑
n=0

(
x [n] e(−j) 2π

M k
)

(10.3)

X
(
ej

2π
M k
)

=
N−1∑
n=0

(
xzp [n] e(−j) 2π

M k
)

X
(
ej

2π
M k
)

= Xzp [k] , k = {0, . . . ,M − 1}

• The N -pt DFT is su�cient to reconstruct the entire DTFT of an N -pt sequence:

X
(
ejω
)

=
N−1∑
n=0

(
x [n] e(−j)ωn

)
(10.4)

X
(
ejω
)

=

(
N−1∑
n=0

(
1
N

))N−1∑
k=0

(
X [k] ej

2π
N kne(−j)ωn

)
1This content is available online at <http://cnx.org/content/m10421/2.10/>.

179

180 CHAPTER 10. DISCRETE TIME FOURIER TRANSFORM (DTFT)

X
(
ejω
)

=

(
N−1∑
k=0

(X [k])

)
1
N

N−1∑
k=0

(
e(−j)(ω− 2π

N k)n
)

X
(
ejω
)

=

(
N−1∑
k=0

(X [k])

)
1
N

(
sin
(
ωN−2πk

2

)
sin
(
ωN−2πk

2N

)e(−j)(ω− 2π
N k)N−1

2

)

1

0 2pi/N 4pi/N 2pi

D.

Figure 10.1: Dirichlet sinc, 1
N

sin(ωN2)
sin(ω2)

• The DFT has a convenient matrix representation. De�ning WN = e(−j) 2π
N ,

X [0]

X [1]
...

X [N − 1]

 =


W 0
N W 0

N W 0
N W 0

N . . .

W 0
N W 1

N W 2
N W 3

N . . .

W 0
N W 2

N W 4
N W 6

N . . .
...

...
...

...
...




x [0]

x [1]
...

x [N − 1]

 (10.5)

where X = W (x) respectively. W has the following properties:

· W is Vandermonde: the nth column of W is a polynomial in Wn
N

· W is symmetric: W = WT

· 1√
N
W is unitary:

(
1√
N
W
)(

1√
N
W
)H

=
(

1√
N
W
)H (

1√
N
W
)

= I

· 1
NW

∗ = W−1, the IDFT matrix.

• For N a power of 2, the FFT can be used to compute the DFT using about N
2 log2N rather than N2

operations.

N N
2 log2N N2

16 32 256

64 192 4096

256 1024 65536

1024 5120 1048576

181

10.2 Discrete Fourier Transform (DFT)2

The discrete-time Fourier transform (and the continuous-time transform as well) can be evaluated when we
have an analytic expression for the signal. Suppose we just have a signal, such as the speech signal used
in the previous chapter, for which there is no formula. How then would you compute the spectrum? For
example, how did we compute a spectrogram such as the one shown in the speech signal example3? The
Discrete Fourier Transform (DFT) allows the computation of spectra from discrete-time data. While in
discrete-time we can exactly calculate spectra, for analog signals no similar exact spectrum computation
exists. For analog-signal spectra, use must build special devices, which turn out in most cases to consist of
A/D converters and discrete-time computations. Certainly discrete-time spectral analysis is more �exible
than continuous-time spectral analysis.

The formula for the DTFT4 is a sum, which conceptually can be easily computed save for two issues.

• Signal duration. The sum extends over the signal's duration, which must be �nite to compute the
signal's spectrum. It is exceedingly di�cult to store an in�nite-length signal in any case, so we'll
assume that the signal extends over [0, N − 1].

• Continuous frequency. Subtler than the signal duration issue is the fact that the frequency variable is
continuous: It may only need to span one period, like

[
−
(

1
2

)
, 1

2

]
or [0, 1], but the DTFT formula as it

stands requires evaluating the spectra at all frequencies within a period. Let's compute the spectrum
at a few frequencies; the most obvious ones are the equally spaced ones f = k

K , k ∈ {0, . . . ,K − 1}.

We thus de�ne the discrete Fourier transform (DFT) to be

S (k) =
N−1∑
n=0

(
s (n) e−(j2πnkK)

)
, k ∈ {0, . . . ,K − 1} (10.6)

Here, S (k) is shorthand for S
(
ej2π

k
K

)
.

We can compute the spectrum at as many equally spaced frequencies as we like. Note that you can think
about this computationally motivated choice as sampling the spectrum; more about this interpretation later.
The issue now is how many frequencies are enough to capture how the spectrum changes with frequency.
One way of answering this question is determining an inverse discrete Fourier transform formula: given S (k),
k = {0, . . . ,K − 1} how do we �nd s (n), n = {0, . . . , N − 1}? Presumably, the formula will be of the form

s (n) =
∑K−1
k=0

(
S (k) e

j2πnk
K

)
. Substituting the DFT formula in this prototype inverse transform yields

s (n) =
K−1∑
k=0

(
N−1∑
m=0

(
s (m) e−(j 2πmk

K)ej
2πnk
K

))
(10.7)

Note that the orthogonality relation we use so often has a di�erent character now.

K−1∑
k=0

(
e−(j 2πkm

K)ej
2πkn
K

)
=

 K if m = {n, (n±K) , (n± 2K) , . . . }
0 otherwise

(10.8)

We obtain nonzero value whenever the two indices di�er by multiples of K. We can express this result as
K
∑
l (δ (m− n− lK)). Thus, our formula becomes

s (n) =
N−1∑
m=0

(
s (m)K

∞∑
l=−∞

(δ (m− n− lK))

)
(10.9)

2This content is available online at <http://cnx.org/content/m10249/2.26/>.
3"Modeling the Speech Signal", Figure 5: spectrogram <http://cnx.org/content/m0049/latest/#spectrogram>
4"Discrete-Time Fourier Transform (DTFT)", (1) <http://cnx.org/content/m10247/latest/#eqn1>

182 CHAPTER 10. DISCRETE TIME FOURIER TRANSFORM (DTFT)

The integers n and m both range over {0, . . . , N − 1}. To have an inverse transform, we need the sum
to be a single unit sample for m, n in this range. If it did not, then s (n) would equal a sum of values,
and we would not have a valid transform: Once going into the frequency domain, we could not get back
unambiguously! Clearly, the term l = 0 always provides a unit sample (we'll take care of the factor of K
soon). If we evaluate the spectrum at fewer frequencies than the signal's duration, the term corresponding
to m = n + K will also appear for some values of m, n = {0, . . . , N − 1}. This situation means that our
prototype transform equals s (n) + s (n+K) for some values of n. The only way to eliminate this problem
is to require K ≥ N : We must have at least as many frequency samples as the signal's duration. In this
way, we can return from the frequency domain we entered via the DFT.

Exercise 10.1 (Solution on p. 190.)

When we have fewer frequency samples than the signal's duration, some discrete-time signal values
equal the sum of the original signal values. Given the sampling interpretation of the spectrum,
characterize this e�ect a di�erent way.

Another way to understand this requirement is to use the theory of linear equations. If we write out the
expression for the DFT as a set of linear equations,

s (0) + s (1) + · · ·+ s (N − 1) = S (0) (10.10)

s (0) + s (1) e(−j) 2π
K + · · ·+ s (N − 1) e(−j) 2π(N−1)

K = S (1)

...

s (0) + s (1) e(−j) 2π(K−1)
K + · · ·+ s (N − 1) e(−j) 2π(N−1)(K−1)

K = S (K − 1)

we have K equations in N unknowns if we want to �nd the signal from its sampled spectrum. This require-
ment is impossible to ful�ll if K < N ; we must have K ≥ N . Our orthogonality relation essentially says that
if we have a su�cient number of equations (frequency samples), the resulting set of equations can indeed be
solved.

By convention, the number of DFT frequency values K is chosen to equal the signal's duration N . The
discrete Fourier transform pair consists of

Discrete Fourier Transform Pair

S (k) =
N−1∑
n=0

(
s (n) e−(j 2πnk

N)
)

(10.11)

s (n) =
1
N

N−1∑
k=0

(
S (k) ej

2πnk
N

)
(10.12)

Example 10.1
Use this demonstration to perform DFT analysis of a signal.

This is an unsupported media type. To view, please see
http://cnx.org/content/m10249/latest/DFTanalysis.llb

Example 10.2
Use this demonstration to synthesize a signal from a DFT sequence.

183

This is an unsupported media type. To view, please see
http://cnx.org/content/m10249/latest/DFT_Component_Manipulation.llb

10.3 Table of Common Fourier Transforms5

Time Domain Signal Frequency Domain Signal Condition

e−(at)u (t) 1
a+jω a > 0

eatu (−t) 1
a−jω a > 0

e−(a|t|) 2a
a2+ω2 a > 0

te−(at)u (t) 1
(a+jω)2

a > 0

tne−(at)u (t) n!
(a+jω)n+1 a > 0

δ (t) 1

1 2πδ (ω)

ejω0t 2πδ (ω − ω0)

cos (ω0t) π (δ (ω − ω0) + δ (ω + ω0))

sin (ω0t) jπ (δ (ω + ω0)− δ (ω − ω0))

u (t) πδ (ω) + 1
jω

sgn (t) 2
jω

cos (ω0t)u (t) π
2 (δ (ω − ω0) + δ (ω + ω0)) +
jω

ω02−ω2

sin (ω0t)u (t) π
2j (δ (ω − ω0)− δ (ω + ω0)) +
ω0

ω02−ω2

e−(at)sin (ω0t)u (t) ω0
(a+jω)2+ω02 a > 0

e−(at)cos (ω0t)u (t) a+jω
(a+jω)2+ω02 a > 0

u (t+ τ)− u (t− τ) 2τ sin(ωτ)
ωτ = 2τsinc (ωt)

ω0
π
sin(ω0t)
ω0t

= ω0
π sinc (ω0) u (ω + ω0)− u (ω − ω0)(

t
τ + 1

) (
u
(
t
τ + 1

)
− u

(
t
τ

))
+(

−
(
t
τ

)
+ 1
) (
u
(
t
τ

)
− u

(
t
τ − 1

))
=

triag
(
t

2τ

) τsinc2
(
ωτ
2

)

ω0
2π sinc

2
(
ω0t
2

) (
ω
ω0

+ 1
)(

u
(
ω
ω0

+ 1
)
− u

(
ω
ω0

))
+(

−
(
ω
ω0

)
+ 1
)(

u
(
ω
ω0

)
− u

(
ω
ω0
− 1
))

=

triag
(

ω
2ω0

)
∑∞
n=−∞ (δ (t− nT)) ω0

∑∞
n=−∞ (δ (ω − nω0)) ω0 = 2π

T

e
−
“
t2

2σ2

”
σ
√

2πe−
“
σ2ω2

2

”
5This content is available online at <http://cnx.org/content/m10099/2.9/>.

184 CHAPTER 10. DISCRETE TIME FOURIER TRANSFORM (DTFT)

10.4 Discrete-Time Fourier Transform (DTFT)6

Discrete-Time Fourier Transform

X (ω) =
∞∑

n=−∞

(
x (n) e−(jωn)

)
(10.13)

Inverse Discrete-Time Fourier Transform

x (n) =
1

2π

∫ 2π

0

X (ω) ejωndω (10.14)

10.4.1 Relevant Spaces

The Discrete-Time Fourier Transform 7maps in�nite-length, discrete-time signals in l2 to �nite-length (or
2π-periodic), continuous-frequency signals in L2.

Figure 10.2: Mapping l2 (Z) in the time domain to L2 ([0, 2π)) in the frequency domain.

6This content is available online at <http://cnx.org/content/m10108/2.11/>.
7"Discrete-Time Fourier Transform (DTFT)" <http://cnx.org/content/m10247/latest/>

185

10.5 Discrete-Time Fourier Transform Properties8

Discrete-Time Fourier Transform Properties

Sequence Domain Frequency Domain

Linearity a1s1 (n) + a2s2 (n) a1S1

(
ej2πf

)
+ a2S2

(
ej2πf

)
Conjugate Symmetry s (n) real S

(
ej2πf

)
= S

(
e−(j2πf)

)∗
Even Symmetry s (n) = s (−n) S

(
ej2πf

)
= S

(
e−(j2πf)

)
Odd Symmetry s (n) = − (s (−n)) S

(
ej2πf

)
= −

(
S
(
e−(j2πf)

))
Time Delay s (n− n0) e−(j2πfn0)S

(
ej2πf

)
Complex Modulation ej2πf0ns (n) S

(
ej2π(f−f0)

)
Amplitude Modulation s (n) cos (2πf0n)

S(ej2π(f−f0))+S(ej2π(f+f0))
2

s (n) sin (2πf0n)
S(ej2π(f−f0))−S(ej2π(f+f0))

2j

Multiplication by n ns (n) 1
−(2jπ)

d
df

(
S
(
ej2πf

))
Sum

∑∞
n=−∞ (s (n)) S

(
ej2π0

)
Value at Origin s (0)

∫ 1
2

−(1
2) S

(
ej2πf

)
df

Parseval's Theorem
∑∞
n=−∞

(
(|s (n) |)2

) ∫ 1
2

−(1
2)
(
|S
(
ej2πf

)
|
)2
df

Figure 10.3: Discrete-time Fourier transform properties and relations.

10.6 Discrete-Time Fourier Transform Pair9

When we obtain the discrete-time signal via sampling an analog signal, the Nyquist frequency corresponds
to the discrete-time frequency 1

2 . To show this, note that a sinusoid at the Nyquist frequency 1
2Ts

has a
sampled waveform that equals

Sinusoid at Nyquist Frequency 1/2T

cos
(

2π 1
2Ts

nTs

)
= cos (πn)

= (−1)n
(10.15)

The exponential in the DTFT at frequency 1
2 equals e

−(j2πn)
2 = e−(jπn) = (−1)n , meaning that the

correspondence between analog and discrete-time frequency is established:

Analog, Discrete-Time Frequency Relationship

fD = fATs (10.16)

8This content is available online at <http://cnx.org/content/m0506/2.6/>.
9This content is available online at <http://cnx.org/content/m0525/2.6/>.

186 CHAPTER 10. DISCRETE TIME FOURIER TRANSFORM (DTFT)

where fD and fA represent discrete-time and analog frequency variables, respectively. The aliasing
�gure10 provides another way of deriving this result. As the duration of each pulse in the periodic sampling
signal pTs (t) narrows, the amplitudes of the signal's spectral repetitions, which are governed by the Fourier
series coe�cients of pTs (t) , become increasingly equal. 11 Thus, the sampled signal's spectrum becomes
periodic with period 1

Ts
. Thus, the Nyquist frequency 1

2Ts
corresponds to the frequency 1

2 .
The inverse discrete-time Fourier transform is easily derived from the following relationship:∫ 1

2

−(1
2)
e−(j2πfm)e+jπfndf =

 1 if m = n

0 if m 6= n
(10.17)

Therefore, we �nd that∫ 1
2

−(1
2) S

(
ej2πf

)
e+j2πfndf =

∫ 1
2

−(1
2)
∑
m

(
s (m) e−(j2πfm)e+j2πfn

)
df

=
∑
m

(
s (m)

∫ 1
2

−(1
2) e

(−(j2πf))(m−n)df

)
= s (n)

(10.18)

The Fourier transform pairs in discrete-time are

Fourier Transform Pairs in Discrete Time

S
(
ej2πf

)
=
∑
n

(
s (n) e−(j2πfn)

)
(10.19)

Fourier Transform Pairs in Discrete Time

s (n) =
∫ 1

2

−(1
2)
S
(
ej2πf

)
e+j2πfndf (10.20)

10.7 DTFT Examples12

Example 10.3
Let's compute the discrete-time Fourier transform of the exponentially decaying sequence s (n) =
anu (n) , where u (n) is the unit-step sequence. Simply plugging the signal's expression into the
Fourier transform formula,

Fourier Transform Formula

S
(
ej2πf

)
=

∑∞
n=−∞

(
anu (n) e−(j2πfn)

)
=

∑∞
n=0

((
ae−(j2πf)

)n) (10.21)

This sum is a special case of the geometric series.

Geometric Series
∞∑
n=0

(αn) =
1

1− α
, |α| < 1 (10.22)

10"The Sampling Theorem", Figure 2: aliasing <http://cnx.org/content/m0050/latest/#alias>
11Examination of the periodic pulse signal reveals that as ∆ decreases, the value of c0 , the largest Fourier coe�cient, decreases

to zero: |c0| = A∆
T

. Thus, to maintain a mathematically viable Sampling Theorem, the amplitude A must increase as 1
∆

,
becoming in�nitely large as the pulse duration decreases. Practical systems use a small value of ∆ , say 0.1Ts and use ampli�ers
to rescale the signal.

12This content is available online at <http://cnx.org/content/m0524/2.10/>.

187

Thus, as long as |a| < 1 , we have our Fourier transform.

S
(
ej2πf

)
=

1
1− ae−(j2πf)

(10.23)

Using Euler's relation, we can express the magnitude and phase of this spectrum.

|S
(
ej2πf

)
| = 1√

(1− acos (2πf))2 + a2sin2 (2πf)
(10.24)

∠
(
S
(
ej2πf

))
= −

(
arctan

(
asin (2πf)

1− acos (2πf)

))
(10.25)

No matter what value of a we choose, the above formulae clearly demonstrate the periodic
nature of the spectra of discrete-time signals. Figure 10.4 shows indeed that the spectrum is a
periodic function. We need only consider the spectrum between −

(
1
2

)
and 1

2 to unambiguously
de�ne it. When a > 0 , we have a lowpass spectrum � the spectrum diminishes as frequency
increases from 0 to 1

2 � with increasing a leading to a greater low frequency content; for a < 0 ,
we have a highpass spectrum (Figure 10.5).

-2 -1 0 1 2

1

2

f

|S(ej2πf)|

-2 -1 1 2

-45

45

f

∠S(ej2πf)

Figure 10.4: The spectrum of the exponential signal (a = 0.5) is shown over the frequency range
[−2, 2], clearly demonstrating the periodicity of all discrete-time spectra. The angle has units of degrees.

188 CHAPTER 10. DISCRETE TIME FOURIER TRANSFORM (DTFT)

f

a = 0.9

a = 0.5

a = –0.5

S
pe

ct
ra

l M
ag

ni
tu

de
 (

dB
)

-10

0

10

20

0.5

a = 0.9

a = 0.5

a = –0.5

A
ng

le
 (

de
gr

ee
s)

f

-90

-45

0

45

90

0.5

Figure 10.5: The spectra of several exponential signals are shown. What is the apparent relationship
between the spectra for a = 0.5 and a = −0.5 ?

Example 10.4
Analogous to the analog pulse signal, let's �nd the spectrum of the length- N pulse sequence.

s (n) =

 1 if 0 ≤ n ≤ N − 1

0 otherwise
(10.26)

The Fourier transform of this sequence has the form of a truncated geometric series.

S
(
ej2πf

)
=
N−1∑
n=0

(
e−(j2πfn)

)
(10.27)

For the so-called �nite geometric series, we know that

Finite Geometric Series
N+n0−1∑
n=n0

(αn) = αn0
1− αN

1− α
(10.28)

for all values of α .

Exercise 10.2 (Solution on p. 190.)

Derive this formula for the �nite geometric series sum. The "trick" is to consider the di�erence
between the series'; sum and the sum of the series multiplied by α .

Applying this result yields (Figure 10.6.)

S
(
ej2πf

)
= 1−e−(j2πfN)

1−e−(j2πf)

= e(−(jπf))(N−1) sin(πfN)
sin(πf)

(10.29)

189

The ratio of sine functions has the generic form of sin(Nx)
sin(x) , which is known as the discrete-time sinc

function, dsinc (x) . Thus, our transform can be concisely expressed as S
(
ej2πf

)
= e(−(jπf))(N−1)dsinc (πf)

. The discrete-time pulse's spectrum contains many ripples, the number of which increase with N , the pulse's
duration.

f0

5

10

S
pe

ct
ra

l M
ag

ni
tu

de

0.5

-180

-90

0

90

180

f
0.5

A
ng

le
 (

de
gr

ee
s)

Figure 10.6: The spectrum of a length-ten pulse is shown. Can you explain the rather complicated
appearance of the phase?

190 CHAPTER 10. DISCRETE TIME FOURIER TRANSFORM (DTFT)

Solutions to Exercises in Chapter 10

Solution to Exercise 10.1 (p. 182)
This situation amounts to aliasing in the time-domain.

Solution to Exercise 10.2 (p. 188)

α

N+n0−1∑
n=n0

(αn)−
N+n0−1∑
n=n0

(αn) = αN+n0 − αn0 (10.30)

which, after manipulation, yields the geometric sum formula.

Chapter 11

Continuous Time Fourier Transform
(CTFT)

11.1 Continuous-Time Fourier Transform (CTFT)1

11.1.1 Introduction

Due to the large number of continuous-time signals that are present, the Fourier series2 provided us the
�rst glimpse of how me we may represent some of these signals in a general manner: as a superposition of a
number of sinusoids. Now, we can look at a way to represent continuous-time nonperiodic signals using the
same idea of superposition. Below we will present the Continuous-Time Fourier Transform (CTFT),
also referred to as just the Fourier Transform (FT). Because the CTFT now deals with nonperiodic signals,
we must now �nd a way to include all frequencies in the general equations.

11.1.1.1 Equations

Continuous-Time Fourier Transform

F (Ω) =
∫ ∞
−∞

f (t) e−(jΩt)dt (11.1)

Inverse CTFT

f (t) =
1

2π

∫ ∞
−∞
F (Ω) ejΩtdΩ (11.2)

warning: Do not be confused by notation - it is not uncommon to see the above formula written
slightly di�erent. One of the most common di�erences among many professors is the way that the
exponential is written. Above we used the radial frequency variable Ω in the exponential, where
Ω = 2πf , but one will often see professors include the more explicit expression, j2πft, in the
exponential. Click here3 for an overview of the notation used in Connexion's DSP modules.

The above equations for the CTFT and its inverse come directly from the Fourier series and our under-
standing of its coe�cients. For the CTFT we simply utilize integration rather than summation to be able
to express the aperiodic signals. This should make sense since for the CTFT we are simply extending the

1This content is available online at <http://cnx.org/content/m10098/2.9/>.
2"Classic Fourier Series" <http://cnx.org/content/m0039/latest/>
3"DSP Notation" <http://cnx.org/content/m10161/latest/>

191

192 CHAPTER 11. CONTINUOUS TIME FOURIER TRANSFORM (CTFT)

ideas of the Fourier series to include nonperiodic signals, and thus the entire frequency spectrum. Look at
the Derivation of the Fourier Transform4 for a more in depth look at this.

11.1.2 Relevant Spaces

The Continuous-Time Fourier Transform maps in�nite-length, continuous-time signals in L2 to in�nite-
length, continuous-frequency signals in L2. Review the Fourier Analysis (Section 7.1) for an overview of all
the spaces used in Fourier analysis.

Figure 11.1: Mapping L2 (R) in the time domain to L2 (R) in the frequency domain.

For more information on the characteristics of the CTFT, please look at the module on Properties of the
Fourier Transform (Section 11.2).

11.1.3 Example Problems

Exercise 11.1 (Solution on p. 196.)

Find the Fourier Transform (CTFT) of the function

f (t) =

 e−(αt) if t ≥ 0

0 otherwise
(11.3)

Exercise 11.2 (Solution on p. 196.)

Find the inverse Fourier transform of the square wave de�ned as

X (Ω) =

 1 if |Ω| ≤M
0 otherwise

(11.4)

11.2 Properties of the Continuous-Time Fourier Transform5

This module will look at some of the basic properties of the Continuous-Time Fourier Transform (Sec-
tion 11.1) (CTFT). The �rst section contains a table that illustrates the properties, and the sections following
it discuss a few of the more interesting properties in more depth. In the table, click on the operation name
to be taken to the properties explanation found later on this page. Look at this module (Section 5.6) for an
expanded table of more Fourier transform properties.

4"Derivation of the Fourier Transform" <http://cnx.org/content/m0046/latest/>
5This content is available online at <http://cnx.org/content/m10100/2.13/>.

193

note: We will be discussing these properties for aperiodic, continuous-time signals but understand
that very similar properties hold for discrete-time signals and periodic signals as well.

11.2.1 Table of CTFT Properties

Operation Name Signal (f (t)) Transform (F (ω))

Addition (Section 11.2.2.1: Lin-
earity)

f1 (t) + f2 (t) F1 (ω) + F2 (ω)

Scalar Multiplication (Sec-
tion 11.2.2.1: Linearity)

αf (t) αF (t)

Symmetry (Section 11.2.2.2:
Symmetry)

F (t) 2πf (−ω)

Time Scaling (Section 11.2.2.3:
Time Scaling)

f (αt) 1
|α|F

(
ω
α

)
Time Shift (Section 11.2.2.4:
Time Shifting)

f (t− τ) F (ω) e−(jωτ)

Modulation (Frequency Shift)
(Section 11.2.2.5: Modulation
(Frequency Shift))

f (t) ejφt F (ω − φ)

Convolution in Time (Sec-
tion 11.2.2.6: Convolution)

(f1 (t) , f2 (t)) F1 (t)F2 (t)

Convolution in Frequency (Sec-
tion 11.2.2.6: Convolution)

f1 (t) f2 (t) 1
2π (F1 (t) , F2 (t))

Di�erentiation (Section 11.2.2.7:
Time Di�erentiation)

dn

dtn f (t) (jω)nF (ω)

11.2.2 Discussion of Fourier Transform Properties

After glancing at the above table and getting a feel for the properties of the CTFT, we will now take a little
more time to discuss some of the more interesting, and more useful, properties.

11.2.2.1 Linearity

The combined addition and scalar multiplication properties in the table above demonstrate the basic property
of linearity. What you should see is that if one takes the Fourier transform of a linear combination of signals
then it will be the same as the linear combination of the Fourier transforms of each of the individual signals.
This is crucial when using a table (Section 10.3) of transforms to �nd the transform of a more complicated
signal.

Example 11.1
We will begin with the following signal:

z (t) = αf1 (t) + αf2 (t) (11.5)

Now, after we take the Fourier transform, shown in the equation below, notice that the linear
combination of the terms is una�ected by the transform.

Z (ω) = αF1 (ω) + αF2 (ω) (11.6)

194 CHAPTER 11. CONTINUOUS TIME FOURIER TRANSFORM (CTFT)

11.2.2.2 Symmetry

Symmetry is a property that can make life quite easy when solving problems involving Fourier transforms.
Basically what this property says is that since a rectangular function in time is a sinc function in frequency,
then a sinc function in time will be a rectangular function in frequency. This is a direct result of the similarity
between the forward CTFT and the inverse CTFT. The only di�erence is the scaling by 2π and a frequency
reversal.

11.2.2.3 Time Scaling

This property deals with the e�ect on the frequency-domain representation of a signal if the time variable
is altered. The most important concept to understand for the time scaling property is that signals that are
narrow in time will be broad in frequency and vice versa. The simplest example of this is a delta function, a
unit pulse6 with a very small duration, in time that becomes an in�nite-length constant function in frequency.

The table above shows this idea for the general transformation from the time-domain to the frequency-
domain of a signal. You should be able to easily notice that these equations show the relationship mentioned
previously: if the time variable is increased then the frequency range will be decreased.

11.2.2.4 Time Shifting

Time shifting shows that a shift in time is equivalent to a linear phase shift in frequency. Since the frequency
content depends only on the shape of a signal, which is unchanged in a time shift, then only the phase
spectrum will be altered. This property can be easily proved using the Fourier Transform, so we will show
the basic steps below:

Example 11.2
We will begin by letting z (t) = f (t− τ). Now let us take the Fourier transform with the previous
expression substituted in for z (t).

Z (ω) =
∫ ∞
−∞

f (t− τ) e−(jωt)dt (11.7)

Now let us make a simple change of variables, where σ = t − τ . Through the calculations below,
you can see that only the variable in the exponential are altered thus only changing the phase in
the frequency domain.

Z (ω) =
∫∞
−∞ f (σ) e−(jω(σ+τ)t)dτ

= e−(jωτ)
∫∞
−∞ f (σ) e−(jωσ)dσ

= e−(jωτ)F (ω)

(11.8)

11.2.2.5 Modulation (Frequency Shift)

Modulation is absolutely imperative to communications applications. Being able to shift a signal to a di�erent
frequency, allows us to take advantage of di�erent parts of the electromagnetic spectrum is what allows us
to transmit television, radio and other applications through the same space without signi�cant interference.

The proof of the frequency shift property is very similar to that of the time shift (Section 11.2.2.4: Time
Shifting); however, here we would use the inverse Fourier transform in place of the Fourier transform. Since

6"Elemental Signals": Section Pulse <http://cnx.org/content/m0004/latest/#pulsedef>

195

we went through the steps in the previous, time-shift proof, below we will just show the initial and �nal step
to this proof:

z (t) =
1

2π

∫ ∞
−∞

F (ω − φ) ejωtdω (11.9)

Now we would simply reduce this equation through another change of variables and simplify the terms.
Then we will prove the property expressed in the table above:

z (t) = f (t) ejφt (11.10)

11.2.2.6 Convolution

Convolution is one of the big reasons for converting signals to the frequency domain, since convolution in
time becomes multiplication in frequency. This property is also another excellent example of symmetry
between time and frequency. It also shows that there may be little to gain by changing to the frequency
domain when multiplication in time is involved.

We will introduce the convolution integral here, but if you have not seen this before or need to refresh your
memory, then look at the continuous-time convolution (Section 3.2) module for a more in depth explanation
and derivation.

y (t) = (f1 (t) , f2 (t))

=
∫∞
−∞ f1 (τ) f2 (t− τ) dτ

(11.11)

11.2.2.7 Time Di�erentiation

Since LTI (Section 2.1) systems can be represented in terms of di�erential equations, it is apparent with
this property that converting to the frequency domain may allow us to convert these complicated di�erential
equations to simpler equations involving multiplication and addition. This is often looked at in more detail
during the study of the Laplace Transform (Section 13.1).

196 CHAPTER 11. CONTINUOUS TIME FOURIER TRANSFORM (CTFT)

Solutions to Exercises in Chapter 11

Solution to Exercise 11.1 (p. 192)
In order to calculate the Fourier transform, all we need to use is (11.1) (Continuous-Time Fourier Transform),
complex exponentials (Section 1.6), and basic calculus.

F (Ω) =
∫∞
−∞ f (t) e−(jΩt)dt

=
∫∞

0
e−(αt)e−(jΩt)dt

=
∫∞

0
e(−t)(α+jΩ)dt

= 0− −1
α+jΩ

(11.12)

F (Ω) =
1

α+ jΩ
(11.13)

Solution to Exercise 11.2 (p. 192)
Here we will use (11.2) (Inverse CTFT) to �nd the inverse FT given that t 6= 0.

x (t) = 1
2π

∫M
−M ejΩtdΩ

= 1
2π e

jΩt|Ω,Ω=ejw

= 1
πtsin (Mt)

(11.14)

x (t) =
M

π

(
sinc

Mt

π

)
(11.15)

Chapter 12

Sampling Theorem

12.1 Sampling1

12.1.1 Introduction

The digital computer can process discrete time signals using extremely �exible and powerful algorithms.
However, most signals of interest are continuous time, which is how the almost always appear in nature.

This module introduces the idea of translating continuous time problems into discrete time, and you can
read on to learn more of the details and importance of sampling.

Key Questions

• How do we turn a continuous time signal into a discrete time signal (sampling, A/D)?
• When can we reconstruct (Section 12.2) a CT signal exactly from its samples (reconstruction, D/A)?
• Manipulating the DT signal does what to the reconstructed signal?

12.1.2 Sampling

Sampling (and reconstruction) are best understood in the frequency domain. We'll start by looking at some
examples

Exercise 12.1 (Solution on p. 217.)

What CT signal f (t) has the CTFT (Section 11.1) shown below?

f (t) =
1

2π

∫ ∞
−∞

F (jw) ejwtdw

Figure 12.1: The CTFT of f (t).

1This content is available online at <http://cnx.org/content/m10798/2.6/>.

197

198 CHAPTER 12. SAMPLING THEOREM

Hint: F (jw) = F1 (jw) ∗ F2 (jw) where the two parts of F (jw) are:

(a) (b)

Figure 12.2

Exercise 12.2 (Solution on p. 217.)

What DT signal fs [n] has the DTFT (Section 10.4) shown below?

fs [n] =
1

2π

∫ π

−π
fs
(
ejw
)
ejwndw

Figure 12.3: DTFT that is a periodic (with period = 2π) version of F (jw) in Figure 12.1.

199

Figure 12.4: f (t) is the continuous-time signal above and fs [n] is the discrete-time, sampled version
of f (t)

12.1.2.1 Generalization

Of course, the results from the above examples can be generalized to any f (t) with F (jw) = 0, |w| > π,
where f (t) is bandlimited to [−π, π].

(a) (b)

Figure 12.5: F (jw) is the CTFT of f (t).

200 CHAPTER 12. SAMPLING THEOREM

(a) (b)

Figure 12.6: Fs
`
ejw
´
is the DTFT of fs [n].

Fs
(
ejw
)
is a periodic (Section 6.1) (with period 2π) version of F (jw). Fs

(
ejw
)
is the DTFT of signal

sampled at the integers. F (jw) is the CTFT of signal.

conclusion: If f (t) is bandlimited to [−π, π] then the DTFT of the sampled version

fs [n] = f (n)

is just a periodic (with period 2π) version of F (jw).

12.1.3 Turning a Discrete Signal into a Continuous Signal

Now, let's look at turning a DT signal into a continuous time signal. Let fs [n] be a DT signal with DTFT
Fs
(
ejw
)

(a) (b)

Figure 12.7: Fs
`
ejw
´
is the DTFT of fs [n].

Now, set

fimp (t) =
∞∑

n=−∞
(fs [n] δ (t− n))

The CT signal, fimp (t), is non-zero only on the integers where there are impulses of height fs [n].

201

Figure 12.8

Exercise 12.3 (Solution on p. 217.)

What is the CTFT of fimp (t)?
Now, given the samples fs [n] of a bandlimited to [−π, π] signal, our next step will be to see how we can
reconstruct (Section 12.2) f (t).

Figure 12.9: Block diagram showing the very basic steps used to reconstruct f (t). Can we make our
results equal f (t) exactly?

12.2 Reconstruction2

12.2.1 Introduction

The reconstruction process begins by taking a sampled signal, which will be in discrete time, and performing
a few operations in order to convert them into continuous-time and, with any luck, into an exact copy of
the original signal. A basic method used to reconstruct a [−π, π] bandlimited signal from its samples on the
integer is to do the following steps:

• turn the sample sequence fs [n] into an impulse train fimp (t)

• lowpass �lter fimp (t) to get the reconstruction
∼
f (t) (cuto� freq. = π)

2This content is available online at <http://cnx.org/content/m10788/2.5/>.

202 CHAPTER 12. SAMPLING THEOREM

Figure 12.10: Reconstruction block diagram with lowpass �lter (LPF).

The lowpass �lter's impulse response is g (t). The following equations allow us to reconstruct our signal

(Figure 12.11),
∼
f (t).

∼
f (t) = g (t) fimp (t)

= g (t)
∑∞
n=−∞ (fs [n] δ (t− n))

=
∼
f (t)

=
∑∞
n=−∞ (fs [n] (g (t) δ (t− n)))

=
∑∞
n=−∞ (fs [n] g (t− n))

(12.1)

Figure 12.11

12.2.1.1 Examples of Filters g

Example 12.1: Zero Order Hold
This type "�lter" is one of the most basic types of reconstruction �lters. It simply holds the value
that is in fs [n] for τ seconds. This creates a block or step like function where each value of the
pulse in fs [n] is simply dragged over to the next pulse. The equations and illustrations below
(Figure 12.12) depict how this reconstruction �lter works with the following g:

g (t) =

 1 if 0 < t < τ

0 otherwise

fs [n] =
∞∑

n=−∞
(fs [n] g (t− n)) (12.2)

203

(a) (b)

Figure 12.12: Zero Order Hold

question: How does
∼
f (t) reconstructed with a zero order hold compare to the original f (t) in

the frequency domain?

Example 12.2: Nth Order Hold
Here we will look at a few quick examples of variances to the Zero Order Hold �lter discussed in
the previous example.

(a)

(b)

(c)

Figure 12.13: Nth Order Hold Examples (nth order hold is equal to an nth order B-spline) (a) First
Order Hold (b) Second Order Hold (c) ∞ Order Hold

204 CHAPTER 12. SAMPLING THEOREM

12.2.2 Ultimate Reconstruction Filter

question: What is the ultimate reconstruction �lter?

Recall that (see Figure 12.14)

Figure 12.14: Our current reconstruction block diagram. Note that each of these signals has its own
corresponding CTFT or DTFT.

If G (jω) has the following shape (Figure 12.15):

Figure 12.15: Ideal lowpass �lter

then ∼
f (t) = f (t)

Therefore, an ideal lowpass �lter will give us perfect reconstruction!
In the time domain, impulse response

g (t) =
sin (πt)
πt

(12.3)

∼
f (t) =

∑∞
n=−∞ (fs [n] g (t− n))

=
∑∞
n=−∞

(
fs [n] sin(π(t−n))

π(t−n)

)
= f (t)

(12.4)

205

12.2.3 Amazing Conclusions

If f (t) is bandlimited to [−π, π], it can be reconstructed perfectly from its samples on the integers fs [n] =
f (t) |t=n

f (t) =
∞∑

n=−∞

(
fs [n]

sin (π (t− n))
π (t− n)

)
(12.5)

The above equation for perfect reconstruction deserves a closer look (Section 12.3), which you should
continue to read in the following section to get a better understanding of reconstruction. Here are a few
things to think about for now:

• What does sin(π(t−n))
π(t−n) equal at integers other than n?

• What is the support of sin(π(t−n))
π(t−n) ?

12.3 More on Reconstruction3

12.3.1 Introduction

In the previous module on reconstruction (Section 12.2), we gave an introduction into how reconstruction
works and brie�y derived an equation used to perform perfect reconstruction. Let us now take a closer look
at the perfect reconstruction formula:

f (t) =
∞∑

n=−∞

(
fs
sin (π (t− n))
π (t− n)

)
(12.6)

We are writing f (t) in terms of shifted and scaled sinc functions.{
sin (π (t− n))
π (t− n)

}
n∈Z

is a basis (Section 5.1.3: Basis) for the space of [−π, π] bandlimited signals. But wait

12.3.1.1 Derive Reconstruction Formulas

What is

<
sin (π (t− n))
π (t− n)

,
sin (π (t− k))
π (t− k)

>=? (12.7)

This inner product (Section 15.3) can be hard to calculate in the time domain, so let's use Plancharel
Theorem (Section 15.12)

< ·, · >=
1

2π

∫ π

−π
e−(jωn)ejωkdω (12.8)

3This content is available online at <http://cnx.org/content/m10790/2.4/>.

206 CHAPTER 12. SAMPLING THEOREM

(a)

(b)

Figure 12.16

if n = k

< sincn, sinck > = 1
2π

∫ π
−π e

−(jωn)ejωkdω

= 1
(12.9)

if n 6= k

< sincn, sinck > = 1
2π

∫ π
−π e

−(jωn)ejωndω

= 1
2π

∫ π
−π e

jω(k−n)dω

= 1
2π

sin(π(k−n))
j(k−n)

= 0

(12.10)

note: In (12.10) we used the fact that the integral of sinusoid over a complete interval is 0 to
simplify our equation.

So,

<
sin (π (t− n))
π (t− n)

,
sin (π (t− k))
π (t− k)

>=

 1 if n = k

0 if n 6= k
(12.11)

Therefore {
sin (π (t− n))
π (t− n)

}
n∈Z

207

is an orthonormal basis (Section 15.7.3: Orthonormal Basis) (ONB) for the space of [−π, π] bandlimited
functions.

sampling: Sampling is the same as calculating ONB coe�cients, which is inner products with
sincs

12.3.1.2 Summary

One last time for f (t) [−π, π] bandlimited
Synthesis

f (t) =
∞∑

n=−∞

(
fs [n]

sin (π (t− n))
π (t− n)

)
(12.12)

Analysis
fs [n] = f (t) |t=n (12.13)

In order to understand a little more about how we can reconstruct a signal exactly, it will be useful to
examine the relationships4 between the fourier transforms (CTFT and DTFT) in more depth.

12.4 Nyquist Theorem5

12.4.1 Introduction

Earlier you should have been exposed to the concepts behind sampling (Section 12.1) and the sampling
theorem. While learning about these ideas, you should have begun to notice that if we sample at too low of
a rate, there is a chance that our original signal will not be uniquely de�ned by our sampled signal. If this
happens, then there is no guarantee that we can correctly reconstruct (Section 12.2) the signal. As a result
of this, the Nyquist Theorem was created. Below, we will discuss just what exactly this theorem tells us.

12.4.2 Nyquist Theorem

We will let T equal our sampling period (distance between samples). Then let Ωs = 2π
T (sampling frequency

in radians/sec). We have seen that if f (t) is bandlimited to [−ΩB ,ΩB] and we sample with period T <
π
Ωb
⇒ 2π

Ωs
< π

ΩB
⇒ Ωs > 2ΩB then we can reconstruct f (t) from its samples.

Theorem 12.1: Nyquist Theorem ("Fundamental Theorem of DSP")
If f (t) is bandlimited to [−ΩB ,ΩB], we can reconstruct it perfectly from its samples

fs [n] = f (nT)

for Ωs = 2π
T > 2ΩB

ΩN = 2ΩB is called the "Nyquist frequency" for f (t). For perfect reconstruction to be possible

Ωs ≥ 2ΩB

where Ωs is the sampling frequency and ΩB is the highest frequency in the signal.

4"Examing Reconstruction Relations" <http://cnx.org/content/m10799/latest/>
5This content is available online at <http://cnx.org/content/m10791/2.5/>.

208 CHAPTER 12. SAMPLING THEOREM

Figure 12.17: Illustration of Nyquist Frequency

Example 12.3: Examples:

• Human ear hears frequencies up to 20 kHz → CD sample rate is 44.1 kHz.
• Phone line passes frequencies up to 4 kHz → phone company samples at 8 kHz.

12.4.2.1 Reconstruction

The reconstruction formula in the time domain looks like

f (t) =
∞∑

n=−∞

(
fs [n]

sin
(
π
T (t− nT)

)
π
T (t− nT)

)

We can conclude, just as before, that

sin
(
π
T (t− nT)

)
π
T (t− nT)

, n ∈ Z

is a basis (Section 5.1) for the space of [−ΩB ,ΩB] bandlimited functions, ΩB = π
T . The expansion coe�cient

for this basis are calculated by sampling f (t) at rate 2π
T = 2ΩB .

note: The basis is also orthogonal. To make it orthonormal (Section 15.8), we need a normaliza-
tion factor of

√
T .

12.4.2.2 The Big Question

Exercise 12.4 (Solution on p. 217.)

What if Ωs < 2ΩB? What happens when we sample below the Nyquist rate?

This is an unsupported media type. To view, please see
http://cnx.org/content/m10791/latest/NyquistPlot.llb

209

12.5 Aliasing6

12.5.1 Introduction

When considering the reconstruction (Section 12.2) of a signal, you should already be familiar with the idea
of the Nyquist rate (Section 12.4). This concept allows us to �nd the sampling rate that will provide for
perfect reconstruction of our signal. If we sample at too low of a rate (below the Nyquist rate), then problems
will arise that will make perfect reconstruction impossible - this problem is known as aliasing. Aliasing
occurs when there is an overlap in the shifted, perioidic copies of our original signal's FT, i.e. spectrum.

In the frequency domain, one will notice that part of the signal will overlap with the periodic signals next
to it. In this overlap the values of the frequency will be added together and the shape of the signals spectrum
will be unwantingly altered. This overlapping, or aliasing, makes it impossible to correctly determine the
correct strength of that frequency. Figure 12.18 provides a visual example of this phenomenon:

Figure 12.18: The spectrum of some bandlimited (to W Hz) signal is shown in the top plot. If the
sampling interval Ts is chosen too large relative to the bandwidth W , aliasing will occur. In the bottom
plot, the sampling interval is chosen su�ciently small to avoid aliasing. Note that if the signal were not
bandlimited, the component spectra would always overlap.

12.5.2 Aliasing and Sampling

If we sample too slowly, i.e.,

Ωs < 2ΩB , T >
π

ΩB
We cannot recover the signal from its samples due to aliasing.

Example 12.4

6This content is available online at <http://cnx.org/content/m10793/2.6/>.

210 CHAPTER 12. SAMPLING THEOREM

Let f1 (t) have CTFT.

Figure 12.19: In this �gure, note the following equation: ΩB − Ωs
2

= a

Let f2 (t) have CTFT.

Figure 12.20: The horizontal portions of the signal result from overlap with shifted replicas - showing
visual proof of aliasing.

Try to sketch and answer the following questions on your own:

• What does the DTFT of f1,s [n] = f1 (nT) look like?
• What does the DTFT of f2,s [n] = f2 (nT) look like?
• Do any other signals have the same DTFT as f1,s [n] and f2,s [n]?

CONCLUSION: If we sample below the Nyquist frequency, there are many signals that could have produced
that given sample sequence.

Figure 12.21: These are all equal!

211

Why the term "aliasing"? Because the same sample sequence can represent di�erent CT signals (as
opposed to when we sample above the Nyquist frequency, then the sample sequence represents a unique CT
signal).

Figure 12.22: These two signals contain the same four samples, yet are very di�erent signals.

Example 12.5
f (t) = cos (2πt)

Figure 12.23: The cosine function, f (t) = cos (2πt), and its CTFT.

Case 1: Sample Ωs = (8π) radsec ⇒ T = 1
4sec.

note: Ωs > 2ΩB

Case 2: Sample w
Ωs

=
(

8
3π
)
rad
sec ⇒ T = 3

4sec.

note: Ωs < 2ΩB

When we run the DTFT from Case #2 through the reconstruction steps, we realize that we end
up with the following cosine:

∼
f (t) = cos

(π
2
t
)

This is a "stretched" out version of our original. Clearly, our sampling rate was not high enough
to ensure correct reconstruction from the samples.

212 CHAPTER 12. SAMPLING THEOREM

You may have seen some e�ects of aliasing such as a wagon wheel turning backwards in a western movie.
Aliasing in images7 can result in Moire Patterns. Here is an example of an image that has Moire artifacts8

as a result of scanning at too low a frequency.

This is an unsupported media type. To view, please see http://cnx.org/content/m10793/latest/alias.llb

12.6 Anti-Aliasing Filters9

12.6.1 Introduction

The idea of aliasing (Section 12.5) has been described as the problem that occurs if a signal is not sampled
(Section 12.1) at a high enough rate (for example, below the Nyquist Frequency (Section 12.4)). But exactly
what kind of distortion does aliasing produce?

(a)

(b)

Figure 12.24

High frequencies in the original signal "fold back" into lower frequencies.
High frequencies masquerading as lower frequencies produces highly undesirable artifacts in the recon-

structed signal.

warning: We must avoid aliasing anyway we can.

7http://ptolemy.eecs.berkeley.edu/eecs20/week13/moire.html
8http://www.dvp.co.il/�lter/moire.html
9This content is available online at <http://cnx.org/content/m10794/2.4/>.

213

12.6.2 Avoiding Aliasing

What if it is impractical/impossible to sample at Ωs > 2ΩB?
Filter out the frequencies above Ωs

2 before you sample. The best way to visualize doing this is to imagine
the following simple steps:

1. Take the CTFT of the signal, f (t).
2. Send this signal through a lowpass �lter with the following speci�cation, ωc = Ωs

2 .

3. We now have a graph of our signal in the frequency domain with all values of |ω| > Ωs
2 equal to zero.

Now, we take the inverse CTFT to get back our continuous time signal, fa (t).
4. And �nally we are ready to sample our signal!

Example 12.6
Sample rate for CD = 44.1KHz.

Many musical instruments (e.g. highhat) contain frequencies above 22KHz (even though we
cannot hear them).

Because of this, we can �lter the output signal from the instrument before we sample it using
the following �lter:

Figure 12.25: This �lter will cuto� the higher, unnecessary frequencies, where |ωc| > 2π22kHz

Now the signal is ready to be sampled!

Example 12.7: Another Example
Speech bandwidth is > ± (20kHz), but it is perfectly intelligible when lowpass �ltered to a
± (4kHz) range. Because of this, we can take a normal speech signal and pass it through a �lter
like the one shown in Figure 12.25, where we now set |ωc| > 2π4kHz. The signal we receive from
this �lter only contains values where |ω| > 8πk.

Now we can sample at 16πk = 8kHz � standard telephony rate.

214 CHAPTER 12. SAMPLING THEOREM

12.7 Discrete Time Processing of Continuous Time Signals10

Figure 12.26: DSP System

How is the CTFT of y(t) related to the CTFT of f(t) (Figure 1)?
Let G (jω) = reconstruction �lter freq. response

Y (jω) = G (jω)Yimp (jω)

where Yimp (jω) is impulse sequence created from ys [n]. So,

Y (jω) = G (jω)Ys
(
ejωT

)
= G (jω)H

(
ejωT

)
Fs
(
ejωT

)

Y (jω) = G (jω)H
(
ejωT

)(1
T

∞∑
r=−∞

(
F

(
j
ωF2πr
T

)))

Y (jω) =
1
T
G (jω)H

(
ejωT

) ∞∑
r=−∞

(
F

(
j
ωF2πr
T

))
Now, lets assume that f(t) is bandlimited to

[
−
(
π
T

)
, πT
]

=
[
−
(

Ωs
2

)
, Ωs

2

]
andG (jω) is a perfect reconstruction

�lter. Then

Y (jω) =

 F (jω)H
(
ejωT

)
if |ω| ≤ π

T

0 otherwise

note: Y (jω) has the same "bandlimit" as F (jω).

So, for bandlimited signals, and with a high enough sampling rate and a perfect reconstruction �lter (Figure
2)

10This content is available online at <http://cnx.org/content/m10797/2.9/>.

215

Figure 12.27: FT's of original (analog) signal f(t) and sampled version of f(t) respectively.

is equivalent to using an analog LTI �lter (Figure 3)

Figure 12.28: Implementing a discrete time �lter (H) in analog

where

Ha (jω) =

 H
(
ejωT

)
if |ω| ≤ π

T

0 otherwise

216 CHAPTER 12. SAMPLING THEOREM

So, by being careful we can implement LTI systems for bandlimited signals on our computer!!!
Important note:
Ha (jω) = �lter induced by our system.
Ha (jω) is LTI only if

• h, the DT system, is LTI
• F (jω), the input, is bandlimited and the sample rate is high enough.

217

Solutions to Exercises in Chapter 12

Solution to Exercise 12.1 (p. 197)

f (t) =
1

2π

∫ ∞
−∞

F (jw) ejwtdw

Solution to Exercise 12.2 (p. 198)
Since F (jw) = 0 outside of [−2, 2]

f (t) =
1

2π

∫ 2

−2

F (jw) ejwtdw

Also, since we only use one interval to reconstruct fs [n] from its DTFT, we have

fs [n] =
1

2π

∫ 2

−2

fs
(
ejw
)
ejwndw

Since F (jw) = Fs
(
ejw
)
on [−2, 2]

fs [n] = f (t) |t=n
i.e. fs [n] is a sampled version of f (t).

Solution to Exercise 12.3 (p. 201)

fimp (t) =
∞∑

n=−∞
(fs [n] δ (t− n))

∼
F imp (jw) =

∫∞
−∞ fimp (t) e−(jwt)dt

=
∫∞
−∞

(∑∞
n=−∞ (fs [n] δ (t− n))

)
e−(jwt)dt

=
(∑∞

n=−∞ (fs [n])
) ∫∞
−∞ δ (t− n) e−(jwt)dt

=
(∑∞

n=−∞ (fs [n])
)
e−(jwn)

= Fs
(
ejw
)

(12.14)

So, the CTFT of fimp (t) is equal to the DTFT of fs [n]

note: We used the sifting property to show
∫∞
−∞ δ (t− n) e−(jwt)dt = e−(jwn)

Solution to Exercise 12.4 (p. 208)
Go through the steps: (see Figure 12.29)

218 CHAPTER 12. SAMPLING THEOREM

Figure 12.29

Finally, what will happen to Fs
(
ejω
)
now? To answer this �nal question, we will now need to look into

the concept of aliasing (Section 12.5).

Chapter 13

Laplace Transform and System Design

13.1 The Laplace Transforms1

The Laplace transform is a generalization of the Continuous-Time Fourier Transform (Section 11.1). How-
ever, instead of using complex sinusoids (Section 7.2) of the form ejωt, as the CTFT does, the Laplace
transform uses the more general, est, where s = σ + jω.

Although Laplace transforms are rarely solved using integration (tables (Section 13.3) and computers (e.g.
Matlab) are much more common), we will provide the bilateral Laplace transform pair here. These de�ne
the forward and inverse Laplace transformations. Notice the similarities between the forward and inverse
transforms. This will give rise to many of the same symmetries found in Fourier analysis (Section 7.1).

Laplace Transform

F (s) =
∫ ∞
−∞

f (t) e−(st)dt (13.1)

Inverse Laplace Transform

f (t) =
1

2πj

∫ c+j∞

c−j∞
F (s) estds (13.2)

13.1.1 Finding the Laplace and Inverse Laplace Transforms

13.1.1.1 Solving the Integral

Probably the most di�cult and least used method for �nding the Laplace transform of a signal is solving
the integral. Although it is technically possible, it is extremely time consuming. Given how easy the next
two methods are for �nding it, we will not provide any more than this. The integrals are primarily there in
order to understand where the following methods originate from.

13.1.1.2 Using a Computer

Using a computer to �nd Laplace transforms is relatively painless. Matlab has two functions, laplace
and ilaplace, that are both part of the symbolic toolbox, and will �nd the Laplace and inverse Laplace
transforms respectively. This method is generally preferred for more complicated functions. Simpler and
more contrived functions are usually found easily enough by using tables (Section 13.1.1.3: Using Tables).

1This content is available online at <http://cnx.org/content/m10110/2.12/>.

219

220 CHAPTER 13. LAPLACE TRANSFORM AND SYSTEM DESIGN

13.1.1.3 Using Tables

When �rst learning about the Laplace transform, tables are the most common means for �nding it. With
enough practice, the tables themselves may become unnecessary, as the common transforms can become
second nature. For the purpose of this section, we will focus on the inverse Laplace transform, since most
design applications will begin in the Laplace domain and give rise to a result in the time domain. The
method is as follows:

1. Write the function you wish to transform, H (s), as a sum of other functions, H (s) =
∑m
i=1 (Hi (s))

where each of the Hi is known from a table (Section 13.3).
2. Invert each Hi (s) to get its hi (t).
3. Sum up the hi (t) to get h (t) =

∑m
i=1 (hi (t))

Example 13.1
Compute h (t) for H (s) = 1

s+5 , Re (s) > −5
This can be solved directly from the table (Section 13.3) to be h (t) = e−(5t)

Example 13.2
Find the time domain representation, h (t), of H (s) = 25

s+10 , Re (s) > −10
To solve this, we �rst notice that H (s) can also be written as 25 1

s+10 . We can then go to the

table (Section 13.3) to �nd h (t) = 25e−(10t)

Example 13.3
We can now extend the two previous examples by �nding h (t) for H (s) = 1

s+5 + 25
s+10 , Re (s) >

−5
To do this, we take advantage of the additive property of linearity and the three-step method

described above to yield the result h (t) = e−(5t) + 25e−(10t)

For more complicated examples, it may be more di�cult to break up the transfer function into parts that
exist in a table. In this case, it is often necessary to use partial fraction expansion2 to get the transfer
function into a more usable form.

13.1.2 Visualizing the Laplace Transform

With the Fourier transform, we had a complex-valued function of a purely imaginary variable, F (jω).
This was something we could envision with two 2-dimensional plots (real and imaginary parts or magnitude
and phase). However, with Laplace, we have a complex-valued function of a complex variable. In
order to examine the magnitude and phase or real and imaginary parts of this function, we must examine
3-dimensional surface plots of each component.

2"Partial Fraction Expansion" <http://cnx.org/content/m2111/latest/>

221

real and imaginary sample plots

(a) (b)

Figure 13.1: Real and imaginary parts of H (s) are now each 3-dimensional surfaces. (a) The Real
part of H (s) (b) The Imaginary part of H (s)

magnitude and phase sample plots

(a) (b)

Figure 13.2: Magnitude and phase of H (s) are also each 3-dimensional surfaces. This representation
is more common than real and imaginary parts. (a) The Magnitude of H (s) (b) The Phase of H (s)

While these are legitimate ways of looking at a signal in the Laplace domain, it is quite di�cult to draw
and/or analyze. For this reason, a simpler method has been developed. Although it will not be discussed
in detail here, the method of Poles and Zeros (Section 13.6) is much easier to understand and is the way
both the Laplace transform and its discrete-time counterpart the Z-transform (Section 14.1) are represented
graphically.

222 CHAPTER 13. LAPLACE TRANSFORM AND SYSTEM DESIGN

13.2 Properties of the Laplace Transform3

Property Signal Laplace Transform Region of
Convergence

Linearity αx1 (t) + βx2 (t) αX1 (s) + βX2 (s) At least ROC1

⋂
ROC2

Time Shifting x (t− τ) e−(sτ)X (s) ROC

Frequency Shifting
(modulation)

eηtx (t) X (s− η) Shifted ROC (s− η
must be in the region of
convergence)

Time Scaling x (αt) (1− |α|)X (s− α) Scaled ROC (s− α
must be in the region of
convergence)

Conjugation x (t)∗ X (s∗)∗ ROC

Convolution x1 (t) ∗ x2 (t) X1 (t)X2 (t) At least ROC1

⋂
ROC2

Time Di�erentiation d
dtx (t) sX (s) At least ROC

Frequency
Di�erentiation

(−t)x (t) d
dsX (s) ROC

Integration in Time
∫ t
−∞ x (τ) dτ (1− s)X (s) At least

ROC
⋂
Re (s) > 0

3This content is available online at <http://cnx.org/content/m10117/2.9/>.

223

13.3 Table of Common Laplace Transforms4

Signal Laplace Transform Region of Convergence

δ (t) 1 All s

δ (t− T) e−(sT) All s

u (t) 1
s Re (s) > 0

− (u (−t)) 1
s Re (s) < 0

tu (t) 1
s2 Re (s) > 0

tnu (t) n!
sn+1 Re (s) > 0

− (tnu (−t)) n!
sn+1 Re (s) < 0

e−(λt)u (t) 1
s+λ Re (s) > −λ(

−
(
e−(λt)

))
u (−t) 1

s+λ Re (s) < −λ
te−(λt)u (t) 1

(s−λ)2
Re (s) > −λ

tne−(λt)u (t) n!
(s+λ)n+1 Re (s) > −λ

−
(
tne−(λt)u (−t)

)
n!

(s+λ)n+1 Re (s) < −λ

cos (bt)u (t) s
s2+b2 Re (s) > 0

sin (bt)u (t) b
s2+b2 Re (s) > 0

e−(at)cos (bt)u (t) s+a
(s+a)2+b2

Re (s) > −a

e−(at)sin (bt)u (t) b
(s+a)2+b2

Re (s) > −a
dn

dtn δ (t) sn All s

13.4 Region of Convergence for the Laplace Transform5

With the Laplace transform (Section 13.1), the s-plane represents a set of signals (complex exponentials
(Section 1.6)). For any given LTI (Section 2.1) system, some of these signals may cause the output of the
system to converge, while others cause the output to diverge ("blow up"). The set of signals that cause the
system's output to converge lie in the region of convergence (ROC). This module will discuss how to
�nd this region of convergence for any continuous-time, LTI system.

Recall the de�nition of the Laplace transform,

Laplace Transform

H (s) =
∫ ∞
−∞

h (t) e−(st)dt (13.3)

If we consider a causal (Section 1.1), complex exponential, h (t) = e−(at)u (t), we get the equation,∫ ∞
0

e−(at)e−(st)dt =
∫ ∞

0

e−((a+s)t)dt (13.4)

Evaluating this, we get
−1
s+ a

(
lim
t→∞

e−((s+a)t) − 1
)

(13.5)

4This content is available online at <http://cnx.org/content/m10111/2.10/>.
5This content is available online at <http://cnx.org/content/m10114/2.8/>.

224 CHAPTER 13. LAPLACE TRANSFORM AND SYSTEM DESIGN

Notice that this equation will tend to in�nity when lim
t→∞

e−((s+a)t) tends to in�nity. To understand when

this happens, we take one more step by using s = σ + jω to realize this equation as

lim
t→∞

e−(jωt)e−((σ+a)t) (13.6)

Recognizing that e−(jωt) is sinusoidal, it becomes apparent that e−(σ(a)t) is going to determine whether
this blows up or not. What we �nd is that if σ + a is positive, the exponential will be to a negative power,
which will cause it to go to zero as t tends to in�nity. On the other hand, if σ + a is negative or zero, the
exponential will not be to a negative power, which will prevent it from tending to zero and the system will
not converge. What all of this tells us is that for a causal signal, we have convergence when

Condition for Convergence
Re (s) > −a (13.7)

Although we will not go through the process again for anticausal signals, we could. In doing so, we would
�nd that the necessary condition for convergence is when

Necessary Condition for Anti-Causal Convergence

Re (s) < −a (13.8)

13.4.1 Graphical Understanding of ROC

Perhaps the best way to look at the region of convergence is to view it in the s-plane. What we observe is
that for a single pole, the region of convergence lies to the right of it for causal signals and to the left for
anti-causal signals.

(a) (b)

Figure 13.3: (a) The Region of Convergence for a causal signal. (b) The Region of Convergence for
an anti-causal signal.

Once we have recognized this, the natural question becomes: What do we do when we have multiple
poles? The simple answer is that we take the intersection of all of the regions of convergence of the respective
poles.

225

Example 13.4
Find H (s) and state the region of convergence for h (t) = e−(at)u (t) + e−(bt)u (−t)

Breaking this up into its two terms, we get transfer functions and respective regions of conver-
gence of

H1 (s) =
1

s+ a
, Re (s) > −a (13.9)

and

H2 (s) =
−1
s+ b

, Re (s) < −b (13.10)

Combining these, we get a region of convergence of −b > Re (s) > −a. If a > b, we can represent
this graphically. Otherwise, there will be no region of convergence.

Figure 13.4: The Region of Convergence of h (t) if a > b.

13.5 The Inverse Laplace Transform6

13.5.1 To Come

In The Transfer Function7 we shall establish that the inverse Laplace transform of a function h is(
L−1 (h)

)
(t) =

1
2π

∫ ∞
−∞

e(c+yj)th ((c+ yj) t) dy (13.11)

where j ≡
√
−1 and the real number c is chosen so that all of the singularities of h lie to the left of the

line of integration.

6This content is available online at <http://cnx.org/content/m10170/2.8/>.
7"Eigenvalue Problem: The Transfer Function" <http://cnx.org/content/m10490/latest/>

226 CHAPTER 13. LAPLACE TRANSFORM AND SYSTEM DESIGN

13.5.2 Proceeding with the Inverse Laplace Transform

With the inverse Laplace transform one may express the solution of x′ = Bx + g , as

x (t) = L−1
(

(sI −B)−1
)

(L{g}+ x (0)) (13.12)

As an example, let us take the �rst component of L{x}, namely

Lx1 (s) =
0.19

(
s2 + 1.5s+ 0.27

)(
s+ 1

6

)4 (s3 + 1.655s2 + 0.4078s+ 0.0039)
.

We de�ne:

De�nition 12: poles
Also called singularities, these are the points s at which Lx1 (s) blows up.
These are clearly the roots of its denominator, namely

−1/100,

(
−329/400±

√
73

16

)
, and − 1/6. (13.13)

All four being negative, it su�ces to take c = 0 and so the integration in (13.11) proceeds up the imaginary
axis. We don't suppose the reader to have already encountered integration in the complex plane but hope
that this example might provide the motivation necessary for a brief overview of such. Before that however
we note that MATLAB has digested the calculus we wish to develop. Referring again to �b3.m8 for details
we note that the ilaplace command produces

x1 (t) = 211.35e
−t
100 − (0.0554t3 + 4.5464t2 + 1.085t+ 474.19) e

−t
6 +

e
−(329t)

400

(
262.842cosh

(√
73t
16

))
+ 262.836sinh

(√
73t
16

)
8http://www.caam.rice.edu/∼caam335/cox/lectures/�b3.m

227

Figure 13.5: The 3 potentials associated with the RC circuit model �gure9.

The other potentials, see the �gure above, possess similar expressions. Please note that each of the poles
of L{x1} appear as exponents in x1 and that the coe�cients of the exponentials are polynomials whose
degrees is determined by the order of the respective pole.

13.6 Poles and Zeros10

13.6.1 Introduction

It is quite di�cult to qualitatively analyze the Laplace transform (Section 13.1) and Z-transform (Sec-
tion 14.1), since mappings of their magnitude and phase or real part and imaginary part result in multiple
mappings of 2-dimensional surfaces in 3-dimensional space. For this reason, it is very common to examine a
plot of a transfer function's11 poles and zeros to try to gain a qualitative idea of what a system does.

Given a continuous-time transfer function in the Laplace domain, H (s), or a discrete-time one in the
Z-domain, H (z), a zero is any value of s or z such that the transfer function is zero, and a pole is any value
of s or z such that the transfer function is in�nite. To de�ne them precisely:

De�nition 13: zeros
1. The value(s) for z where the numerator of the transfer function equals zero
2. The complex frequencies that make the overall gain of the �lter transfer function zero.

De�nition 14: poles
1. The value(s) for z where the denominator of the transfer function equals zero
2. The complex frequencies that make the overall gain of the �lter transfer function in�nite.

9"Nerve Fibers and the Dynamic Strang Quartet", Figure 1: An RC model of a nerve �ber
<http://cnx.org/content/m10168/latest/#RC_model_�g>

10This content is available online at <http://cnx.org/content/m10112/2.11/>.
11"Transfer Functions" <http://cnx.org/content/m0028/latest/>

228 CHAPTER 13. LAPLACE TRANSFORM AND SYSTEM DESIGN

13.6.2 Pole/Zero Plots

When we plot these in the appropriate s- or z-plane, we represent zeros with "o" and poles with "x". Refer
to this module (Section 14.7) for a detailed looking at plotting the poles and zeros of a z-transform on the
Z-plane.

Example 13.5

Find the poles and zeros for the transfer function H (s) = s2+6s+8
s2+2 and plot the results in the

s-plane.
The �rst thing we recognize is that this transfer function will equal zero whenever the top,

s2 + 6s+ 8, equals zero. To �nd where this equals zero, we factor this to get, (s+ 2) (s+ 4). This
yields zeros at s = −2 and s = −4. Had this function been more complicated, it might have been
necessary to use the quadratic formula.

For poles, we must recognize that the transfer function will be in�nite whenever the bottom
part is zero. That is when s2 + 2 is zero. To �nd this, we again look to factor the equation. This
yields

(
s+ j

√
2
) (
s− j

√
2
)
. This yields purely imaginary roots of +j

√
2 and −

(
j
√

2
)

Plotting this gives Figure 13.6 (Pole and Zero Plot)

Pole and Zero Plot

Figure 13.6: Sample pole-zero plot

Now that we have found and plotted the poles and zeros, we must ask what it is that this plot gives us.
Basically what we can gather from this is that the magnitude of the transfer function will be larger when
it is closer to the poles and smaller when it is closer to the zeros. This provides us with a qualitative
understanding of what the system does at various frequencies and is crucial to the discussion of stability
(Section 3.4).

13.6.3 Repeated Poles and Zeros

It is possible to have more than one pole or zero at any given point. For instance, the discrete-time transfer
function H (z) = z2 will have two zeros at the origin and the continuous-time function H (s) = 1

s25 will have

229

25 poles at the origin.

13.6.4 Pole-Zero Cancellation

An easy mistake to make with regards to poles and zeros is to think that a function like (s+3)(s−1)
s−1 is the

same as s+ 3. In theory they are equivalent, as the pole and zero at s = 1 cancel each other out in what is
known as pole-zero cancellation. However, think about what may happen if this were a transfer function
of a system that was created with physical circuits. In this case, it is very unlikely that the pole and zero
would remain in exactly the same place. A minor temperature change, for instance, could cause one of them
to move just slightly. If this were to occur a tremendous amount of volatility is created in that area, since
there is a change from in�nity at the pole to zero at the zero in a very small range of signals. This is generally
a very bad way to try to eliminate a pole. A much better way is to use control theory to move the pole
to a better place.

230 CHAPTER 13. LAPLACE TRANSFORM AND SYSTEM DESIGN

Chapter 14

Z-Transform and Digital Filtering

14.1 The Z Transform: De�nition1

14.1.1 Basic De�nition of the Z-Transform

The z-transform of a sequence is de�ned as

X (z) =
∞∑

n=−∞

(
x [n] z−n

)
(14.1)

Sometimes this equation is referred to as the bilateral z-transform. At times the z-transform is de�ned
as

X (z) =
∞∑
n=0

(
x [n] z−n

)
(14.2)

which is known as the unilateral z-transform.
There is a close relationship between the z-transform and the Fourier transform of a discrete time

signal, which is de�ned as

X
(
ejω
)

=
∞∑

n=−∞

(
x [n] e−(jωn)

)
(14.3)

Notice that that when the z−n is replaced with e−(jωn) the z-transform reduces to the Fourier Transform.
When the Fourier Transform exists, z = ejω , which is to have the magnitude of z equal to unity.

14.1.2 The Complex Plane

In order to get further insight into the relationship between the Fourier Transform and the Z-Transform it
is useful to look at the complex plane or z-plane. Take a look at the complex plane:

1This content is available online at <http://cnx.org/content/m10549/2.9/>.

231

232 CHAPTER 14. Z-TRANSFORM AND DIGITAL FILTERING

Z-Plane

Figure 14.1

The Z-plane is a complex plane with an imaginary and real axis referring to the complex-valued variable
z. The position on the complex plane is given by rejω , and the angle from the positive, real axis around
the plane is denoted by ω. X (z) is de�ned everywhere on this plane. X

(
ejω
)
on the other hand is de�ned

only where |z| = 1, which is referred to as the unit circle. So for example, ω = 1 at z = 1 and ω = π at
z = −1. This is useful because, by representing the Fourier transform as the z-transform on the unit circle,
the periodicity of Fourier transform is easily seen.

14.1.3 Region of Convergence

The region of convergence, known as the ROC, is important to understand because it de�nes the region
where the z-transform exists. The ROC for a given x [n] , is de�ned as the range of z for which the z-transform
converges. Since the z-transform is a power series, it converges when x [n] z−n is absolutely summable.
Stated di�erently,

∞∑
n=−∞

(
|x [n] z−n|

)
<∞ (14.4)

must be satis�ed for convergence. This is best illustrated by looking at the di�erent ROC's of the z-
transforms of αnu [n] and αnu [n− 1].

Example 14.1
For

x [n] = αnu [n] (14.5)

233

Figure 14.2: x [n] = αnu [n] where α = 0.5.

X (z) =
∑∞
n=−∞ (x [n] z−n)

=
∑∞
n=−∞ (αnu [n] z−n)

=
∑∞
n=0 (αnz−n)

=
∑∞
n=0

((
αz−1

)n)
(14.6)

This sequence is an example of a right-sided exponential sequence because it is nonzero for n ≥ 0.
It only converges when |αz−1| < 1. When it converges,

X (z) = 1
1−αz−1

= z
z−α

(14.7)

If |αz−1| ≥ 1, then the series,
∑∞
n=0

((
αz−1

)n)
does not converge. Thus the ROC is the range of

values where
|αz−1| < 1 (14.8)

or, equivalently,
|z| > |α| (14.9)

234 CHAPTER 14. Z-TRANSFORM AND DIGITAL FILTERING

Figure 14.3: ROC for x [n] = αnu [n] where α = 0.5

Example 14.2
For

x [n] = (− (αn))u [−n− 1] (14.10)

235

Figure 14.4: x [n] = (− (αn))u [−n− 1] where α = 0.5.

X (z) =
∑∞
n=−∞ (x [n] z−n)

=
∑∞
n=−∞ ((− (αn))u [−n− 1] z−n)

= −
(∑−1

n=−∞ (αnz−n)
)

= −
(∑−1

n=−∞

((
α−1z

)−n))
= −

(∑∞
n=1

((
α−1z

)n))
= 1−

∑∞
n=0

((
α−1z

)n)
(14.11)

The ROC in this case is the range of values where

|α−1z| < 1 (14.12)

or, equivalently,
|z| < |α| (14.13)

If the ROC is satis�ed, then

X (z) = 1− 1
1−α−1z

= z
z−α

(14.14)

236 CHAPTER 14. Z-TRANSFORM AND DIGITAL FILTERING

Figure 14.5: ROC for x [n] = (− (αn))u [−n− 1]

14.2 Table of Common z-Transforms2

The table below provides a number of unilateral and bilateral z-transforms (Section 14.1). The table
also speci�es the region of convergence (Section 14.3).

note: The notation for z found in the table below may di�er from that found in other tables. For
example, the basic z-transform of u [n] can be written as either of the following two expressions,
which are equivalent:

z

z − 1
=

1
1− z−1

(14.15)

2This content is available online at <http://cnx.org/content/m10119/2.13/>.

237

Signal Z-Transform ROC

δ [n− k] z−k Allz

u [n] z
z−1 |z| > 1

− (u [−n− 1]) z
z−1 |z| < 1

nu [n] z
(z−1)2

|z| > 1

n2u [n] z(z+1)

(z−1)3
|z| > 1

n3u [n]
z(z2+4z+1)

(z−1)4
|z| > 1

(− (αn))u [−n− 1] z
z−α |z| < |α|

αnu [n] z
z−α |z| > |α|

nαnu [n] αz
(z−α)2

|z| > |α|

n2αnu [n] αz(z+α)

(z−α)3
|z| > |α|Qm

k=1(n−k+1)

αmm! αnu [n] z
(z−α)m+1

γncos (αn)u [n] z(z−γcos(α))
z2−(2γcos(α))z+γ2 |z| > |γ|

γnsin (αn)u [n] zγsin(α)
z2−(2γcos(α))z+γ2 |z| > |γ|

14.3 Region of Convergence for the Z-transform3

14.3.1 The Region of Convergence

The region of convergence, known as the ROC, is important to understand because it de�nes the region
where the z-transform (Section 14.1) exists. The z-transform of a sequence is de�ned as

X (z) =
∞∑

n=−∞

(
x [n] z−n

)
(14.16)

The ROC for a given x [n] , is de�ned as the range of z for which the z-transform converges. Since the
z-transform is a power series, it converges when x [n] z−n is absolutely summable. Stated di�erently,

∞∑
n=−∞

(
|x [n] z−n|

)
<∞ (14.17)

must be satis�ed for convergence.

14.3.2 Properties of the Region of Convergencec

The Region of Convergence has a number of properties that are dependent on the characteristics of the
signal, x [n].

• The ROC cannot contain any poles. By de�nition a pole is a where X (z) is in�nite. Since X (z) must
be �nite for all z for convergence, there cannot be a pole in the ROC.

• If x [n] is a �nite-duration sequence, then the ROC is the entire z-plane, except possibly z = 0 or
|z| =∞. A �nite-duration sequence is a sequence that is nonzero in a �nite interval n1 ≤ n ≤ n2.
As long as each value of x [n] is �nite then the sequence will be absolutely summable. When n2 > 0

3This content is available online at <http://cnx.org/content/m10622/2.5/>.

238 CHAPTER 14. Z-TRANSFORM AND DIGITAL FILTERING

there will be a z−1 term and thus the ROC will not include z = 0. When n1 < 0 then the sum will be
in�nite and thus the ROC will not include |z| = ∞. On the other hand, when n2 ≤ 0 then the ROC
will include z = 0, and when n1 ≥ 0 the ROC will include |z| = ∞. With these constraints, the only
signal, then, whose ROC is the entire z-plane is x [n] = cδ [n].

Figure 14.6: An example of a �nite duration sequence.

The next properties apply to in�nite duration sequences. As noted above, the z-transform converges
when |X (z) | <∞. So we can write

|X (z) | = |
∞∑

n=−∞

(
x [n] z−n

)
| ≤

∞∑
n=−∞

(
|x [n] z−n|

)
=

∞∑
n=−∞

(
|x [n] |(|z|)−n

)
(14.18)

We can then split the in�nite sum into positive-time and negative-time portions. So

|X (z) | ≤ N (z) + P (z) (14.19)

where

N (z) =
−1∑

n=−∞

(
|x [n] |(|z|)−n

)
(14.20)

and

P (z) =
∞∑
n=0

(
|x [n] |(|z|)−n

)
(14.21)

In order for |X (z) | to be �nite, |x [n] | must be bounded. Let us then set

|x (n) | ≤ C1r1
n (14.22)

for
n < 0

and
|x (n) | ≤ C2r2

n (14.23)

239

for
n ≥ 0

From this some further properties can be derived:

• If x [n] is a right-sided sequence, then the ROC extends outward from the outermost pole in X (z).
A right-sided sequence is a sequence where x [n] = 0 for n < n1 <∞. Looking at the positive-time
portion from the above derivation, it follows that

P (z) ≤ C2

∞∑
n=0

(
r2
n(|z|)−n

)
= C2

∞∑
n=0

((
r2

|z|

)n)
(14.24)

Thus in order for this sum to converge, |z| > r2, and therefore the ROC of a right-sided sequence is
of the form |z| > r2.

Figure 14.7: A right-sided sequence.

240 CHAPTER 14. Z-TRANSFORM AND DIGITAL FILTERING

Figure 14.8: The ROC of a right-sided sequence.

• If x [n] is a left-sided sequence, then the ROC extends inward from the innermost pole in X (z). A
right-sided sequence is a sequence where x [n] = 0 for n > n2 > −∞. Looking at the negative-time
portion from the above derivation, it follows that

N (z) ≤ C1

−1∑
n=−∞

(
r1
n(|z|)−n

)
= C1

−1∑
n=−∞

((
r1

|z|

)n)
= C1

∞∑
k=1

((
|z|
r1

)k)
(14.25)

Thus in order for this sum to converge, |z| < r1, and therefore the ROC of a left-sided sequence is of
the form |z| < r1.

Figure 14.9: A left-sided sequence.

241

Figure 14.10: The ROC of a left-sided sequence.

• If x [n] is a two-sided sequence, the ROC will be a ring in the z-plane that is bounded on the interior
and exterior by a pole. A two-sided sequence is an sequence with in�nite duration in the positive
and negative directions. From the derivation of the above two properties, it follows that if r2 < |z| < r2

converges, then both the positive-time and negative-time portions converge and thus X (z) converges
as well. Therefore the ROC of a two-sided sequence is of the form r2 < |z| < r2.

Figure 14.11: A two-sided sequence.

242 CHAPTER 14. Z-TRANSFORM AND DIGITAL FILTERING

Figure 14.12: The ROC of a two-sided sequence.

14.3.3 Examples

To gain further insight it is good to look at a couple of examples.

Example 14.3
Lets take

x1 [n] =
(

1
2

)n
u [n] +

(
1
4

)n
u [n] (14.26)

The z-transform of
(

1
2

)n
u [n] is z

z− 1
2
with an ROC at |z| > 1

2 .

Figure 14.13: The ROC of
`

1
2

´n
u [n]

243

The z-transform of
(−1

4

)n
u [n] is z

z+ 1
4
with an ROC at |z| > −1

4 .

Figure 14.14: The ROC of
`−1

4

´n
u [n]

Due to linearity,

X1 [z] = z
z− 1

2
+ z

z+ 1
4

=
2z(z− 1

8)
(z− 1

2)(z+ 1
4)

(14.27)

By observation it is clear that there are two zeros, at 0 and 1
8 , and two poles, at 1

2 , and
−1
4 .

Following the obove properties, the ROC is |z| > 1
2 .

244 CHAPTER 14. Z-TRANSFORM AND DIGITAL FILTERING

Figure 14.15: The ROC of x1 [n] =
`

1
2

´n
u [n] +

`−1
4

´n
u [n]

Example 14.4
Now take

x2 [n] =
(
−1
4

)n
u [n]−

(
1
2

)n
u [−n− 1] (14.28)

The z-transform and ROC of
(−1

4

)n
u [n] was shown in the example above (Example 14.3). The

z-transorm of
(
−
((

1
2

)n))
u [−n− 1] is z

z− 1
2
with an ROC at |z| > 1

2 .

245

Figure 14.16: The ROC of
`
−
``

1
2

´n´´
u [−n− 1]

Once again, by linearity,

X2 [z] = z
z+ 1

4
+ z

z− 1
2

=
z(2z− 1

8)
(z+ 1

4)(z− 1
2)

(14.29)

By observation it is again clear that there are two zeros, at 0 and 1
16 , and two poles, at 1

2 , and
−1
4 .

in ths case though, the ROC is |z| < 1
2 .

246 CHAPTER 14. Z-TRANSFORM AND DIGITAL FILTERING

Figure 14.17: The ROC of x2 [n] =
`−1

4

´n
u [n]−

`
1
2

´n
u [−n− 1].

14.4 Inverse Z-Transform4

When using the z-transform (Section 14.1)

X (z) =
∞∑

n=−∞

(
x [n] z−n

)
(14.30)

it is often useful to be able to �nd x [n] given X (z). There are at least 4 di�erent methods to do this:

1. Inspection (Section 14.4.1: Inspection Method)
2. Partial-Fraction Expansion (Section 14.4.2: Partial-Fraction Expansion Method)
3. Power Series Expansion (Section 14.4.3: Power Series Expansion Method)
4. Contour Integration (Section 14.4.4: Contour Integration Method)

14.4.1 Inspection Method

This "method" is to basically become familiar with the z-transform pair tables (Section 14.2) and then
"reverse engineer".

Example 14.5
When given

X (z) =
z

z − α
with an ROC (Section 14.3) of

|z| > α

4This content is available online at <http://cnx.org/content/m10651/2.4/>.

247

we could determine "by inspection" that

x [n] = αnu [n]

14.4.2 Partial-Fraction Expansion Method

When dealing with linear time-invariant systems the z-transform often in the form

X (z) = B(z)
A(z)

=
PM
k=0(bkz−k)PN
k=0(akz−k)

(14.31)

This can also expressed as

X (z) =
a0

b0

∏M
k=1

(
1− ckz−1

)∏N
k=1 (1− dkz−1)

(14.32)

where ck represents the nonzero zeros of X (z) and dk represents the nonzero poles.
If M < N then X (z) can be represented as

X (z) =
N∑
k=1

(
Ak

1− dkz−1

)
(14.33)

This form allows for easy inversions of each term of the sum using the inspection method (Section 14.4.1:
Inspection Method) and the transform table (Section 14.2). Thus if the numerator is a polynomial then it
is necessary to use partial-fraction expansion5 to put X (z) in the above form. If M ≥ N then X (z) can be
expressed as

X (z) =
M−N∑
r=0

(
Brz

−r)+
∑N−1
k=0

(
b'kz
−k)∑N

k=0 (akz−k)
(14.34)

Example 14.6
Find the inverse z-transform of

X (z) =
1 + 2z−1 + z−2

1 + (−3z−1) + 2z−2

where the ROC is |z| > 2. In this case M = N = 2, so we have to use long division to get

X (z) =
1
2

+
1
2 + 7

2z
−1

1 + (−3z−1) + 2z−2

Next factor the denominator.

X (z) = 2 +
(−1) + 5z−1

(1− 2z−1) (1− z−1)

Now do partial-fraction expansion.

X (z) =
1
2

+
A1

1− 2z−1
+

A2

1− z−1
=

1
2

+
9
2

1− 2z−1
+

−4
1− z−1

Now each term can be inverted using the inspection method and the z-transform table. Thus, since
the ROC is |z| > 2,

x [n] =
1
2
δ [n] +

9
2

2nu [n] + (−4u [n])

5"Partial Fraction Expansion" <http://cnx.org/content/m2111/latest/>

248 CHAPTER 14. Z-TRANSFORM AND DIGITAL FILTERING

14.4.3 Power Series Expansion Method

When the z-transform is de�ned as a power series in the form

X (z) =
∞∑

n=−∞

(
x [n] z−n

)
(14.35)

then each term of the sequence x [n] can be determined by looking at the coe�cients of the respective power
of z−n.

Example 14.7
Now look at the z-transform of a �nite-length sequence.

X (z) = z2
(
1 + 2z−1

) (
1− 1

2z
−1
) (

1 + z−1
)

= z2 + 5
2z + 1

2 +
(
−
(
z−1
)) (14.36)

In this case, since there were no poles, we multiplied the factors of X (z). Now, by inspection, it
is clear that

x [n] = δ [n+ 2] +
5
2
δ [n+ 1] +

1
2
δ [n] + (− (δ [n− 1]))

.

One of the advantages of the power series expansion method is that many functions encountered in engi-
neering problems have their power series' tabulated. Thus functions such as log, sin, exponent, sinh, etc,
can be easily inverted.

Example 14.8
Suppose

X (z) = logn
(
1 + αz−1

)
Noting that

logn (1 + x) =
∞∑
n=1

(
−1n+1xn

n

)
Then

X (z) =
∞∑
n=1

(
−1n+1αnz−n

n

)
Therefore

X (z) =

 −1n+1αn

n if n ≥ 1

0 if n ≤ 0

14.4.4 Contour Integration Method

Without going in to much detail

x [n] =
1

2πj

∮
r

X (z) zn−1dz (14.37)

where r is a counter-clockwise contour in the ROC of X (z) encircling the origin of the z-plane. To further
expand on this method of �nding the inverse requires the knowledge of complex variable theory and thus
will not be addressed in this module.

249

14.5 Rational Functions6

14.5.1 Introduction

When dealing with operations on polynomials, the term rational function is a simple way to describe a
particular relationship between two polynomials.

De�nition 15: rational function
For any two polynomials, A and B, their quotient is called a rational function.
Example
Below is a simple example of a basic rational function, f (x). Note that the numerator and
denominator can be polynomials of any order, but the rational function is unde�ned when the
denominator equals zero.

f (x) =
x2 − 4

2x2 + x− 3
(14.38)

If you have begun to study the Z-transform (Section 14.1), you should have noticed by now they are all
rational functions. Below we will look at some of the properties of rational functions and how they can be
used to reveal important characteristics about a z-transform, and thus a signal or LTI system.

14.5.2 Properties of Rational Functions

In order to see what makes rational functions special, let us look at some of their basic properties and
characteristics. If you are familiar with rational functions and basic algebraic properties, skip to the next
section (Section 14.5.3: Rational Functions and the Z-Transform) to see how rational functions are useful
when dealing with the z-transform.

14.5.2.1 Roots

To understand many of the following characteristics of a rational function, one must begin by �nding the
roots of the rational function. In order to do this, let us factor both of the polynomials so that the roots
can be easily determined. Like all polynomials, the roots will provide us with information on many key
properties. The function below shows the results of factoring the above rational function, (14.38).

f (x) =
(x+ 2) (x− 2)
(2x+ 3) (x− 1)

(14.39)

Thus, the roots of the rational function are as follows:
Roots of the numerator are: {−2, 2}
Roots of the denominator are: {−3, 1}

note: In order to understand rational functions, it is essential to know and understand the roots
that make up the rational function.

14.5.2.2 Discontinuities

Because we are dealing with division of two polynomials, we must be aware of the values of the variable that
will cause the denominator of our fraction to be zero. When this happens, the rational function becomes
unde�ned, i.e. we have a discontinuity in the function. Because we have already solved for our roots, it
is very easy to see when this occurs. When the variable in the denominator equals any of the roots of the
denominator, the function becomes unde�ned.

6This content is available online at <http://cnx.org/content/m10593/2.7/>.

250 CHAPTER 14. Z-TRANSFORM AND DIGITAL FILTERING

Example 14.9
Continuing to look at our rational function above, (14.38), we can see that the function will have
discontinuities at the following points: x = {−3, 1}

In respect to the Cartesian plane, we say that the discontinuities are the values along the x-axis where the
function in unde�ned. These discontinuities often appear as vertical asymptotes on the graph to represent
the values where the function is unde�ned.

14.5.2.3 Domain

Using the roots that we found above, the domain of the rational function can be easily de�ned.

De�nition 16: domain
The group, or set, of values that are de�ned by a given function.
Example
Using the rational function above, (14.38), the domain can be de�ned as any real number x where
x does not equal 1 or negative 3. Written out mathematical, we get the following:

{x ∈ R |x 6= −3 and x 6= 1} (14.40)

14.5.2.4 Intercepts

The x-intercept is de�ned as the point(s) where f (x), i.e. the output of the rational functions, equals zero.
Because we have already found the roots of the equation this process is very simple. From algebra, we know
that the output will be zero whenever the numerator of the rational function is equal to zero. Therefore, the
function will have an x-intercept wherever x equals one of the roots of the numerator.

The y-intercept occurs whenever x equals zero. This can be found by setting all the values of x equal
to zero and solving the rational function.

14.5.3 Rational Functions and the Z-Transform

As we have stated above, all z-transforms can be written as rational functions, which have become the most
common way of representing the z-transform. Because of this, we can use the properties above, especially
those of the roots, in order to reveal certain characteristics about the signal or LTI system described by the
z-transform.

Below is the general form of the z-transform written as a rational function:

X (z) =
b0 + b1z

−1 + · · ·+ bMz
−M

a0 + a1z−1 + · · ·+ aNz−N
(14.41)

If you have already looked at the module about Understanding Pole/Zero Plots and the Z-transform (Sec-
tion 14.7), you should see how the roots of the rational function play an important role in understanding the
z-transform. The equation above, (14.41), can be expressed in factored form just as was done for the simple
rational function above, see (14.39). Thus, we can easily �nd the roots of the numerator and denominator
of the z-transform. The following two relationships become apparent:

Relationship of Roots to Poles and Zeros

• The roots of the numerator in the rational function will be the zeros of the z-transform
• The roots of the denominator in the rational function will be the poles of the z-transform

251

14.5.4 Conclusion

Once we have used our knowledge of rational functions to �nd its roots, we can manipulate a z-transform in
a number of useful ways. We can apply this knowledge to representing an LTI system graphically through
a Pole/Zero Plot (Section 14.7), or to analyze and design a digital �lter through Filter Design from the
Z-Transform (Section 14.8).

14.6 Di�erence Equation7

14.6.1 Introduction

One of the most important concepts of DSP is to be able to properly represent the input/output relation-
ship to a given LTI system. A linear constant-coe�cient di�erence equation (LCCDE) serves as a way
to express just this relationship in a discrete-time system. Writing the sequence of inputs and outputs,
which represent the characteristics of the LTI system, as a di�erence equation help in understanding and
manipulating a system.

De�nition 17: di�erence equation
An equation that shows the relationship between consecutive values of a sequence and the di�er-
ences among them. They are often rearranged as a recursive formula so that a systems output can
be computed from the input signal and past outputs.
Example

y [n] + 7y [n− 1] + 2y [n− 2] = x [n]− 4x [n− 1] (14.42)

14.6.2 General Formulas from the Di�erence Equation

As stated brie�y in the de�nition above, a di�erence equation is a very useful tool in describing and calculating
the output of the system described by the formula for a given sample n. The key property of the di�erence
equation is its ability to help easily �nd the transform, H (z), of a system. In the following two subsections,
we will look at the general form of the di�erence equation and the general conversion to a z-transform directly
from the di�erence equation.

14.6.2.1 Di�erence Equation

The general form of a linear, constant-coe�cient di�erence equation (LCCDE), is shown below:

N∑
k=0

(aky [n− k]) =
M∑
k=0

(bkx [n− k]) (14.43)

We can also write the general form to easily express a recursive output, which looks like this:

y [n] = −

(
N∑
k=1

(aky [n− k])

)
+

M∑
k=0

(bkx [n− k]) (14.44)

From this equation, note that y [n− k] represents the outputs and x [n− k] represents the inputs. The value
of N represents the order of the di�erence equation and corresponds to the memory of the system being
represented. Because this equation relies on past values of the output, in order to compute a numerical
solution, certain past outputs, referred to as the initial conditions, must be known.

7This content is available online at <http://cnx.org/content/m10595/2.5/>.

252 CHAPTER 14. Z-TRANSFORM AND DIGITAL FILTERING

14.6.2.2 Conversion to Z-Transform

Using the above formula, (14.43), we can easily generalize the transfer function, H (z), for any di�erence
equation. Below are the steps taken to convert any di�erence equation into its transfer function, i.e. z-
transform. The �rst step involves taking the Fourier Transform8 of all the terms in (14.43). Then we use
the linearity property to pull the transform inside the summation and the time-shifting property of the
z-transform to change the time-shifting terms to exponentials. Once this is done, we arrive at the following
equation: a0 = 1.

Y (z) = −

(
N∑
k=1

(
akY (z) z−k

))
+

M∑
k=0

(
bkX (z) z−k

)
(14.45)

H (z) = Y (z)
X(z)

=
PM
k=0(bkz−k)

1+
PN
k=1(akz−k)

(14.46)

14.6.2.3 Conversion to Frequency Response

Once the z-transform has been calculated from the di�erence equation, we can go one step further to de�ne
the frequency response of the system, or �lter, that is being represented by the di�erence equation.

note: Remember that the reason we are dealing with these formulas is to be able to aid us in
�lter design. A LCCDE is one of the easiest ways to represent FIR �lters. By being able to �nd
the frequency response, we will be able to look at the basic properties of any �lter represented by
a simple LCCDE.

Below is the general formula for the frequency response of a z-transform. The conversion is simple a matter
of taking the z-transform formula, H (z), and replacing every instance of z with ejw.

H (w) = H (z) |z,z=ejw

=
PM
k=0(bke−(jwk))PN
k=0(ake−(jwk))

(14.47)

Once you understand the derivation of this formula, look at the module concerning Filter Design from the
Z-Transform (Section 14.8) for a look into how all of these ideas of the Z-transform (Section 14.1), Di�erence
Equation, and Pole/Zero Plots (Section 14.7) play a role in �lter design.

14.6.3 Example

Example 14.10: Finding Di�erence Equation
Below is a basic example showing the opposite of the steps above: given a transfer function one
can easily calculate the systems di�erence equation.

H (z) =
(z + 1)2(

z − 1
2

) (
z + 3

4

) (14.48)

Given this transfer function of a time-domain �lter, we want to �nd the di�erence equation. To
begin with, expand both polynomials and divide them by the highest order z.

H (z) = (z+1)(z+1)

(z− 1
2)(z+ 3

4)
= z2+2z+1

z2+2z+1− 3
8

= 1+2z−1+z−2

1+ 1
4 z
−1− 3

8 z
−2

(14.49)

8"Derivation of the Fourier Transform" <http://cnx.org/content/m0046/latest/>

253

From this transfer function, the coe�cients of the two polynomials will be our ak and bk values
found in the general di�erence equation formula, (14.43). Using these coe�cients and the above
form of the transfer function, we can easily write the di�erence equation:

x [n] + 2x [n− 1] + x [n− 2] = y [n] +
1
4
y [n− 1]− 3

8
y [n− 2] (14.50)

In our �nal step, we can rewrite the di�erence equation in its more common form showing the
recursive nature of the system.

y [n] = x [n] + 2x [n− 1] + x [n− 2] +
−1
4
y [n− 1] +

3
8
y [n− 2] (14.51)

14.6.4 Solving a LCCDE

In order for a linear constant-coe�cient di�erence equation to be useful in analyzing a LTI system, we must
be able to �nd the systems output based upon a known input, x (n), and a set of initial conditions. Two
common methods exist for solving a LCCDE: the direct method and the indirect method, the later
being based on the z-transform. Below we will brie�y discuss the formulas for solving a LCCDE using each
of these methods.

14.6.4.1 Direct Method

The �nal solution to the output based on the direct method is the sum of two parts, expressed in the following
equation:

y (n) = yh (n) + yp (n) (14.52)

The �rst part, yh (n), is referred to as the homogeneous solution and the second part, yh (n), is referred
to as particular solution. The following method is very similar to that used to solve many di�erential
equations, so if you have taken a di�erential calculus course or used di�erential equations before then this
should seem very familiar.

14.6.4.1.1 Homogeneous Solution

We begin by assuming that the input is zero, x (n) = 0. Now we simply need to solve the homogeneous
di�erence equation:

N∑
k=0

(aky [n− k]) = 0 (14.53)

In order to solve this, we will make the assumption that the solution is in the form of an exponential. We
will use lambda, λ, to represent our exponential terms. We now have to solve the following equation:

N∑
k=0

(
akλ

n−k) = 0 (14.54)

We can expand this equation out and factor out all of the lambda terms. This will give us a large polynomial
in parenthesis, which is referred to as the characteristic polynomial. The roots of this polynomial will
be the key to solving the homogeneous equation. If there are all distinct roots, then the general solution to
the equation will be as follows:

yh (n) = C1(λ1)n + C2(λ2)n + · · ·+ CN (λN)n (14.55)

254 CHAPTER 14. Z-TRANSFORM AND DIGITAL FILTERING

However, if the characteristic equation contains multiple roots then the above general solution will be slightly
di�erent. Below we have the modi�ed version for an equation where λ1 has K multiple roots:

yh (n) = C1(λ1)n + C1n(λ1)n + C1n
2(λ1)n + · · ·+ C1n

K−1(λ1)n + C2(λ2)n + · · ·+ CN (λN)n (14.56)

14.6.4.1.2 Particular Solution

The particular solution, yp (n), will be any solution that will solve the general di�erence equation:

N∑
k=0

(akyp (n− k)) =
M∑
k=0

(bkx (n− k)) (14.57)

In order to solve, our guess for the solution to yp (n) will take on the form of the input, x (n). After guessing
at a solution to the above equation involving the particular solution, one only needs to plug the solution into
the di�erence equation and solve it out.

14.6.4.2 Indirect Method

The indirect method utilizes the relationship between the di�erence equation and z-transform, discussed
earlier (Section 14.6.2: General Formulas from the Di�erence Equation), to �nd a solution. The basic idea
is to convert the di�erence equation into a z-transform, as described above (Section 14.6.2.2: Conversion to
Z-Transform), to get the resulting output, Y (z). Then by inverse transforming this and using partial-fraction
expansion, we can arrive at the solution.

14.7 Understanding Pole/Zero Plots on the Z-Plane9

14.7.1 Introduction to Poles and Zeros of the Z-Transform

Once the Z-transform of a system has been determined, one can use the information contained in function's
polynomials to graphically represent the function and easily observe many de�ning characteristics. The
Z-transform will have the below structure, based on Rational Functions (Section 14.5):

X (z) =
P (z)
Q (z)

(14.58)

The two polynomials, P (z) and Q (z), allow us to �nd the poles and zeros (Section 13.6) of the Z-
Transform.

De�nition 18: zeros
1. The value(s) for z where P (z) = 0.
2. The complex frequencies that make the overall gain of the �lter transfer function zero.

De�nition 19: poles
1. The value(s) for z where Q (z) = 0.
2. The complex frequencies that make the overall gain of the �lter transfer function in�nite.

Example 14.11
Below is a simple transfer function with the poles and zeros shown below it.

H (z) =
z + 1(

z − 1
2

) (
z + 3

4

)
9This content is available online at <http://cnx.org/content/m10556/2.8/>.

255

The zeros are: {−1}
The poles are:

{
1
2 ,−

(
3
4

)}

14.7.2 The Z-Plane

Once the poles and zeros have been found for a given Z-Transform, they can be plotted onto the Z-Plane.
The Z-plane is a complex plane with an imaginary and real axis referring to the complex-valued variable z.
The position on the complex plane is given by rejθ and the angle from the positive, real axis around the
plane is denoted by θ. When mapping poles and zeros onto the plane, poles are denoted by an "x" and zeros
by an "o". The below �gure shows the Z-Plane, and examples of plotting zeros and poles onto the plane can
be found in the following section.

Z-Plane

Figure 14.18

14.7.3 Examples of Pole/Zero Plots

This section lists several examples of �nding the poles and zeros of a transfer function and then plotting
them onto the Z-Plane.

Example 14.12: Simple Pole/Zero Plot

H (z) =
z(

z − 1
2

) (
z + 3

4

)
The zeros are: {0}
The poles are:

{
1
2 ,−

(
3
4

)}

256 CHAPTER 14. Z-TRANSFORM AND DIGITAL FILTERING

Pole/Zero Plot

Figure 14.19: Using the zeros and poles found from the transfer function, the one zero is mapped to
zero and the two poles are placed at 1

2
and −

`
3
4

´

Example 14.13: Complex Pole/Zero Plot

H (z) =
(z − j) (z + j)(

z −
(

1
2 −

1
2j
)) (

z −
(

1
2 + 1

2j
))

The zeros are: {j,−j}
The poles are:

{
−1, 1

2 + 1
2j,

1
2 −

1
2j
}
Pole/Zero Plot

Figure 14.20: Using the zeros and poles found from the transfer function, the zeros are mapped to
±j, and the poles are placed at −1, 1

2
+ 1

2
j and 1

2
− 1

2
j

257

MATLAB - If access to MATLAB is readily available, then you can use its functions to easily create
pole/zero plots. Below is a short program that plots the poles and zeros from the above example onto the
Z-Plane.

% Set up vector for zeros

z = [j ; -j];

% Set up vector for poles

p = [-1 ; .5+.5j ; .5-.5j];

figure(1);

zplane(z,p);

title('Pole/Zero Plot for Complex Pole/Zero Plot Example');

14.7.4 Pole/Zero Plot and Region of Convergence

The region of convergence (ROC) for X (z) in the complex Z-plane can be determined from the pole/zero
plot. Although several regions of convergence may be possible, where each one corresponds to a di�erent
impulse response, there are some choices that are more practical. A ROC can be chosen to make the transfer
function causal and/or stable depending on the pole/zero plot.

Filter Properties from ROC

• If the ROC extends outward from the outermost pole, then the system is causal.
• If the ROC includes the unit circle, then the system is stable.

Below is a pole/zero plot with a possible ROC of the Z-transform in the Simple Pole/Zero Plot (Exam-
ple 14.12: Simple Pole/Zero Plot) discussed earlier. The shaded region indicates the ROC chosen for the
�lter. From this �gure, we can see that the �lter will be both causal and stable since the above listed
conditions are both met.

Example 14.14

H (z) =
z(

z − 1
2

) (
z + 3

4

)

258 CHAPTER 14. Z-TRANSFORM AND DIGITAL FILTERING

Region of Convergence for the Pole/Zero Plot

Figure 14.21: The shaded area represents the chosen ROC for the transfer function.

14.7.5 Frequency Response and the Z-Plane

The reason it is helpful to understand and create these pole/zero plots is due to their ability to help us easily
design a �lter. Based on the location of the poles and zeros, the magnitude response of the �lter can be
quickly understood. Also, by starting with the pole/zero plot, one can design a �lter and obtain its transfer
function very easily. Refer to this module (Section 14.8) for information on the relationship between the
pole/zero plot and the frequency response.

14.8 Filter Design using the Pole/Zero Plot of a Z-Transform10

14.8.1 Estimating Frequency Response from Z-Plane

One of the motivating factors for analyzing the pole/zero plots is due to their relationship to the frequency
response of the system. Based on the position of the poles and zeros, one can quickly determine the frequency
response. This is a result of the correspondence between the frequency response and the transfer function
evaluated on the unit circle in the pole/zero plots. The frequency response, or DTFT, of the system is
de�ned as:

H (w) = H (z) |z,z=ejw

=
PM
k=0(bke−(jwk))PN
k=0(ake−(jwk))

(14.59)

Next, by factoring the transfer function into poles and zeros and multiplying the numerator and denominator
by ejw we arrive at the following equations:

H (w) = | b0
a0
|
∏M
k=1

(
|ejw − ck|

)∏N
k=1 (|ejw − dk|)

(14.60)

10This content is available online at <http://cnx.org/content/m10548/2.9/>.

259

From (14.60) we have the frequency response in a form that can be used to interpret physical characteristics
about the �lter's frequency response. The numerator and denominator contain a product of terms of the
form |ejw − h|, where h is either a zero, denoted by ck or a pole, denoted by dk. Vectors are commonly used
to represent the term and its parts on the complex plane. The pole or zero, h, is a vector from the origin to
its location anywhere on the complex plane and ejw is a vector from the origin to its location on the unit
circle. The vector connecting these two points, |ejw − h|, connects the pole or zero location to a place on
the unit circle dependent on the value of w. From this, we can begin to understand how the magnitude of
the frequency response is a ratio of the distances to the poles and zero present in the z-plane as w goes from
zero to pi. These characteristics allow us to interpret |H (w) | as follows:

|H (w) | = | b0
a0
|
∏

”distancesfromzeros”∏
”distancesfrompoles”

(14.61)

In conclusion, using the distances from the unit circle to the poles and zeros, we can plot the frequency
response of the system. As w goes from 0 to 2π, the following two properties, taken from the above equations,
specify how one should draw |H (w) |.
While moving around the unit circle...

1. if close to a zero, then the magnitude is small. If a zero is on the unit circle, then the frequency
response is zero at that point.

2. if close to a pole, then the magnitude is large. If a pole is on the unit circle, then the frequency response
goes to in�nity at that point.

14.8.2 Drawing Frequency Response from Pole/Zero Plot

Let us now look at several examples of determining the magnitude of the frequency response from the
pole/zero plot of a z-transform. If you have forgotten or are unfamiliar with pole/zero plots, please refer
back to the Pole/Zero Plots (Section 14.7) module.

Example 14.15
In this �rst example we will take a look at the very simple z-transform shown below:

H (z) = z + 1 = 1 + z−1

H (w) = 1 + e−(jw)

For this example, some of the vectors represented by |ejw−h|, for random values of w, are explicitly
drawn onto the complex plane shown in the �gure below. These vectors show how the amplitude
of the frequency response changes as w goes from 0 to 2π, and also show the physical meaning
of the terms in (14.60) above. One can see that when w = 0, the vector is the longest and thus
the frequency response will have its largest amplitude here. As w approaches π, the length of the
vectors decrease as does the amplitude of |H (w) |. Since there are no poles in the transform, there
is only this one vector term rather than a ratio as seen in (14.60).

260 CHAPTER 14. Z-TRANSFORM AND DIGITAL FILTERING

(a) Pole/Zero Plot (b) Frequency Response: |H(w)|

Figure 14.22: The �rst �gure represents the pole/zero plot with a few representative vectors graphed
while the second shows the frequency response with a peak at +2 and graphed between plus and minus
π.

Example 14.16
For this example, a more complex transfer function is analyzed in order to represent the system's
frequency response.

H (z) =
z

z − 1
2

=
1

1− 1
2z
−1

H (w) =
1

1− 1
2e
−(jw)

Below we can see the two �gures described by the above equations. The Figure 14.23(a)
(Pole/Zero Plot) represents the basic pole/zero plot of the z-transform, H (w). Figure 14.23(b)
(Frequency Response: |H(w)|) shows the magnitude of the frequency response. From the formulas
and statements in the previous section, we can see that when w = 0 the frequency will peak since
it is at this value of w that the pole is closest to the unit circle. The ratio from (14.60) helps us see
the mathematics behind this conclusion and the relationship between the distances from the unit
circle and the poles and zeros. As w moves from 0 to π, we see how the zero begins to mask the
e�ects of the pole and thus force the frequency response closer to 0.

261

(a) Pole/Zero Plot (b) Frequency Response: |H(w)|

Figure 14.23: The �rst �gure represents the pole/zero plot while the second shows the frequency
response with a peak at +2 and graphed between plus and minus π.

262 CHAPTER 14. Z-TRANSFORM AND DIGITAL FILTERING

Chapter 15

Appendix: Hilbert Spaces and
Orthogonal Expansions

15.1 Vector Spaces1

Introduction

De�nition 20: Vector space
A linear vector space S is a collection of "vectors" such that (1) if f1 ∈ S ⇒ αf1 ∈ S for all scalars
α (where α ∈ R or α ∈ C) and (2) if f1 ∈ S, f2 ∈ S, then f1 + f2 ∈ S
To de�ne an abstract linear vector space, we need

• A set of things called "vectors" (X)
• A set of things called "scalars" (A)
• A vector addition operator (+)
• A scalar multiplication operator (∗)

The operators need to have all the properties of given below. Closure is usually the most important to show.

15.1.2 Vector Spaces

If the scalars α are real, S is called a real vector space.
If the scalars α are complex, S is called a complex vector space.
If the "vectors" in S are functions of a continuous variable, we sometimes call S a linear function space

15.1.2.1 Properties

We de�ne a set V to be a vector space if

1. x + y = y + x for each x and y in V
2. x + (y + z) = (x + y) + z for each x, y, and z in V
3. There is a unique "zero vector" such that x + 0 = x for each x in V
4. For each x in V there is a unique vector −x such that x + (−x) = 0.
5. 1x = x
6. (c1c2) x = c1 (c2x) for each x in V and c1 and c2 in C.
7. c (x + y) = cx + cy for each x and y in V and c in C.
8. (c1 + c2) x = c1x + c2x for each x in V and c1 and c2 in C.

1This content is available online at <http://cnx.org/content/m10767/2.4/>.

263

264
CHAPTER 15. APPENDIX: HILBERT SPACES AND ORTHOGONAL

EXPANSIONS

15.1.2.2 Examples

• Rn = realvectorspace
• Cn = complexvectorspace

• L1 (R) =
{
f (t) |

∫∞
−∞ |f (t) |dt <∞

}
is a vector space

• L∞ (R) = {f (t) |f (t) is bounded} is a vector space
• L2 (R) =

{
f (t) |

∫∞
−∞ (|f (t) |)2

dt <∞
}

= finite energy signals is a vector space

• L2 ([0, T]) = finite energy functions on interval [0, T]
• `1 (Z), `2 (Z), `∞ (Z) are vector spaces
• The collection of functions piecewise constant between the integers is a vector space

Figure 15.1

• R+
2 =


 x0

x1

 |x0 > 0 and x1 > 0

 is not a vector space.

 1

1

 ∈ R+
2, but α

 1

1

 /∈

R+
2 , α < 0

• D = {z ∈ C , |z| ≤ 1 } is not a vector space. z1 = 1 ∈ D, z2 = j ∈ D, but z1 + z2 /∈ D,
|z1 + z2| =

√
2 > 1

note: Vector spaces can be collections of functions, collections of sequences, as well as collections
of traditional vectors (i.e. �nite lists of numbers)

265

15.2 Norms2

15.2.1 Introduction

Much of the language in this section will be familiar to you - you should have previously been exposed to
the concepts of

• inner products (Section 15.3)
• orthogonality
• basis expansions (Section 15.8)

in the context of Rn. We're going to take what we know about vectors and apply it to functions (continuous
time signals).

15.2.2 Norms

The norm of a vector is a real number that represents the "size" of the vector.

Example 15.1
In R2, we can de�ne a norm to be a vectors geometric length.

Figure 15.2

x = (x0, x1)T , norm ‖ x ‖=
√
x0

2 + x1
2

Mathematically, a norm ‖ · ‖ is just a function (taking a vector and returning a real number)
that satis�es three rules.

To be a norm, ‖ · ‖ must satisfy:

1. the norm of every vector is positive ‖ x ‖> 0 , x ∈ S
2. scaling a vector scales the norm by the same amount ‖ αx ‖= |α| ‖ x ‖ for all vectors x and scalars α
3. Triangle Property: ‖ x + y ‖≤‖ x ‖ + ‖ y ‖ for all vectors x, y. "The "size" of the sum of two vectors

is less than or equal to the sum of their sizes"

A vector space (Section 15.1) with a well de�ned norm is called a normed vector space or normed
linear space.

2This content is available online at <http://cnx.org/content/m10768/2.4/>.

266
CHAPTER 15. APPENDIX: HILBERT SPACES AND ORTHOGONAL

EXPANSIONS

15.2.2.1 Examples

Example 15.2

Rn (or Cn), x =


x0

x1

. . .

xn−1

, ‖ x ‖1 =
∑n−1
i=0 (|xi|), Rn with this norm is called `1 ([0, n− 1]).

Figure 15.3: Collection of all x ∈ R2 with ‖ x ‖1 = 1

Example 15.3

Rn (or Cn), with norm ‖ x ‖2 =
(∑n−1

i=0

(
(|xi|)2

)) 1
2
, Rn is called `2 ([0, n− 1]) (the usual "Eu-

clidean"norm).

Figure 15.4: Collection of all x ∈ R2 with ‖ x ‖2 = 1

267

Example 15.4
Rn (or Cn, with norm ‖ x ‖∞ = maxi {|xi|} is called `∞ ([0, n− 1])

Figure 15.5: x ∈ R2 with ‖ x ‖∞ = 1

15.2.2.2 Spaces of Sequences and Functions

We can de�ne similar norms for spaces of sequences and functions.
Discrete time signals = sequences of numbers

x [n] = {. . . , x−2, x−1, x0, x1, x2, . . . }

• ‖ x (n) ‖1 =
∑∞
i=−∞ (|x [i] |), x [n] ∈ `1 (Z)⇒ ‖ x ‖1 <∞

• ‖ x (n) ‖2 =
(∑∞

i=−∞

(
(|x [i] |)2

)) 1
2
, x [n] ∈ `2 (Z)⇒ ‖ x ‖2 <∞

• ‖ x (n) ‖p =
(∑∞

i=−∞ ((|x [i] |)p)
) 1
p , x [n] ∈ `p (Z)⇒ ‖ x ‖p <∞

• ‖ x (n) ‖∞ = sup
i
|x [i] |, x [n] ∈ `∞ (Z)⇒ ‖ x ‖∞ <∞

For continuous time functions:

• ‖ f (t) ‖p =
(∫∞
−∞ (|f (t) |)pdt

) 1
p

, f (t) ∈ Lp (R)⇒ ‖ f (t) ‖p <∞

• (On the interval) ‖ f (t) ‖p =
(∫ T

0
(|f (t) |)pdt

) 1
p

, f (t) ∈ Lp ([0, T])⇒ ‖ f (t) ‖p <∞

This is an unsupported media type. To view, please see
http://cnx.org/content/m10768/latest/NormCalc.llb

268
CHAPTER 15. APPENDIX: HILBERT SPACES AND ORTHOGONAL

EXPANSIONS

15.3 Inner Products3

15.3.1 De�nition: Inner Product

You may have run across inner products, also called dot products, on Rn before in some of your math
or science courses. If not, we de�ne the inner product as follows, given we have some x ∈ Rn and y ∈ Rn

De�nition 21: inner product
The inner product is de�ned mathematically as:

< x,y > = yTx

=
(
y0 y1 . . . yn−1

)


x0

x1

...

xn−1


=

∑n−1
i=0 (xiyi)

(15.1)

15.3.1.1 Inner Product in 2-D

If we have x ∈ R2 and y ∈ R2, then we can write the inner product as

< x,y >=‖ x ‖‖ y ‖ cos (θ) (15.2)

where θ is the angle between x and y.

Figure 15.6: General plot of vectors and angle referred to in above equations.

Geometrically, the inner product tells us about the strength of x in the direction of y.

Example 15.5
For example, if ‖ x ‖= 1, then

< x,y >=‖ y ‖ cos (θ)

3This content is available online at <http://cnx.org/content/m10755/2.6/>.

269

Figure 15.7: Plot of two vectors from above example.

The following characteristics are revealed by the inner product:

• < x,y > measures the length of the projection of y onto x.
• < x,y > is maximum (for given ‖ x ‖, ‖ y ‖) when x and y are in the same direction (θ = 0 ⇒

cos (θ) = 1).
• < x,y > is zero when cos (θ) = 0⇒ θ = 90 ◦, i.e. x and y are orthogonal.

15.3.1.2 Inner Product Rules

In general, an inner product on a complex vector space is just a function (taking two vectors and returning
a complex number) that satis�es certain rules:

• Conjugate Symmetry:
< x,y >= < x,y >∗

• Scaling:
< αx,y >= α < x,y >

• Additivity:
< x + y, z >=< x, z > + < y, z >

• "Positivity":
< x,x >> 0 , x 6= 0

De�nition 22: orthogonal
We say that x and y are orthogonal if:

< x,y >= 0

This is an unsupported media type. To view, please see
http://cnx.org/content/m10755/latest/InnerProductCalc.llb

270
CHAPTER 15. APPENDIX: HILBERT SPACES AND ORTHOGONAL

EXPANSIONS

15.4 Hilbert Spaces4

15.4.1 Hilbert Spaces

A vector space S with a valid inner product (Section 15.3) de�ned on it is called an inner product space,
which is also a normed linear space. A Hilbert space is an inner product space that is complete with
respect to the norm de�ned using the inner product. Hilbert spaces are named after David Hilbert5 , who
developed this idea through his studies of integral equations. We de�ne our valid norm using the inner
product as:

‖ x ‖=
√
< x,x > (15.3)

Hilbert spaces are useful in studying and generalizing the concepts of Fourier expansion, Fourier transforms,
and are very important to the study of quantum mechanics. Hilbert spaces are studied under the functional
analysis branch of mathematics.

15.4.1.1 Examples of Hilbert Spaces

Below we will list a few examples of Hilbert spaces6. You can verify that these are valid inner products at
home.

• For Cn,

< x,y >= yTx =
(
y0
∗ y1

∗ . . . yn−1
∗
)


x0

x1

...

xn−1

 =
n−1∑
i=0

(xiyi∗)

• Space of �nite energy complex functions: L2 (R)

< f ,g >=
∫ ∞
−∞

f (t) g (t)∗dt

• Space of square-summable sequences: `2 (Z)

< x,y >=
∞∑

i=−∞

(
x [i] y [i]∗

)

15.5 Cauchy-Schwarz Inequality7

15.5.1 Introduction

Recall in R2, < x,y >=‖ x ‖‖ y ‖ cos (θ)

| < x,y > | ≤‖ x ‖‖ y ‖ (15.4)

The same relation holds for inner product spaces (Section 15.3) in general...

4This content is available online at <http://cnx.org/content/m10840/2.4/>.
5http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Hilbert.html
6"Hilbert Spaces" <http://cnx.org/content/m10434/latest/>
7This content is available online at <http://cnx.org/content/m10757/2.5/>.

271

15.5.1.1 Cauchy-Schwarz Inequality

De�nition 23: Cauchy-Schwarz Inequality
For x, y in an inner product space

| < x,y > | ≤‖ x ‖‖ y ‖

with equality holding if and only if x and y are linearly dependent (Section 5.1.1: Linear Indepen-
dence), i.e. x = αy for some scalar α.

15.5.2 Matched Filter Detector

Also referred to as Cauchy-Schwarz's "Killer App."

15.5.2.1 Concept behind Matched Filter

If we are given two vectors, f and g, then the Cauchy-Schwarz Inequality (CSI) is maximized when f = αg.
This tells us:

• f is in the same "direction" as g
• if f and g are functions, f = αg means f and g have the same shape.

For example, say we are in a situation where we have a set of signals, de�ned as {g1 (t) , g2 (t) , . . . , gk (t)},
and we want to be able to tell which, if any, of these signals resemble another given signal f (t).

strategy: In order to �nd the signal(s) that resembles f (t) we will take the inner products. If
gi (t) resembles f (t), then the absolute value of the inner product, | < f (t) , gi (t) > |, will be large.

This idea of being able to measure and rank the "likeness" of two signals leads us to the Matched Filter
Detector.

15.5.2.2 Comparing Signals

The simplest use of the Matched Filter would be to take a set of "candidate" signals, say our set of
{g1 (t) , g2 (t) , . . . , gk (t)}, and try to match it to a "template" signal, f (t). For example say we are given the
below template (Figure 15.8 (Template Signal)) and candidate signals (Figure 15.9 (Candidate Signals)):

Template Signal

f(t)

t

Figure 15.8: Our signal we wish to �nd match of.

272
CHAPTER 15. APPENDIX: HILBERT SPACES AND ORTHOGONAL

EXPANSIONS

Candidate Signals

g (t)

t

1

(a)

g (t)

t

2

(b)

Figure 15.9: Clearly by looking at these we can see which signal will provide the better match to our
template signal.

Now if our only question was which function was a closer match to f (t) then we can easily come up
with the answer based on inspection - g2 (t). However, this will not always be the case. Also, we may want
to develop a method, or algorithm, that could automate these comparisons. Or perhaps we wish to have a
quantitative value expressing just how similar the signals are. To address these issues, we will lay out a more
formal approach to comparing the signals, which will, as mentioned above, be based on the inner product.

In order to see which of our candidate signals, g1 (t) or g2 (t), best resembles f (t) we need to perform
the following steps:

• Normalize the gi (t)
• Take the inner product with f (t)
• Find the biggest!

Or, putting it mathematically:

Bestcandidate = argmax
i

| < f , gi > |
‖ gi ‖

(15.5)

15.5.2.3 Finding a Pattern

Extending these thoughts of using the Matched Filter to �nd similarities among signals, we can use the same
idea to search for a pattern in a long signal. The idea is simply to repeatedly perform the same calculation
as we did previously; however, now instead of calculating on di�erent signals we will simply perform the
inner product with di�erent shifted versions of our "pattern" signal. For example, say we have the following
two signals - a pattern signal (Figure 15.10 (Pattern Signal)) and long signal (Figure 15.11 (Long Signal)).

273

Pattern Signal

f(t)

t

Figure 15.10: The pattern we are looking for in a our long signal having a length T .

Long Signal

Figure 15.11: Here is the long signal that contains a piece that resembles our pattern signal.

Here we will look at two shifts of our pattern signal, shifting the signal by s1 and s2. These two possibilities
yield the following calculations and results:

• Shift of s1: ∫ s1+T

s1
g (t) f (t− s1) dt√∫ s1+T

s1
(|g (t) |)2

dt
= ”large” (15.6)

• Shift of s2: ∫ s2+T

s2
g (t) f (t− s2) dt√∫ s2+T

s2
(|g (t) |)2

dt
= ”small” (15.7)

Therefore, we can de�ne a generalized equation for our matched �lter:

m (s) = matchedfilter (15.8)

m (s) =

∫ s+T
s

g (t) f (t− s) dt(
‖ g (t) ‖ |L2([s,s+T])

) (15.9)

where the numerator in (15.9) is the convolution of g (t) ∗ f (−t). Now in order to decide whether or not
the result from our matched �lter detector is high enough to indicate an acceptable match between the two
signals, we de�ne some threshold. If

m (s0) ≥ threshold
then we have a match at location s0.

274
CHAPTER 15. APPENDIX: HILBERT SPACES AND ORTHOGONAL

EXPANSIONS

15.5.2.4 Practical Examples

15.5.2.4.1 Image Detection

In 2-D, this concept is used to match images together, such as verifying �ngerprints for security or to match
photos of someone. For example, this idea could be used for the ever-popular "Where's Waldo?" books! If
we are given the below template (Figure 15.12(a)) and piece of a "Where's Waldo?" book (Figure 15.12(b)),

(a) (b)

Figure 15.12: Example of "Where's Waldo?" picture. Our Matched Filter Detector can be imple-
mented to �nd a possible match for Waldo.

then we could easily develop a program to �nd the closest resemblance to the image of Waldo's head in
the larger picture. We would simply implement our same match �lter algorithm: take the inner products at
each shift and see how large our resulting answers are. This idea was implemented on this same picture for
a Signals and Systems Project8 at Rice University (click the link to learn more).

15.5.2.4.2 Communications Systems

Matched �lter detector are also commonly used in Communications Systems9. In fact, they are the optimal
detectors in Gaussian noise. Signals in the real-world are often distorted by the environment around them,
so there is a constant struggle to develop ways to be able to receive a distorted signal and then be able to
�lter it in some way to determine what the original signal was. Matched �lters provide one way to compare a
received signal with two possible original ("template") signals and determine which one is the closest match
to the received signal.

For example, below we have a simpli�ed example of Frequency Shift Keying10 (FSK) where we having
the following coding for '1' and '0':

8http://www.owlnet.rice.edu/∼elec301/Projects99/waldo/process.html
9"Structure of Communication Systems" <http://cnx.org/content/m0002/latest/>

10"Frequency Shift Keying" <http://cnx.org/content/m0545/latest/>

275

Send:
= ’1’

= ’0’
Figure 15.13: Frequency Shift Keying for '1' and '0'.

Based on the above coding, we can create digital signals based on 0's and 1's by putting together the
above two "codes" in an in�nite number of ways. For this example we will transmit a basic 3-bit number,
101, which is displayed in Figure 15.14:

1 10

asdfasd

asdfasd
Figure 15.14: The bit stream "101" coded with the above FSK.

276
CHAPTER 15. APPENDIX: HILBERT SPACES AND ORTHOGONAL

EXPANSIONS

Now, the signal picture above represents our original signal that will be transmitted over some commu-
nication system, which will inevitably pass through the "communications channel," the part of the system
that will distort and alter our signal. As long as the noise is not too great, our matched �lter should keep us
from having to worry about these changes to our transmitted signal. Once this signal has been received, we
will pass the noisy signal through a simple system, similar to the simpli�ed version shown in Figure 15.15:

Noisy
Signal
Input

Choose
Max

(.)

(.)

Matched
Filters

Figure 15.15: Block diagram of matched �lter detector.

Figure 15.15 basically shows that our noisy signal will be passed in (we will assume that it passes in one
"bit" at a time) and this signal will be split and passed to two di�erent matched �lter detectors. Each one
will compare the noisy, received signal to one of the two codes we de�ned for '1' and '0.' Then this value will
be passed on and whichever value is higher (i.e. whichever FSK code signal the noisy signal most resembles)
will be the value that the receiver takes. For example, the �rst bit that will be sent through will be a '1' so
the upper level of the block diagram will have a higher value, thus denoting that a '1' was sent by the signal,
even though the signal may appear very noisy and distorted.

15.5.3 Proof of CSI

Here will look at the proof of our Cauchy-Schwarz Inequality (CSI) for a real vector space.

Theorem 15.1: CSI for Real Vector Space
For f ∈ HilbertSpaceS and g ∈ HilbertSpaceS, show:

| < f, g > | ≤‖ f ‖‖ g ‖ (15.10)

with equality if and only if g = αf .
Proof:

• If g = αf , show | < f, g > | =‖ f ‖‖ g ‖

| < f, g > | = | < f, αf > | = |α|| < f, f > | = |α|(‖ f ‖)2

| < f, g > | =‖ f ‖ (|α| ‖ f ‖) =‖ f ‖‖ g ‖

This veri�es our above statement of the CSI!
• If g 6= αf , show | < f, g > | <‖ f ‖‖ g ‖ where we have βf + g 6= 0 , β ∈ R

0 < (‖ βf + g ‖)2 =< βf + g, βf + g >= β2 < f, f > +2β < f, g > + < g, g >

= β2(‖ f ‖)2 + 2β < f, g > +(‖ g ‖)2

277

And we get a quadratic in β. Visually, the quadratic polynomial in β > 0 for all β. Also, note
that this polynomial has no real roots and the discriminant is less than 0. - BLAH BLAH
BLAH �

aβ2 + bβ + c

has discriminant β2 − 4ac where we have:

a = (‖ f ‖)2

b = 2 < f, g >

c = (‖ g ‖)2

Therefore, we can plug this values into the above polynomials discriminant to get:

4(| < f, g > |)2 − 4(‖ f ‖)2(‖ g ‖)2
< 0 (15.11)

| < f, g > | <‖ f ‖‖ g ‖ (15.12)

And �nally we have proven the Cauchy-Schwarz Inequality formula for real vectors spaces.

question: What changes do we have to make to the proof for a complex vector space? (try
to �gure this out at home)

15.6 Common Hilbert Spaces11

15.6.1 Common Hilbert Spaces

Below we will look at the four most common Hilbert spaces (Section 15.3) that you will have to deal with
when discussing and manipulating signals and systems.

15.6.1.1

Rn (reals scalars) and Cn (complex scalars), also called `2 ([0, n− 1])

x =


x0

x1

. . .

xn−1

 is a list of numbers (�nite sequence). The inner product (Section 15.3) for our two spaces

are as follows:

• Inner product Rn:
< x,y > = yTx

=
∑n−1
i=0 (xiyi)

(15.13)

• Inner product Cn:
< x,y > = yT ∗x

=
∑n−1
i=0 (xiyi∗)

(15.14)

11This content is available online at <http://cnx.org/content/m10759/2.5/>.

278
CHAPTER 15. APPENDIX: HILBERT SPACES AND ORTHOGONAL

EXPANSIONS

Model for: Discrete time signals on the interval [0, n− 1] or periodic (with period n) discrete time signals.
x0

x1

. . .

xn−1



Figure 15.16

15.6.1.2

f ∈ L2 ([a, b]) is a �nite energy function on [a, b]
Inner Product

< f, g >=
∫ b

a

f (t) g (t)∗dt (15.15)

Model for: continuous time signals on the interval [a, b] or periodic (with period T = b−a) continuous time
signals

15.6.1.3

x ∈ `2 (Z) is an in�nite sequence of numbers that's square-summable

Inner product

< x, y >=
∞∑

i=−∞

(
x [i] y [i]∗

)
(15.16)

Model for: discrete time, non-periodic signals

15.6.1.4

f ∈ L2 (R) is a �nite energy function on all of R.
Inner product

< f, g >=
∫ ∞
−∞

f (t) g (t)∗dt (15.17)

Model for: continuous time, non-periodic signals

279

15.6.2 Associated Fourier Analysis

Each of these 4 Hilbert spaces has a type of Fourier analysis associated with it.

• L2 ([a, b]) → Fourier series
• `2 ([0, n− 1]) → Discrete Fourier Transform
• L2 (R) → Fourier Transform
• `2 (Z) → Discrete Time Fourier Transform

But all 4 of these are based on the same principles (Hilbert space).

Important note: Not all normed spaces are Hilbert spaces

For example: L1 (R), ‖ f ‖1 =
∫
|f (t) |dt. Try as you might, you can't �nd an inner product that induces

this norm, i.e. a < ·, · > such that

< f, f > =
(∫

(|f (t) |)2
dt
)2

= (‖ f ‖1)2
(15.18)

In fact, of all the Lp (R) spaces, L2 (R) is the only one that is a Hilbert space.

Figure 15.17

280
CHAPTER 15. APPENDIX: HILBERT SPACES AND ORTHOGONAL

EXPANSIONS

Hilbert spaces are by far the nicest. If you use or study orthonormal basis expansion (Section 15.8) then
you will start to see why this is true.

15.7 Types of Basis12

15.7.1 Normalized Basis

De�nition 24: Normalized Basis
a basis (Section 5.1.3: Basis) {bi} where each bi has unit norm

‖ bi ‖= 1 , i ∈ Z (15.19)

note: The concept of basis applies to all vector spaces (Section 15.1). The concept of normalized
basis applies only to normed spaces (Section 15.2).

You can always normalize a basis: just multiply each basis vector by a constant, such as 1
‖bi‖

Example 15.6
We are given the following basis:

{b0, b1} =


 1

1

 ,

 1

−1


Normalized with `2 norm:

∼
b0 =

1√
2

 1

1


∼
b1 =

1√
2

 1

−1


Normalized with `1 norm:

∼
b0 =

1
2

 1

1


∼
b1 =

1
2

 1

−1



15.7.2 Orthogonal Basis

De�nition 25: Orthogonal Basis
a basis {bi} in which the elements are mutually orthogonal

< bi, bj >= 0 , i 6= j

12This content is available online at <http://cnx.org/content/m10772/2.5/>.

281

note: The concept of orthogonal basis applies only to Hilbert Spaces.

Example 15.7
Standard basis for R2, also referred to as `2 ([0, 1]):

b0 =

 1

0



b1 =

 0

1


< b0, b1 >=

1∑
i=0

(b0 [i] b1 [i]) = 1× 0 + 0× 1 = 0

Example 15.8
Now we have the following basis and relationship:

 1

1

 ,

 1

−1

 = {h0, h1}

< h0, h1 >= 1× 1 + 1× (−1) = 0

15.7.3 Orthonormal Basis

Pulling the previous two sections (de�nitions) together, we arrive at the most important and useful basis
type:

De�nition 26: Orthonormal Basis
a basis that is both normalized and orthogonal

‖ bi ‖= 1 , i ∈ Z

< bi, bj > , i 6= j

notation: We can shorten these two statements into one:

< bi, bj >= δij

where

δij =

 1 if i = j

0 if i 6= j

Where δij is referred to as the Kronecker delta function (Section 1.5) and is also often written as
δ [i− j].

282
CHAPTER 15. APPENDIX: HILBERT SPACES AND ORTHOGONAL

EXPANSIONS

Example 15.9: Orthonormal Basis Example #1

{b0, b2} =


 1

0

 ,

 0

1


Example 15.10: Orthonormal Basis Example #2

{b0, b2} =


 1

1

 ,

 1

−1


Example 15.11: Orthonormal Basis Example #3

{b0, b2} =

 1√
2

 1

1

 ,
1√
2

 1

−1


15.7.3.1 Beauty of Orthonormal Bases

Orthonormal bases are very easy to deal with! If {bi} is an orthonormal basis, we can write for any x

x =
∑
i

(αibi) (15.20)

It is easy to �nd the αi:

< x, bi > = <
∑
k (αkbk) , bi >

=
∑
k (αk < bk, bi >)

(15.21)

where in the above equation we can use our knowledge of the delta function to reduce this equation:

< bk, bi >= δik =

 1 if i = k

0 if i 6= k

< x, bi >= αi (15.22)

Therefore, we can conclude the following important equation for x:

x =
∑
i

(< x, bi > bi) (15.23)

The αi's are easy to compute (no interaction between the bi's)

Example 15.12
Given the following basis:

{b0, b1} =

 1√
2

 1

1

 ,
1√
2

 1

−1


represent x =

 3

2



283

Example 15.13: Slightly Modi�ed Fourier Series
We are given the basis {

1√
T
ejω0nt

}
|∞n=−∞

on L2 ([0, T]) where T = 2π
ω0
.

f (t) =
∞∑

n=−∞

(
< f, ejω0nt > ejω0nt

1√
T

)
Where we can calculate the above inner product in L2 as

< f, ejω0nt >=
1√
T

∫ T

0

f (t) ejω0nt∗dt =
1√
T

∫ T

0

f (t) e−(jω0nt)dt

15.7.3.2 Orthonormal Basis Expansions in a Hilbert Space

Let {bi} be an orthonormal basis for a Hilbert space H. Then, for any x ∈ H we can write

x =
∑
i

(αibi) (15.24)

where αi =< x, bi >.

• "Analysis": decomposing x in term of the bi

αi =< x, bi > (15.25)

• "Synthesis": building x up out of a weighted combination of the bi

x =
∑
i

(αibi) (15.26)

This is an unsupported media type. To view, please see http://cnx.org/content/m10772/latest/ONB.llb

15.8 Orthonormal Basis Expansions13

15.8.1 Main Idea

When working with signals many times it is helpful to break up a signal into smaller, more manageable
parts. Hopefully by now you have been exposed to the concept of eigenvectors (Section 5.2) and there use
in decomposing a signal into one of its possible basis. By doing this we are able to simplify our calculations
of signals and systems through eigenfunctions of LTI systems (Section 5.5).

Now we would like to look at an alternative way to represent signals, through the use of orthonormal
basis. We can think of orthonormal basis as a set of building blocks we use to construct functions. We will
build up the signal/vector as a weighted sum of basis elements.

13This content is available online at <http://cnx.org/content/m10760/2.4/>.

284
CHAPTER 15. APPENDIX: HILBERT SPACES AND ORTHOGONAL

EXPANSIONS

Example 15.14

The complex sinusoids 1√
T
ejω0nt for all −∞ < n <∞ form an orthonormal basis for L2 ([0, T]).

In our Fourier series (Section 6.2) equation, f (t) =
∑∞
n=−∞

(
cne

jω0nt
)
, the {cn} are just another

representation of f (t).

note: For signals/vectors in a Hilbert Space, the expansion coe�cients are easy to �nd.

15.8.2 Alternate Representation

Recall our de�nition of a basis: A set of vectors {bi} in a vector space S is a basis if

1. The bi are linearly independent.
2. The bi span (Section 5.1.2: Span) S. That is, we can �nd {αi}, where αi ∈ C (scalars) such that

x =
∑
i

(αibi) , x ∈ S (15.27)

where x is a vector in S, α is a scalar in C, and b is a vector in S.

Condition 2 in the above de�nition says we can decompose any vector in terms of the {bi}. Condition
1 ensures that the decomposition is unique (think about this at home).

note: The {αi} provide an alternate representation of x.

Example 15.15
Let us look at simple example in R2, where we have the following vector:

x =

 1

2


Standard Basis: {e0, e1} =

{
(1, 0)T , (0, 1)T

}
x = e0 + 2e1

Alternate Basis: {h0, h1} =
{

(1, 1)T , (1,−1)T
}

x =
3
2
h0 +

−1
2
h1

In general, given a basis {b0, b1} and a vector x ∈ R2, how do we �nd the α0 and α1 such that

x = α0b0 + α1b1 (15.28)

285

15.8.3 Finding the Alphas

Now let us address the question posed above about �nding αi's in general for R2. We start by rewriting
(15.28) so that we can stack our bi's as columns in a 2×2 matrix.(

x
)

= α0

(
b0

)
+ α1

(
b1

)
(15.29)

(
x
)

=


...

...

b0 b1
...

...


 α0

α1

 (15.30)

Example 15.16
Here is a simple example, which shows a little more detail about the above equations. x [0]

x [1]

 = α0

 b0 [0]

b0 [1]

+ α1

 b1 [0]

b1 [1]


=

 α0b0 [0] + α1b1 [0]

α0b0 [1] + α1b1 [1]

 (15.31)

 x [0]

x [1]

 =

 b0 [0] b1 [0]

b0 [1] b1 [1]

 α0

α1

 (15.32)

15.8.3.1 Simplifying our Equation

To make notation simpler, we de�ne the following two items from the above equations:

• Basis Matrix:

B =


...

...

b0 b1
...

...


• Coe�cient Vector:

α =

 α0

α1


This gives us the following, concise equation:

x = Bα (15.33)

which is equivalent to x =
∑1
i=0 (αibi).

Example 15.17

Given a standard basis,


 1

0

 ,

 0

1

, then we have the following basis matrix:

B =

 0 1

1 0



286
CHAPTER 15. APPENDIX: HILBERT SPACES AND ORTHOGONAL

EXPANSIONS

To get the αi's, we solve for the coe�cient vector in (15.33)

α = B−1x (15.34)

Where B−1 is the inverse matrix14 of B.

15.8.3.2 Examples

Example 15.18
Let us look at the standard basis �rst and try to calculate α from it.

B =

 1 0

0 1

 = I

Where I is the identity matrix. In order to solve for α let us �nd the inverse of B �rst (which is
obviously very trivial in this case):

B−1 =

 1 0

0 1


Therefore we get,

α = B−1x = x

Example 15.19

Let us look at a ever-so-slightly more complicated basis of


 1

1

 ,

 1

−1

 = {h0, h1} Then

our basis matrix and inverse basis matrix becomes:

B =

 1 1

1 −1



B−1 =

 1
2

1
2

1
2

−1
2


and for this example it is given that

x =

 3

2


Now we solve for α

α = B−1x =

 1
2

1
2

1
2

−1
2

 3

2

 =

 2.5

0.5


and we get

x = 2.5h0 + 0.5h1

Exercise 15.1 (Solution on p. 301.)

Now we are given the following basis matrix and x:

{b0, b1} =


 1

2

 ,

 3

0


14"Matrix Inversion" <http://cnx.org/content/m2113/latest/>

287

x =

 3

2


For this problem, make a sketch of the bases and then represent x in terms of b0 and b1.

note: A change of basis simply looks at x from a "di�erent perspective." B−1 transforms x from
the standard basis to our new basis, {b0, b1}. Notice that this is a totally mechanical procedure.

15.8.4 Extending the Dimension and Space

We can also extend all these ideas past just R2 and look at them in Rn and Cn. This procedure extends nat-
urally to higher (> 2) dimensions. Given a basis {b0, b1, . . . , bn−1} for Rn, we want to �nd {α0, α1, . . . , αn−1}
such that

x = α0b0 + α1b1 + · · ·+ αn−1bn−1 (15.35)

Again, we will set up a basis matrix

B =
(
b0 b1 b2 . . . bn−1

)
where the columns equal the basis vectors and it will always be an n×n matrix (although the above matrix
does not appear to be square since we left terms in vector notation). We can then proceed to rewrite (15.33)

x =
(
b0 b1 . . . bn−1

)
α0

...

αn−1

 = Bα

and
α = B−1x

15.9 Function Space15

We can also �nd basis vectors (Section 15.8) for vector spaces (Section 15.1) other than Rn.
Let Pn be the vector space of n-th order polynomials on (-1, 1) with real coe�cients (verify P2 is a v.s.

at home).

Example 15.20
P2 = {all quadratic polynomials}. Let b0 (t) = 1, b1 (t) = t, b2 (t) = t2.
{b0 (t) , b1 (t) , b2 (t)} span P2, i.e. you can write any f (t) ∈ P2 as

f (t) = α0b0 (t) + α1b1 (t) + α2b2 (t)

for some αi ∈ R.

Note: P2 is 3 dimensional.

15This content is available online at <http://cnx.org/content/m10770/2.4/>.

288
CHAPTER 15. APPENDIX: HILBERT SPACES AND ORTHOGONAL

EXPANSIONS

f (t) = t2 − 3t− 4

Alternate basis

{b0 (t) , b1 (t) , b2 (t)} =
{

1, t,
1
2
(
3t2 − 1

)}
write f (t) in terms of this new basis d0 (t) = b0 (t), d1 (t) = b1 (t), d2 (t) = 3

2b2 (t)− 1
2b0 (t).

f (t) = t2 − 3t− 4 = 4b0 (t)− 3b1 (t) + b2 (t)

f (t) = β0d0 (t) + β1d1 (t) + β2d2 (t) = β0b0 (t) + β1b1 (t) + β2

(
3
2
b2 (t)− 1

2
b0 (t)

)

f (t) =
(
β0 −

1
2

)
b0 (t) + β1b1 (t) +

3
2
β2b2 (t)

so

β0 −
1
2

= 4

β1 = −3

3
2
β2 = 1

then we get

f (t) = 4.5d0 (t)− 3d1 (t) +
2
3
d2 (t)

Example 15.21
ejω0nt|∞n=−∞ is a basis for L2 ([0, T]), T = 2π

ω0
, f (t) =

∑
n

(
Cne

jω0nt
)
.

We calculate the expansion coe�cients with

"change of basis" formula

Cn =
1
T

∫ T

0

f (t) e−(jω0nt)dt (15.36)

note: There are an in�nite number of elements in the basis set, that means L2 ([0, T]) is in�nite
dimensional (scary!).

In�nite-dimensional spaces are hard to visualize. We can get a handle on the intuition by recognizing
they share many of the same mathematical properties with �nite dimensional spaces. Many concepts
apply to both (like "basis expansion"). Some don't (change of basis isn't a nice matrix formula).

15.10 Haar Wavelet Basis16

15.10.1 Introduction

Fourier series (Section 6.2) is a useful orthonormal representation (Section 15.8) on L2 ([0, T]) especiallly for
inputs into LTI systems. However, it is ill suited for some applications, i.e. image processing (recall Gibb's
phenomena (Section 6.11)).

Wavelets, discovered in the last 15 years, are another kind of basis for L2 ([0, T]) and have many nice
properties.

16This content is available online at <http://cnx.org/content/m10764/2.7/>.

289

15.10.2 Basis Comparisons

Fourier series - cn give frequency information. Basis functions last the entire interval.

Figure 15.18: Fourier basis functions

Wavelets - basis functions give frequency info but are local in time.

290
CHAPTER 15. APPENDIX: HILBERT SPACES AND ORTHOGONAL

EXPANSIONS

Figure 15.19: Wavelet basis functions

In Fourier basis, the basis functions are harmonic multiples of ejω0t

Figure 15.20: basis =
n

1√
T
ejω0nt

o

In Haar wavelet basis17, the basis functions are scaled and translated versions of a "mother wavelet"
ψ (t).

17"The Haar System as an Example of DWT" <http://cnx.org/content/m10437/latest/>

291

Figure 15.21

Basis functions {ψj,k (t)} are indexed by a scale j and a shift k.

Let φ (t) = 1 , 0 ≤ t < T Then
{
φ (t) , 2

j
2ψ
(
2jt− k

)
|j ∈ Z and k = 0, 1, 2, . . . , 2j − 1

}

292
CHAPTER 15. APPENDIX: HILBERT SPACES AND ORTHOGONAL

EXPANSIONS

Figure 15.22

ψ (t) =

 1 if 0 ≤ t < T
2

−1 if 0 ≤ T
2 < T

(15.37)

293

Figure 15.23

Let ψj,k (t) = 2
j
2ψ
(
2jt− k

)

Figure 15.24

Larger j → "skinnier" basis function, j = {0, 1, 2, . . . }, 2j shifts at each scale: k = 0, 1, . . . , 2j − 1
Check: each ψj,k (t) has unit energy

294
CHAPTER 15. APPENDIX: HILBERT SPACES AND ORTHOGONAL

EXPANSIONS

Figure 15.25

∫
ψj,k

2 (t) dt = 1⇒ ‖ ψj,k (t) ‖2 = 1 (15.38)

Any two basis functions are orthogonal.

(a) (b)

Figure 15.26: Integral of product = 0 (a) Same scale (b) Di�erent scale

295

Also, {ψj,k, φ} span L2 ([0, T])

15.10.3 Haar Wavelet Transform

Using what we know about Hilbert spaces (Section 15.3): For any f (t) ∈ L2 ([0, T]), we can write

Synthesis

f (t) =
∑
j

(∑
k

(wj,kψj,k (t))

)
+ c0φ (t) (15.39)

Analysis

wj,k =
∫ T

0

f (t)ψj,k (t) dt (15.40)

c0 =
∫ T

0

f (t)φ (t) dt (15.41)

note: the wj,k are real

The Haar transform is super useful especially in image compression

Example 15.22
This demonstration lets you create a signal by combining Haar basis functions, illustrating the
synthesis equation of the Haar Wavelet Transform. See here18 for instructions on how to use the
demo.

This is an unsupported media type. To view, please see http://cnx.org/content/m10764/latest/HaarSyn.llb

15.11 Orthonormal Bases in Real and Complex Spaces19

15.11.1 Notation

Transpose operator AT �ips the matrix across it's diagonal.

A =

 a11 a12

a21 a22



AT =

 a11 a21

a12 a22


Column i of A is row i of AT

18"How to use the LabVIEW demos" <http://cnx.org/content/m11550/latest/>
19This content is available online at <http://cnx.org/content/m10765/2.7/>.

296
CHAPTER 15. APPENDIX: HILBERT SPACES AND ORTHOGONAL

EXPANSIONS

Recall, inner product20

x =


x0

x1

...

xn−1



y =


y0

y1

...

yn−1



xTy =
(
x0 x1 . . . xn−1

)


y0

y1

...

yn−1

 =
∑

(xiyi) =< y,x >

on Rn
Hermitian transpose AH , transpose and conjugate

AH = AT
∗

< y,x >= xHy =
∑

(xiyi∗)

on Cn
Now, let {b0, b1, . . . , bn−1} be an orthonormal basis (Section 15.7.3: Orthonormal Basis) for Cn

i = {0, 1, . . . , n− 1} < bi, bi >= 1 ,

i 6= j < bi, bj >= bj
Hbi = 0

Basis matrix:

B =


...

...
...

b0 b1 . . . bn−1

...
...

...


Now,

BHB =


. . . b0

H . . .

. . . b1
H . . .
...

. . . bn−1
H . . .




...
...

...

b0 b1 . . . bn−1

...
...

...

 =


b0
Hb0 b0

Hb1 . . . b0
Hbn−1

b1
Hb0 b1

Hb1 . . . b1
Hbn−1

...

bn−1
Hb0 bn−1

Hb1 . . . bn−1
Hbn−1


20"Conclusion" <http://cnx.org/content/m10775/latest/>

297

For orthonormal basis with basis matrix B

BH = B−1

(BT = B−1 in Rn) BH is easy to calculate while B−1 is hard to calculate.
So, to �nd {α0, α1, . . . , αn−1} such that

x =
∑

(αibi)

Calculate
α = B−1x⇒ α = BHx

Using an orthonormal basis we rid ourselves of the inverse operation.

15.12 Plancharel and Parseval's Theorems21

15.12.1 Plancharel Theorem

Theorem 15.2: Plancharel Theorem
The inner product of two vectors/signals is the same as the `2 inner product of their expansion
coe�cients.

Let {bi} be an orthonormal basis for a Hilbert Space H. x ∈ H, y ∈ H

x =
∑

(αibi)

y =
∑

(βibi)

then
< x, y >H =

∑
(αiβi∗)

Example
Applying the Fourier Series, we can go from f (t) to {cn} and g (t) to {dn}∫ T

0

f (t) g (t)∗dt =
∞∑

n=−∞
(cndn∗)

inner product in time-domain = inner product of Fourier coe�cients.

Proof:
x =

∑
(αibi)

y =
∑

(βjbj)

< x, y >H =<
∑

(αibi) ,
∑

(βjbj) >=
(∑

αi

)
< bi,

∑
(βjbj) >=

(∑
αi

)(∑
(βj∗)

)
< bi, bj >=

∑
(αiβi∗)

by using inner product rules (p. 269)

note: < bi, bj >= 0 when i 6= j and < bi, bj >= 1 when i = j

If Hilbert space H has a ONB, then inner products are equivalent to inner products in `2.
All H with ONB are somehow equivalent to `2.

point of interest: square-summable sequences are important

21This content is available online at <http://cnx.org/content/m10769/2.5/>.

298
CHAPTER 15. APPENDIX: HILBERT SPACES AND ORTHOGONAL

EXPANSIONS

15.12.2 Parseval's Theorem

Theorem 15.3: Parseval's Theorem
Energy of a signal = sum of squares of it's expansion coe�cients

Let x ∈ H, {bi} ONB

x =
∑

(αibi)

Then
(‖ x ‖H)2 =

∑(
(|αi|)2

)
Proof: Directly from Plancharel

(‖ x ‖H)2 = < x, x >H =
∑

(αiαi∗) =
∑(

(|αi|)2
)

Example 15.24
Fourier Series 1√

T
ejw0nt

f (t) =
1√
T

∑(
cn

1√
T
ejw0nt

)
∫ T

0

(|f (t) |)2
dt =

∞∑
n=−∞

(
(|cn|)2

)

This is an unsupported media type. To view, please see http://cnx.org/content/m10769/latest/Parsevals
Theorem.llb

15.13 Approximation and Projections in Hilbert Space22

15.13.1 Introduction

Given a line 'l' and a point 'p' in the plane, what's the closest point 'm' to 'p' on 'l'?

p
l

p

Figure 15.27: Figure of point 'p' and line 'l' mentioned above.

Same problem: Let x and v be vectors in R2. Say ‖ v ‖= 1. For what value of α is ‖ x − αv ‖ 2

minimized? (what point in span{v} best approximates x?)

22This content is available online at <http://cnx.org/content/m10766/2.7/>.

299

x
x-av

av

Figure 15.28

The condition is that x− α̂v and αv are orthogonal.

15.13.2 Calculating α

How to calculate α̂?
We know that (x− α̂v) is perpendicular to every vector in span{v}, so

< x− α̂v, βv >= 0 , ∀β

β∗ < x, v > −α̂β∗ < v, v >= 0

because < v, v >= 1, so
< x, v > −α̂ = 0⇒ α̂ =< x, v >

Closest vector in span{v} = < x, v > v, where < x, v > v is the projection of x onto v.
We can do the same thing in higher dimensions.

Exercise 15.2 (Solution on p. 301.)

Let V ⊂ H be a subspace of a Hilbert space (Section 15.3) H. Let x ∈ H be given. Find the y ∈ V
that best approximates x. i.e., ‖ x− y ‖ is minimized.
Example 15.25

x ∈ R3, V = span





1

0

0

 ,


0

1

0



, x =


a

b

c

. So,

y =
2∑
i=1

(< x, bi > bi) = a


1

0

0

+ b


0

1

0

 =


a

b

0


Example 15.26
V = {space of periodic signals with frequency no greater than 3w0}. Given periodic f(t), what is
the signal in V that best approximates f?

1. { 1√
T
ejw0kt, k = -3, -2, ..., 2, 3} is an ONB for V

2. g (t) = 1
T

∑3
k=−3

(
< f (t) , ejw0kt > ejw0kt

)
is the closest signal in V to f(t)⇒ reconstruct f(t)

using only 7 terms of its Fourier series (Section 6.2).

300
CHAPTER 15. APPENDIX: HILBERT SPACES AND ORTHOGONAL

EXPANSIONS

Example 15.27
Let V = {functions piecewise constant between the integers}

1. ONB for V.

bi =

 1 if i− 1 ≤ t < i

0 otherwise

where {bi} is an ONB.
Best piecewise constant approximation?

g (t) =
∞∑

i=−∞
(< f, bi > bi)

< f, bi >=
∫ ∞
−∞

f (t) bi (t) dt =
∫ i

i−1

f (t) dt

Example 15.28
This demonstration explores approximation using a Fourier basis and a Haar Wavelet basis.See
here23 for instructions on how to use the demo.

This is an unsupported media type. To view, please see
http://cnx.org/content/m10766/latest/Approximation.llb

23"How to use the LabVIEW demos" <http://cnx.org/content/m11550/latest/>

301

Solutions to Exercises in Chapter 15

Solution to Exercise 15.1 (p. 286)
In order to represent x in terms of b0 and b1 we will follow the same steps we used in the above example.

B =

 1 2

3 0



B−1 =

 0 1
2

1
3

−1
6


α = B−1x =

 1
2
3


And now we can write x in terms of b0 and b1.

x = b0 +
2
3
b1

And we can easily substitute in our known values of b0 and b1 to verify our results.

Solution to Exercise 15.2 (p. 299)

1. Find an orthonormal basis (Section 15.7.3: Orthonormal Basis) {b1, . . . , bk} for V
2. Project x onto V using

y =
k∑
i=1

(< x, bi > bi)

then y is the closest point in V to x and (x-y) ⊥ V (< x− y, v >= 0 , ∀v ∈ V

302
CHAPTER 15. APPENDIX: HILBERT SPACES AND ORTHOGONAL

EXPANSIONS

Chapter 16

Homework Sets

16.1 Homework #11

due date: Noon, Thursday, September 5, 2002

16.1.1 Assignment 1

Homework, tests, and solutions from previous o�erings of this course are o� limits, under the honor code.

16.1.1.1 Problem 1

Form a study group of 3-4 members. With your group, discuss and synthesize the major themes of this week
of lectures. Turn in a one page summary of your discussion. You need turn in only one summary per group,
but include the names of all group members. Please do not write up just a "table of contents."

16.1.1.2 Problem 2

Construct a WWW page (with your picture) and email Mike Wakin (wakin@rice.edu) your name (as you
want it to appear on the class web page) and the URL. If you need assistance setting up your page or
taking/scanning a picture (both are easy!), ask your classmates.

16.1.1.3 Problem 3: Learning Styles

Follow this learning styles link2 (also found on the Elec 301 web page3) and learn about the basics of
learning styles. Write a short summary of what you learned. Also, complete the "Index of learning styles"
self-scoring test on the web and bring your results to class.

16.1.1.4 Problem 4

Make sure you know the material in Lathi, Chapter B, Sections 1-4, 6.1, 6.2, 7. Speci�cally, be sure to review
topics such as:

• complex arithmetic (adding, multiplying, powers)
• �nding (complex) roots of polynomials
• complex plane4 and plotting roots

1This content is available online at <http://cnx.org/content/m10826/2.9/>.
2http://www2.ncsu.edu/unity/lockers/users/f/felder/public/Learning_Styles.html
3http://www-dsp.rice.edu/courses/elec301/
4"The Complex Plane" <http://cnx.org/content/m10596/latest/>

303

304 CHAPTER 16. HOMEWORK SETS

• vectors (adding, inner products)

16.1.1.5 Problem 5: Complex Number Applet

Reacquaint yourself with complex numbers5 by going to the course applets web page6 and clicking on the
Complex Numbers applet (may take a few seconds to load).

(a) Change the default add function to exponential (exp). Click on the complex plane to get a blue arrow,
which is your complex number z. Click again anywhere on the complex plane to get a yellow arrow, which
is equal to ez. Now drag the tip of the blue arrow along the unit circle on with |z| = 1 (smaller circle). For
which values of z on the unit circle does ez also lie on the unit circle? Why?

(b) Experiment with the functions absolute (abs), real part (re), and imaginary part (im) and report
your �ndings.

16.1.1.6 Problem 6: Complex Arithmetic

Reduce the following to the Cartesian form, a+ jb. Do not use your calculator!

(a)
(
−1−j√

2

)20

(b) 1+2j
3+4j

(c) 1+
√

3j√
3−j

(d)
√
j

(e) jj

16.1.1.7 Problem 7: Roots of Polynomials

Find the roots of each of the following polynomials (show your work). Use MATLAB to check your answer
with the roots command and to plot the roots in the complex plane. Mark the root locations with an 'o'.
Put all of the roots on the same plot and identify the corresponding polynomial (a, b, etc...).

(a) z2 − 4z
(b) z2 − 4z + 4
(c) z2 − 4z + 8
(d) z2 + 8
(e) z2 + 4z + 8
(f) 2z2 + 4z + 8

16.1.1.8 Problem 8: Nth Roots of Unity

e
j2π
N is called an Nth Root of Unity.
(a) Why?

(b) Let z = e
j2π
7 . Draw

{
z, z2, . . . , z7

}
in the complex plane.

(c) Let z = e
j4π
7 . Draw

{
z, z2, . . . , z7

}
in the complex plane.

16.1.1.9 Problem 9: Writing Vectors in Terms of Other Vectors

A pair of vectors u ∈ C2 and v ∈ C2 are called linearly independent if

αu+ βv = 0 if and only if α = β = 0

It is a fact that we can write any vector in C2 as a weighted sum (or linear combination) of any two
linearly independent vectors, where the weights α and β are complex-valued.

5"Complex Numbers" <http://cnx.org/content/m0081/latest/>
6http://www.dsp.rice.edu/courses/elec301/applets.shtml

305

(a) Write

 3 + 4j

6 + 2j

 as a linear combination of

 1

2

 and

 −5

3

. That is, �nd α and β such that

 3 + 4j

6 + 2j

 = α

 1

2

+ β

 −5

3



(b) More generally, write x =

 x1

x2

 as a linear combination of

 1

2

 and

 −5

3

. We will denote

the answer for a given x as α (x) and β (x).
(c) Write the answer to (a) in matrix form, i.e. �nd a 2×2 matrix A such that

A

 x1

x2

 =

 α (x)

β (x)


(d) Repeat (b) and (c) for a general set of linearly independent vectors u and v.

16.1.1.10 Problem 10: Fun with Fractals

A Julia set J is obtained by characterizing points in the complex plane. Speci�cally, let f (x) = x2 + µ with
µ complex, and de�ne

g0 (x) = x

g1 (x) = f (g0 (x)) = f (x)

g2 (x) = f (g1 (x)) = f (f (x))

...

gn (x) = f (gn−1 (x))

Then for each x in the complex plane, we say x ∈ J if the sequence

{|g0 (x) |, |g1 (x) |, |g2 (x) |, . . . }

does not tend to in�nity. Notice that if x ∈ J , then each element of the sequence {g0 (x) , g1 (x) , g2 (x) , . . . }
also belongs to J .

For most values of µ, the boundary of a Julia set is a fractal curve - it contains "jagged" detail no
matter how far you zoom in on it. The well-known Mandelbrot set contains all values of µ for which the
corresponding Julia set is connected.

(a) Let µ = −1. Is x = 1 in J?
(b) Let µ = 0. What conditions on x ensure that x belongs to J?
(c) Create an approximate picture of a Julia set in MATLAB. The easiest way is to create a matrix of

complex numbers, decide for each number whether it belongs to J , and plot the results using the imagesc

command. To determine whether a number belongs to J , it is helpful to de�ne a limit N on the number of
iterations of g. For a given x, if the magnitude |gn (x) | remains below some threshold M for all 0 ≤ n ≤ N ,
we say that x belongs to J . The code below will help you get started:

306 CHAPTER 16. HOMEWORK SETS

N = 100; % Max # of iterations

M = 2; % Magnitude threshold

mu = -0.75; % Julia parameter

realVals = [-1.6:0.01:1.6];

imagVals = [-1.2:0.01:1.2];

xVals = ones(length(imagVals),1) * realVals + ...

j*imagVals'*ones(1,length(realVals));

Jmap = ones(size(xVals));

g = xVals; % Start with g0

% Insert code here to fill in elements of Jmap. Leave a '1'

% in locations where x belongs to J, insert '0' in the

% locations otherwise. It is not necessary to store all 100

% iterations of g!

imagesc(realVals, imagVals, Jmap);

colormap gray;

xlabel('Re(x)');

ylabel('Imag(x)');

This creates the following picture for µ = −0.75, N = 100, and M = 2.

307

Figure 16.1: Example image where the x-axis is Re (x) and the y-axis is Im (x).

Using the same values for N , M , and x, create a picture of the Julia set for µ = −0.391− 0.587j. Print
out this picture and hand it in with your MATLAB code.

Just for Fun: Try assigning di�erent color values to Jmap. For example, let Jmap indicate the
�rst iteration when the magnitude exceeds M . Tip: try imagesc(log(Jmap)) and colormap jet

for a neat picture.

16.2 Homework #1 Solutions7

16.2.1 Problem #1

No solutions provided.

16.2.2 Problem #2

No solutions provided.

16.2.3 Problem #3

No solutions provided.

16.2.4 Problem #4

No solutions provided.

7This content is available online at <http://cnx.org/content/m10830/2.4/>.

308 CHAPTER 16. HOMEWORK SETS

16.2.5 Problem #5

16.2.5.1 Part (a)

ez lies on the unit circle for z = ±j. When z = ±j,

ez = e±j = cos (±1) + jsin (±1)

e±j =
(
cos2 (±1) + sin2 (±1)

) 1
2

= 1
(16.1)

which gives us the unit circle!
Think of it this way: for z = σ + jθ, you want a σ = 0 so that eσ+jθ reduces as

eσ+jθ = eσejθ = e0ejθ = ejθ

We know by Euler's formula (Section 1.6.2: Euler's Relation) that

ejθ = cos (θ) + jsin (θ)

The magnitude of this is given by sin2 (θ) + cos2 (θ), which is 1 (which implies that ejθ is on the unit circle).
So, we know we want to pick a z = Ajθ that is on the unit circle (from the problem statement), so we

have to choose A = ±1 to get unit magnitude.

16.2.5.2 Part (b)

• | · | gives magnitude of complex number
• Re (·) gives real part of complex number
• Im (·) gives imaginary part of complex number

16.2.6 Problem #6

16.2.6.1 Part (a) (
−1− j√

2

)20

=

(√
2e

5π
4

√
2

)20

=
(
e

5π
4

)20

= ej25π = ejπ = −1

16.2.6.2 Part (b)

1 + 2j
3 + 4j

=
(

1 + 2j
3 + 4j

)(
3− 4j
3− 4j

)
=

3 + 6j − (4j + 8)
9 + 16

=
11 + 2j

25
=

11
25

+
2
25
j

16.2.6.3 Part (c)

1 +
√

3j√
3− j

=
2ej

π
3

2ej
−π
6

= ej
π
2 = j

16.2.6.4 Part (d) √
j =

(
ej

π
2
) 1

2 = ej
π
4 = cos

(π
4

)
+ jsin

(π
4

)
=
√

2
2

+
√

2
2
j

309

16.2.6.5 Part (e)

jj =
(
ej

π
2
)j

= ej
2 π

2 = e
−π
2

16.2.7 Problem #7

16.2.7.1 Part (a)

z2 − 4z = z (z − 4)
Roots of z = {0, 4}

16.2.7.2 Part (b)

z2 − 4z + 4 = (z − 2)2

Roots of z = {2, 2}

16.2.7.3 Part (c)

z2 − 4z + 8

Roots of z =
4±
√

16− 32
2

= 2± 2j

16.2.7.4 Part (d)

z2 + 8

Roots of z =
±
√
−32
2

= ±2
√

2j

16.2.7.5 Part (e)

z2 + 4z + 8

Roots of z =
−4±

√
16− 32

2
= −2± 2j

16.2.7.6 Part (f)

2z2 + 4z + 8

Roots of z =
−4±

√
16− 64

4
= −1±

√
3j

16.2.7.7 Matlab Code and Plot

%%%%%%%%%%%%%%%

%%%%% PROBLEM 7

%%%%%%%%%%%%%%%

rootsA = roots([1 -4 0])

rootsB = roots([1 -4 4])

rootsC = roots([1 -4 8])

rootsD = roots([1 0 8])

310 CHAPTER 16. HOMEWORK SETS

rootsE = roots([1 4 8])

rootsF = roots([2 4 8])

zplane([rootsA; rootsB; rootsC; rootsD; rootsE; rootsF]);

gtext('a')

gtext('a')

gtext('b')

gtext('b')

gtext('c')

gtext('c')

gtext('d')

gtext('d')

gtext('e')

gtext('e')

gtext('f')

gtext('f')

Figure 16.2: Plot of all the roots.

16.2.8 Problem #8

16.2.8.1 Part (a)

Raise e
j2π
N to the Nth power. (

e
j2π
N

)N
= ej2π = 1

311

note: Similarly,

(1)
1
N =

(
ej2π

) 1
N = e

j2π
N

16.2.8.2 Part (b)

For z = e
j2π
7 ,

zk =
(
e
j2π
7

)k
= ej2π

k
7

We will have points on the unit circle with angle of
{

2π
7 ,

2π2
7 , . . . , 2π7

7

}
. The code used to plot these in

MATLAB can be found below, followed by the plot.

%%%%%%%%%%%%%%%

%%%%% PROBLEM 8

%%%%%%%%%%%%%%%

%%% Part (b)

figure(1);

clf;

hold on;

th = [0:0.01:2*pi];

unitCirc = exp(j*th);

plot(unitCirc,'--');

for k = 1:7

z = exp(j*2*pi*k/7);

plot(z,'o');

text(1.2*real(z),1.2*imag(z),strcat('z�',num2str(k)));

end

xlabel('real part');

ylabel('imag part');

title('Powers of exp(j2\pi/7) on the unit circle');

axis([-1.5 1.5 -1.5 1.5]);

axis square;

312 CHAPTER 16. HOMEWORK SETS

Figure 16.3: MATLAB plot of part (b).

16.2.8.3 Part (c)

For z = e
j4π
7 ,

zk =
(
e
j4π
7

)k
= ej2π

2k
7

Where we have {
z, z2, . . . , z7

}
=
{
ej2π

2
7 , ej2π

4
7 , ej2π

6
7 , ej2π

1
7 , ej2π

3
7 , ej2π

5
7 , 1
}

The code used to plot these in MATLAB can be found below, followed by the plot.

%%% Part (c)

figure(1);

clf;

hold on;

th = [0:0.01:2*pi];

unitCirc = exp(j*th);

313

plot(unitCirc,'--');

for k = 1:7

z = exp(j*4*pi*k/7);

plot(z,'o');

text(1.2*real(z),1.2*imag(z),strcat('z�',num2str(k)));

end

xlabel('real part');

ylabel('imag part');

title('Powers of exp(j4\pi/7) on the unit circle');

axis([-1.5 1.5 -1.5 1.5]);

axis square;

Figure 16.4: MATLAB plot of part (c).

314 CHAPTER 16. HOMEWORK SETS

16.2.9 Problem #9

16.2.9.1 Part (a)  3 + 4j

6 + 2j

 = α

 1

2

+ β

 −5

3


To solve for β we must solve the following system of equations:

α− 5β = 3 + 4j

2α+ 3β = 6 + 2j

If we multiply the top equation by −2 we will get the following, which allows us to cancel out the alpha
terms:

−2α+ 10β = −6− 8j

2α+ 3β = 6 + 2j

And now we have,
13β = −6j

β =
−6
13
j

And to solve for α we have the following equation:

α = 3 + 4j + 5β

= 3 + 4j + 5
(−6

13 j
)

= 3 + 22
13j

(16.2)

16.2.9.2 Part (b)  x1

x2

 = α

 1

2

+ β

 −5

3


x1 = α− 5β

x2 = 2α+ 3β

Solving for α and β we get:

α (x) =
3x1 + 5x2

13

β (x) =
−2x1 + x2

13

16.2.9.3 Part (c)  α (x)

β (x)

 =

 3
13

5
13

−2
13

1
13

 x1

x2



315

16.2.9.4 Part (d)

Write u =

 u1

u2

 and v =

 v1

v2

. Then solve

 x1

x2

 = α

 u1

u2

+ β

 v1

v2


which corresponds to the system of equations

x1 = αu1 + βv1

x2 = αu2 + βv2

Solving for α and β we get

α (x) =
v2x1 − v1x2

u1v2 − u2v1

β (x) =
u2x1 − u1x2

v1u2 − u1v2

For the matrix A we get

A =
1

u1v2 − u2v1

 v2 −v1

−u2 u1



16.2.10 Problem #10

16.2.10.1 Part (a)

If u = −1, then f (x) = x2 − 1. Examine the sequence {g0 (x) , g1 (x) , . . . }:

g0 (x) = 1

g1 (x) = 12 − 1 = 0

g2 (x) = 02 − 1 = −1

g3 (x) = (−1)2 − 1 = 0

g4 (x) = 02 − 1 = −1

...

The magnitude sequence remains bounded so x = 1 belongs to J .

316 CHAPTER 16. HOMEWORK SETS

16.2.10.2 Part (b)

If u = 0, then f (x) = x2. So we have
g0 (x) = x

g1 (x) = x2

g2 (x) =
(
x2
)2

= x4

...

gn (x) =
(
x2
)n

= x2n

Writing x = rejθ, we have gn (x) = x2n = r2nejθ2n, and so we have

|gn (x) | = r2n

The magnitude sequence blows up if and only if r > 1. Thus x belongs to J if and only if |x| ≤ 1. So, J
corresponds to the unit disk.

16.2.10.3 Part (c)

%%%%%%%%%%%%%%%%

%%%%% PROBLEM 10

%%%%%%%%%%%%%%%%

%%% Part (c) - solution code

N = 100; % Max # of iterations

M = 2; % Magnitude threshold

mu = -0.391 - 0.587*j; % Julia parameter

realVals = [-1.6:0.01:1.6];

imagVals = [-1.2:0.01:1.2];

xVals = ones(length(imagVals),1)*realVals + ...

j*imagVals'*ones(1,length(realVals));

Jmap = ones(size(xVals));

g = xVals; % Start with g0

for n = 1:N

g = g.�2 + mu;

big = (abs(g) > M);

Jmap = Jmap.*(1-big);

end

imagesc(realVals,imagVals,Jmap); colormap gray;

xlabel('Re(x)'); ylabel('Imag(x)');

317

Figure 16.5: MATLAB plot of part (c).

16.2.10.4 Just for Fun Solution

%%% Just for fun code

N = 100; % Max # of iterations

M = 2; % Magnitude threshold

mu = -0.391 - 0.587*j; % Julia parameter

realVals = [-1.6:0.005:1.6];

imagVals = [-1.2:0.005:1.2];

xVals = ones(length(imagVals),1)*realVals + ...

j*imagVals'*ones(1,length(realVals));

Jmap = zeros(size(xVals));

% Now, we put zeros in the 'middle', for a

% cool effect.

g = xVals; % Start with g0

for n = 1:N

g = g.�2 + mu;

big = (abs(g) > M);

notAlreadyBig = (Jmap == 0);

Jmap = Jmap + n*(big.*notAlreadyBig);

318 CHAPTER 16. HOMEWORK SETS

end

imagesc(realVals,imagVals,log(Jmap));colormap jet;

xlabel('Re(x)'); ylabel('Imag(x)');

Figure 16.6: MATLAB plot.

Chapter 17

Viewing Embedded LabVIEW Content1

In order to view LabVIEW content embedded in Connexions modules, you must install the LabVIEW Run-
time Engine on your computer. The following are sets of instructions for installing the software on di�erent
platforms.

note: Embedded LabVIEW content is currently supported only under Windows 2000/XP. Also,
you must have version 8.0.1 of the LabView Run-time Engine to run much of the embedded content
in Connexions.

17.1 Installing the LabVIEW Run-time Engine on Microsoft Win-
dows 2000/XP

1. Point your web browser to the LabVIEW Run-time Engine download page at:
http://digital.ni.com/softlib.nsf/websearch/077b51e8d15604bd8625711c006240e72 .

2. If you're not logged in to NI, click the link to continue the download process at the bottom of the page.
3. Login or create a pro�le with NI to continue.
4. Once logged in, click the LabVIEW_8.0.1_Runtime_Engine.exe link and save the �le to disk.
5. Once the �le has downloaded, double click it and follow the steps to install the run-time engine.
6. Download the LabVIEWBrowser Plug-in at: http://zone.ni.com/devzone/conceptd.nsf/webmain/7DBFD404C6AD0B24862570BB0072F83B/$FILE/LVBrowserPlugin.ini3

.
7. Put the LVBrowserPlugin.ini �le in the My Documents\LabVIEW Data folder. (You may have to

create this folder if it doesn't already exist.)
8. Restart your web browser to complete the installation of the plug-in.

1This content is available online at <http://cnx.org/content/m13753/1.3/>.
2http://digital.ni.com/softlib.nsf/websearch/077b51e8d15604bd8625711c006240e7
3http://zone.ni.com/devzone/conceptd.nsf/webmain/7DBFD404C6AD0B24862570BB0072F83B/$FILE/LVBrowserPlugin.ini

319

320 GLOSSARY

Glossary

B Basis

A basis for Cn is a set of vectors that: (1) spans Cn and (2) is linearly independent.

C Cauchy-Schwarz Inequality

For x, y in an inner product space

| < x,y > | ≤‖ x ‖‖ y ‖

with equality holding if and only if x and y are linearly dependent (Section 5.1.1: Linear
Independence), i.e. x = αy for some scalar α.

D di�erence equation

An equation that shows the relationship between consecutive values of a sequence and the
di�erences among them. They are often rearranged as a recursive formula so that a systems
output can be computed from the input signal and past outputs.

Example:

y [n] + 7y [n− 1] + 2y [n− 2] = x [n]− 4x [n− 1] ()

domain

The group, or set, of values that are de�ned by a given function.

Example: Using the rational function above, (14.38), the domain can be de�ned as any real
number x where x does not equal 1 or negative 3. Written out mathematical, we get the
following:

{x ∈ R |x 6= −3 and x 6= 1} ()

E eigenvector

An eigenvector of A is a vector v ∈ Cn such that

Av = λv (5.2)

where λ is called the corresponding eigenvalue. A only changes the length of v, not its
direction.

I inner product

The inner product is de�ned mathematically as:

< x,y > = yTx

=
(
y0 y1 . . . yn−1

)


x0

x1

...

xn−1


=

∑n−1
i=0 (xiyi)

(15.1)

GLOSSARY 321

L

lp [0, N − 1] =
{
f ∈ CN , ‖ f ‖p <∞

}
but from previous discussion lp [0, N − 1] = CN

Lp (R) =
{
f, ‖ f ‖p <∞

}

‖ f ‖p =
(∫ ∞
−∞

(|f [n] |)pdt
) 1
p

where 1 ≤ p <∞
‖ f ‖∞ = esssup|f (t) |

where −∞ < t <∞

Lp [T1, T2] =
{
f [T1, T2] , ‖ f ‖p <∞

}

‖ f ‖p =

(∫ T2

T1

(|f (t) |)pdt

) 1
p

where 1 ≤ p <∞
‖ f ‖p = esssup|f (t) |

where T1 ≤ t ≤ T2

lp (z) =
{
f, ‖ f ‖p <∞

}
(
‖ f ‖p

)p
=

∞∑
n=−∞

((|f [n] |)p)

where 1 ≤ p <∞
‖ f ‖∞ = maxn∈z {|f [n] |}

limit

A sequence {gn} |∞n=1 converges to a limit g ∈ R if for every ε > 0 there is an integer N such that

|gi − g| < ε , i ≥ N

We usually denote a limit by writing
lim
i→∞

gi = g

or
gi → g

Linearly Independent

322 GLOSSARY

For a given set of vectors, {x1, x2, . . . , xn}, they are linearly independent if

c1x1 + c2x2 + · · ·+ cnxn = 0

only when c1 = c2 = · · · = cn = 0

Example: We are given the following two vectors:

x1 =

 3

2



x2 =

 −6

−4


These are not linearly independent as proven by the following statement, which, by inspection,
can be seen to not adhere to the de�nition of linear independence stated above.

x2 = −2x1 ⇒ 2x1 + x2 = 0

Another approach to reveal a vectors independence is by graphing the vectors. Looking at these
two vectors geometrically (as in Figure 5.1), one can again prove that these vectors are not
linearly independent.

N Normalized Basis

a basis (Section 5.1.3: Basis) {bi} where each bi has unit norm

‖ bi ‖= 1 , i ∈ Z (15.19)

O Orthogonal Basis

a basis {bi} in which the elements are mutually orthogonal

< bi, bj >= 0 , i 6= j

orthogonal

We say that x and y are orthogonal if:

< x,y >= 0

Orthonormal Basis

a basis that is both normalized and orthogonal

‖ bi ‖= 1 , i ∈ Z

< bi, bj > , i 6= j

P poles

Also called singularities, these are the points s at which Lx1 (s) blows up.

poles

1. The value(s) for z where Q (z) = 0.

GLOSSARY 323

2. The complex frequencies that make the overall gain of the �lter transfer function in�nite.

poles

1. The value(s) for z where the denominator of the transfer function equals zero

2. The complex frequencies that make the overall gain of the �lter transfer function in�nite.

R rational function

For any two polynomials, A and B, their quotient is called a rational function.

Example: Below is a simple example of a basic rational function, f (x). Note that the
numerator and denominator can be polynomials of any order, but the rational function is
unde�ned when the denominator equals zero.

f (x) =
x2 − 4

2x2 + x− 3
()

S sequence

A sequence is a function gn de�ned on the positive integers 'n'. We often denote a sequence by
{gn} |∞n=1

Example: A real number sequence:

gn =
1
n

Example: A vector sequence:

gn =

 sin
(
nπ
2

)
cos
(
nπ
2

)


Example: A function sequence:

gn (t) =

 1 if 0 ≤ t < 1
n

0 otherwise

note: A function can be thought of as an in�nite dimensional vector where for each
value of 't' we have one dimension

Span

The span4 of a set of vectors {x1, x2, . . . , xk} is the set of vectors that can be written as a linear
combination of {x1, x2, . . . , xk}

span ({x1, . . . , xk}) = {α1x1 + α2x2 + · · ·+ αkxk , αi ∈ Cn }

Example: Given the vector

x1 =

 3

2


the span of x1 is a line.

4"Subspaces", De�nition 2: "Span" <http://cnx.org/content/m10297/latest/#defn2>

324 GLOSSARY

Example: Given the vectors

x1 =

 3

2


x2 =

 1

2


the span of these vectors is C2.

U Uniform Convergence

The sequence (Section 9.1) {gn} |∞n=1 converges uniformly to function g if for every ε > 0 there is
an integer N such that n ≥ N implies

|gn (t)− g (t) | ≤ ε (9.7)

for all t ∈ R.

V Vector space

A linear vector space S is a collection of "vectors" such that (1) if f1 ∈ S ⇒ αf1 ∈ S for all
scalars α (where α ∈ R or α ∈ C) and (2) if f1 ∈ S, f2 ∈ S, then f1 + f2 ∈ S

Z zeros

1. The value(s) for z where P (z) = 0.

2. The complex frequencies that make the overall gain of the �lter transfer function zero.

zeros

1. The value(s) for z where the numerator of the transfer function equals zero

2. The complex frequencies that make the overall gain of the �lter transfer function zero.

INDEX 325

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A alias, � 12.5(209), � 12.6(212)
aliasing, � 7.2(142), � 12.5(209), 209,
� 12.6(212)
almost everywhere, � 6.11(134)
alphabet, � 1.7(31), 34
analog, � 1.1(1), 2, 31, � 10.6(185), � 10.7(186)
analysis, 114
Anti-Aliasing, � 12.6(212)
anticausal, � 1.1(1), 3
aperiodic, � 1.1(1), 112
approximation, � 15.13(298)

B bandlimited, 199
baraniuk, � 16.2(307)
bases, � 5.1(91)
basis, � 5.1(91), 94, 94, 94, � 7.2(142), 147,
� 7.3(149), 205, � 15.7(280), � 15.8(283), 284,
� 15.9(287), � 15.10(288), � 15.11(295)
basis matrix, � 15.8(283), 285
best approximates, 299
BIBO, � 3.4(65)
bilateral Laplace transform pair, 219
bilateral z-transform, 231
bounded input bounded output, � 3.4(65)
bounded input-bounded output (BIBO), 40
boxcar �lter, 72
butter�y, � 8.3(167), 169

C Cartesian, 304
cascade, � 2.2(41)
cauch-schwarz, � 15.5(270)
cauchy, � 15.5(270)
cauchy-schwarz inequality, � 15.5(270), 271
causal, � 1.1(1), 3, � 2.1(37), 39, � 2.2(41), 257
characteristic equation, 52
characteristic polynomial, 253
circular, � 4.3(158), � 6.7(126), � 4.3(158)
circular convolution, � 4.3(158), 78, � 6.7(126),
� 4.3(158), 159
circular shift, � 7.5(154)
circular shifting, 156
circular shifts, � 7.5(154), 154

coe�cient, � 6.2(112)
coe�cient vector, � 15.8(283), 285
commutative, 53, 60, 73
complex, � 1.7(31), � 7.2(142), � 14.7(254)
complex amplitude, 29
complex continuous-time exponential signal,
29
complex exponential, 23, � 1.6(28), 28
complex exponential sequence, 32
complex plane, � 1.6(28)
complex sinusoids, � 7.2(142)
complex vector space, 263
complex vector spaces, � 15.1(263)
complex-valued, � 1.7(31)
complex-valued function, 220, 220
complexity, 165, � 8.3(167)
composite, 169
computational advantage, 167
conjugates, 147
Constant-Coe�cient, � 4.4(82)
continuous, 1, 132
continuous frequency, � 10.4(184), � 11.1(191)
continuous system, 37
continuous time, � 1.1(1), � 1.4(22), � 3.1(47),
� 3.2(53), � 3.4(65), � 7.1(141), � 10.3(183),
� 11.1(191), � 11.2(192), � 12.1(197), 197,
� 12.7(214), � 13.1(219), � 13.2(222),
� 13.3(223), � 13.4(223), � 13.6(227)
continuous-time, � 3.1(47)
Continuous-Time Fourier Transform, 191
control theory, 229
converge, � 6.9(130), � 9.3(176)
convergence, � 6.9(130), 132, � 9.1(171),
� 9.2(173), � 9.3(176)
converges, � 9.3(176)
convolution, � 3.2(53), � 3.3(59), � 4.2(73), 73,
� 4.3(158), � 6.7(126), � 4.3(158), � 11.2(192)
convolution integral, 53
convolution sum, 73
convolutions, � 4.3(158), � 4.3(158)
convolve, � 4.3(158), � 4.3(158)

326 INDEX

Cooley-Tukey, � 8.1(165), � 8.3(167)
csi, � 15.5(270)
CTFT, � 11.1(191), � 12.1(197)
cuachy, � 15.5(270)

D de, � 3.1(47)
Decaying Exponential, 23
decompose, � 1.7(31), � 15.8(283), 284
delta function, � 15.7(280)
determinant, � 5.2(96)
deterministic signal, 7
dft, � 4.3(158), � 7.5(154), � 4.3(158),
� 8.2(166), � 10.1(179), � 10.2(181)
di�erence equation, � 4.1(69), 69, 82, 251, 251
Di�erence Equations, � 4.4(82), � 4.5(83)
di�erential, � 3.1(47)
di�erential equations, � 3.1(47)
digital, � 1.1(1), 2, � 10.6(185), � 10.7(186)
digital signal processing, � 4.1(69), � 10.7(186)
Dirac delta, 23
dirac delta function, � 1.4(22), � 1.5(25), 25
direct method, 253
dirichlet conditions, � 6.10(132), 132
Dirichlet sinc, � 10.1(179)
discontinuity, � 6.9(130), 132
discontinuous functions, 135
discrete, 1, � 7.2(142), � 12.7(214)
discrete fourier transform, � 4.3(158),
� 4.3(158), � 10.2(181), 181
discrete system, 37
discrete time, � 1.1(1), � 3.4(65), � 4.2(73),
� 7.1(141), � 7.5(154), � 10.4(184), � 12.1(197),
� 13.6(227), � 14.2(236)
discrete time fourier series, � 7.2(142), 142,
� 7.3(149), � 7.4(150)
discrete time processing, � 12.7(214)
discrete time signals, 197
discrete-time, � 1.7(31), � 7.3(149),
� 10.5(185), � 10.6(185), � 10.7(186)
discrete-time convolution, 73
discrete-time exponential signal, 29
discrete-time Fourier transform, � 10.7(186)
Discrete-Time Fourier Transform properties,
� 10.5(185)
discrete-time sinc function, 189
discrete-time systems, � 4.1(69)
domain, 250, 250
dot product, � 15.3(268)
dot products, 268
DSP, � 4.1(69), � 10.7(186), � 12.4(207),
� 14.2(236)
DT, � 4.2(73)

dtfs, � 7.2(142), � 7.3(149), � 7.4(150)
DTFT, � 10.1(179), � 10.4(184), � 12.1(197)
dynamic content, � 17(319)

E edgy, 118
eigen, � 5.4(104)
eigenfunction, � 5.2(96), � 5.4(104), � 5.5(105),
106, � 6.4(116)
eigenfunctions, � 5.4(104), � 6.2(112),
� 6.4(116)
eigensignal, 106
eigenvalue, � 5.2(96), 320, 97, � 5.4(104),
� 5.5(105)
eigenvalues, � 5.2(96), � 5.4(104)
eigenvector, � 5.2(96), 96, � 5.4(104),
� 5.5(105)
eigenvectors, � 5.4(104)
Elec 301, � 1.2(9), � 4.4(82), � 4.5(83),
� 16.1(303), � 16.2(307)
elec301, � 16.1(303), � 16.2(307)
embedded, � 17(319)
energy, 131
Euclidean norm, � 15.2(265)
Euler's Identity, 29
Euler's Relation, 30
even signal, � 1.1(1), 4, � 6.6(122)
example, � 10.7(186)
examples, � 10.7(186)
existence, 132
expansion, � 15.9(287), � 15.10(288)
exponential, � 1.4(22), � 1.7(31), � 6.3(115)
exponential function, 28

F fast Fourier transform, � 8.1(165), � 8.2(166),
� 8.3(167)
FFT, � 8.1(165), � 8.2(166), � 8.3(167),
� 10.1(179)
�lter, � 12.6(212), � 14.8(258)
�nite-duration sequence, 237
�nite-length sequence, 248
�nite-length signal, 8
FIR, 72
form, 167
fourier, � 5.2(96), � 6.2(112), � 6.3(115),
� 6.4(116), � 6.5(119), � 6.6(122), � 6.7(126),
� 6.8(127), � 6.9(130), � 6.10(132), � 6.12(137),
� 7.2(142), � 7.3(149), � 7.4(150), � 7.5(154),
� 8.2(166), � 15.10(288)
fourier analysis, � 7.2(142)
fourier coe�cient, � 6.9(130)
fourier coe�cients, � 6.2(112), 113, � 6.3(115)
fourier series, � 5.2(96), � 6.2(112), � 6.3(115),

INDEX 327

� 6.4(116), � 6.6(122), � 6.7(126), � 6.9(130),
� 6.10(132), � 6.11(134), � 6.12(137),
� 7.1(141), � 7.2(142), � 7.3(149), � 7.4(150),
� 15.7(280), � 15.10(288)
fourier transform, � 4.3(158), � 6.10(132),
� 7.1(141), � 7.5(154), � 4.3(158), � 8.2(166),
� 10.2(181), � 10.3(183), � 10.4(184),
� 10.5(185), � 10.6(185), � 10.7(186),
� 11.1(191), � 11.2(192), � 14.1(231), 231
fourier transform pairs, � 5.6(108)
frequency, � 10.6(185)
Frequency Domain, � 10.5(185)
frequency shift keying, � 15.5(270)
fsk, � 15.5(270)
function, � 14.5(249)
function sequences, � 9.3(176)
function space, � 15.9(287)
function spaces, 95, � 15.9(287)
fundamental period, 2

G geometric series, 186
Gibb's phenomenon, 137
gibbs phenomenon, � 6.11(134), 135
graphical method, 56
Growing Exponential, 23

H haar, � 15.10(288)
haar wavelet, � 15.10(288)
harmonic, � 7.2(142)
harmonic sinusoids, � 7.2(142), 143
hermitian, � 15.11(295)
hilbert, � 15.4(270), � 15.5(270), � 15.6(277),
� 15.8(283), � 15.10(288)
Hilbert space, 270, � 15.6(277), � 15.7(280),
� 15.13(298)
hilbert spaces, � 15.4(270), � 15.6(277),
� 15.8(283), � 15.10(288)
homework 1, � 16.1(303)
homework one, � 16.1(303)
homogeneous solution, 253

I identity matrix, 286
IIR, 71
imaginary part, 308
Important note:, 216
impulse, � 1.4(22), � 1.5(25)
impulse response, 28, � 4.2(73)
independence, � 5.1(91)
indirect method, 253
in�nite-length signal, 8
initial conditions, 70, 251
inner, � 15.4(270)

inner product, � 15.3(268), 268, � 15.4(270),
� 15.5(270), � 15.11(295)
inner product space, 270
inner products, � 15.3(268), 268, � 15.5(270)
interpolation, � 12.2(201)
Inverse Laplace Transform, � 13.5(225)
inverse transform, � 6.2(112), 114

K kronecker, � 15.7(280)

L LabVIEW, � 17(319)
laplace transform, � 3.4(65), � 7.1(141),
� 13.1(219), � 13.2(222), � 13.3(223),
� 13.4(223), � 13.6(227)
left-handed, 7
limit, 171
linear, � 2.1(37), 37, � 2.2(41), � 4.4(82)
linear algebra, � 5.1(91)
linear and time-invariant, 73
linear combination, 304
linear convolution, 78, 159
linear function space, 263
linear function spaces, � 15.1(263)
linear independence, � 5.1(91)
linear system, � 3.1(47), � 5.2(96)
linear time invariant, � 3.2(53), � 5.5(105)
linear time-invariant systems, 247
linear transformation, � 6.5(119), 120
linearity, � 11.2(192)
linearly independent, 91, 91, 304
LTI, � 3.2(53), 73, � 5.4(104), � 5.5(105),
� 6.2(112), � 6.8(127)
LTI system, � 6.2(112), � 6.4(116)

M magnitude, 308
matched �lter, � 15.5(270)
matched �lter detector, � 15.5(270), 271
matched �lters, � 15.5(270)
matrix equation, � 7.3(149)
maxima, 133
maximum, 269
mean square, 137
minima, 133
modulation, � 11.2(192)
mutually orthogonal, 322

N noisy signals, 118
nonanticipative, 39
noncausal, � 1.1(1), 3, � 2.1(37), 39
nonlinear, � 2.1(37), 37
nonuniform convergence, � 6.11(134), 135
Norm, � 1.2(9), � 9.1(171), � 9.2(173),
� 15.2(265), 265, � 15.3(268)

328 INDEX

norm convergence, � 9.1(171), � 9.2(173)
normalization, � 15.2(265)
normalized, � 15.7(280), 322
normalized basis, � 15.7(280), 280, 280
normed linear space, � 15.2(265), 265, 270
normed space, � 15.6(277)
normed vector space, � 15.2(265), 265
norms, � 15.2(265)
not, 166
Nth Root of Unity, 304
Nyquist, � 10.6(185), � 12.4(207)
Nyquist frequency, � 10.7(186), � 12.4(207),
207
Nyquist theorem, � 12.4(207), 207

O odd signal, � 1.1(1), 4, � 6.6(122)
on our computer!!!, 216
order, � 8.3(167), � 13.5(225), 227, 251
orthogonal, � 15.3(268), 269, 269, � 15.7(280),
322, 299
orthogonal basis, � 15.7(280), 280
orthonormal, � 7.2(142), � 15.7(280),
� 15.8(283)
orthonormal basis, � 7.2(142), 148,
� 15.7(280), 281, � 15.8(283), 283

P parallel, � 2.2(41)
Parseval, � 15.12(297)
Parseval's Theorem, � 10.7(186)
particular solution, 253
perfect, � 12.3(205)
period, 2, � 6.1(111), 111, � 7.4(150)
periodic, � 1.1(1), � 6.1(111), � 7.4(150)
periodic function, � 6.1(111), 111
periodicity, � 6.1(111)
phasor, 29
Plancharel, � 15.12(297)
point wise, � 9.1(171), � 9.2(173)
pointwise, � 6.9(130), 137, � 9.1(171),
� 9.2(173), 173
pointwise convergence, � 6.9(130), � 9.2(173)
pole, � 3.4(65), � 13.4(223), � 13.6(227),
� 14.7(254), � 14.8(258)
pole-zero cancellation, 229
poles, � 13.5(225), 226, 227, 250, 254
polynomial, � 14.5(249)
power series, 232, 237
processing, � 12.7(214)
projection, � 15.3(268), 269, � 15.13(298)
properties, � 6.6(122)
property, � 3.3(59)
proportional, 165

R random signal, 7
rational, � 14.5(249)
rational function, � 14.5(249), 249, 249
rational functions, � 14.5(249)
real part, 308
real vector space, 263, 276
real vector spaces, � 15.1(263)
real-valued, � 1.7(31)
reconstruct, � 12.3(205)
reconstruction, � 12.2(201), � 12.3(205),
� 12.4(207), � 12.5(209)
region of convergence, � 13.4(223)
region of convergence (ROC), 223
rest, 87
right-handed, 7
right-sided sequence, 239, 240
ROC, � 13.4(223), � 14.1(231), 232, 237
root mean squared, 17

S s-plane, 31
sample, � 12.4(207), � 12.5(209)
sampling, 181, 197, � 12.3(205), � 12.4(207),
� 12.5(209), � 12.6(212)
schwarz, � 15.5(270)
sequence, 171
sequence of functions, 131
Sequence-Domain, � 10.5(185)
sequences, � 1.7(31), � 9.1(171), � 9.3(176)
shift-invariant, 69
shift-invariant systems, � 4.1(69)
sifting property, � 1.4(22), � 1.5(25), 27
signal, � 6.1(111), � 6.12(137)
signals, � 1.3(19), � 1.4(22), � 1.5(25),
� 1.6(28), � 1.7(31), � 2.1(37), � 3.2(53),
� 3.3(59), � 3.4(65), � 4.2(73), � 6.2(112),
� 6.3(115), � 7.1(141), � 10.3(183), � 13.4(223),
� 13.6(227)
signals and systems, � 1.1(1), � 4.2(73)
sinc, � 12.3(205)
sine, � 1.7(31)
singularities, � 13.5(225), 225
sinusoid, � 1.7(31), � 6.3(115)
smooth signals, 118
span, � 5.1(91), 93, � 5.4(104), 287
square pulse, 135
stability, � 3.4(65)
stable, 40, 257
standard basis, 94, � 7.3(149), � 15.8(283)
strong dirichlet condition, � 6.10(132)
Strong Dirichlet Conditions, 133
superposition, � 2.2(41), � 4.1(69)
symbolic-valued signals, � 1.7(31)

INDEX 329

symmetry, � 6.5(119), � 6.6(122), � 11.2(192)
symmetry properties, � 6.6(122)
symmetry property, � 6.6(122)
synthesis, 114
system, � 4.3(158), � 5.4(104), � 6.4(116),
� 6.12(137), � 4.3(158)
systems, � 1.7(31), � 3.2(53), � 3.3(59),
� 3.4(65), � 7.1(141), � 10.3(183), � 13.4(223),
� 13.6(227)

T t-periodic, � 6.1(111)
threshold, 273
time di�erentiation, � 11.2(192)
time domain, � 4.1(69)
time invariant, � 2.1(37), 38
time reversal, � 1.3(19)
time scaling, � 1.3(19), � 11.2(192)
time shifting, � 1.3(19), � 11.2(192)
time variant, 39
time varying, � 2.1(37)
time-invariant, � 2.2(41)
transfer function, 252
transform, � 6.2(112), 114
transform pairs, � 14.2(236)
transforms, 102, 287
transpose, � 15.11(295)
two-sided sequence, 241

U uniform, � 9.3(176)
uniform convergence, � 9.3(176), 176
unilateral, � 14.2(236)
unilateral z-transform, 231
unique, 284
unit impulse, 23
unit sample, � 1.7(31), 33

unit step, � 1.4(22)
unit-step function, 24
unity, 25
unstable, 41

V vector, � 9.2(173), � 15.1(263)
vector space, � 15.1(263), 263, � 15.6(277),
� 15.7(280), � 15.9(287)
vector spaces, � 15.1(263), � 15.6(277),
� 15.7(280)
vectors, � 9.2(173)
vertical asymptotes, 250
VI, � 17(319)
virtual instrument, � 17(319)

W wavelet, � 15.10(288)
wavelets, � 15.10(288), 288
weak dirichlet condition, � 6.10(132), 133
weighted sum, 304

X x-intercept, 250

Y y-intercept, 250

Z z transform, � 3.4(65), � 7.1(141), � 13.6(227),
� 14.2(236)
z-plane, 231, � 14.7(254)
z-transform, � 14.1(231), 231, � 14.2(236), 237,
� 14.5(249)
z-transforms, 236
zero, � 3.4(65), � 13.4(223), � 13.6(227),
� 14.7(254), � 14.8(258)
zero-input response, 47
zero-state response, 47
zeros, 227, 250, 254

330 ATTRIBUTIONS

Attributions

Collection: Signals and Systems
Edited by: Richard Baraniuk
URL: http://cnx.org/content/col10064/1.11/
License: http://creativecommons.org/licenses/by/1.0

Module: "Signal Classi�cations and Properties"
By: Melissa Selik, Richard Baraniuk, Michael Haag
URL: http://cnx.org/content/m10057/2.17/
Pages: 1-9
Copyright: Melissa Selik, Richard Baraniuk, Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Size of A Signal: Norms"
By: Richard Baraniuk
URL: http://cnx.org/content/m12363/1.2/
Pages: 9-19
Copyright: Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Signal Operations"
By: Richard Baraniuk
URL: http://cnx.org/content/m10125/2.8/
Pages: 19-22
Copyright: Richard Baraniuk, Adam Blair
License: http://creativecommons.org/licenses/by/1.0

Module: "Useful Signals"
By: Melissa Selik, Richard Baraniuk
URL: http://cnx.org/content/m10058/2.12/
Pages: 22-25
Copyright: Melissa Selik, Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "The Impulse Function"
By: Melissa Selik, Richard Baraniuk
URL: http://cnx.org/content/m10059/2.19/
Pages: 25-28
Copyright: Melissa Selik, Richard Baraniuk, Adam Blair
License: http://creativecommons.org/licenses/by/1.0

Module: "The Complex Exponential"
By: Richard Baraniuk
URL: http://cnx.org/content/m10060/2.20/
Pages: 28-31
Copyright: Richard Baraniuk, Adam Blair
License: http://creativecommons.org/licenses/by/1.0

ATTRIBUTIONS 331

Module: "Discrete-Time Signals"
By: Don Johnson
URL: http://cnx.org/content/m0009/2.23/
Pages: 31-34
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0

Module: "System Classi�cations and Properties"
By: Melissa Selik, Richard Baraniuk
URL: http://cnx.org/content/m10084/2.19/
Pages: 37-41
Copyright: Melissa Selik, Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Properties of Systems"
By: Thanos Antoulas, JP Slavinsky
URL: http://cnx.org/content/m2102/2.16/
Pages: 41-46
Copyright: Thanos Antoulas, JP Slavinsky
License: http://creativecommons.org/licenses/by/1.0

Module: "CT Linear Systems and Di�erential Equations"
By: Michael Haag, Richard Baraniuk
URL: http://cnx.org/content/m10855/2.6/
Pages: 47-52
Copyright: Michael Haag, Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Continuous-Time Convolution"
By: Melissa Selik, Richard Baraniuk
URL: http://cnx.org/content/m10085/2.26/
Pages: 53-59
Copyright: Melissa Selik, Richard Baraniuk, Adam Blair
License: http://creativecommons.org/licenses/by/1.0

Module: "Properties of Convolution"
By: Melissa Selik, Richard Baraniuk
URL: http://cnx.org/content/m10088/2.14/
Pages: 59-65
Copyright: Melissa Selik, Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "BIBO Stability"
By: Richard Baraniuk
URL: http://cnx.org/content/m10113/2.9/
Pages: 65-67
Copyright: Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Discrete-Time Systems in the Time-Domain"
By: Don Johnson
URL: http://cnx.org/content/m10251/2.22/
Pages: 69-72
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0

332 ATTRIBUTIONS

Module: "Discrete-Time Convolution"
By: Ricardo Radaelli-Sanchez, Richard Baraniuk
URL: http://cnx.org/content/m10087/2.18/
Pages: 73-78
Copyright: Ricardo Radaelli-Sanchez, Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Circular Convolution and the DFT"
By: Justin Romberg
URL: http://cnx.org/content/m10786/2.8/
Pages: 158-162
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Linear Constant-Coe�cient Di�erence Equations"
By: Richard Baraniuk
URL: http://cnx.org/content/m12325/1.3/
Pages: 82-83
Copyright: Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Solving Linear Constant-Coe�cient Di�erence Equations"
By: Richard Baraniuk
URL: http://cnx.org/content/m12326/1.3/
Pages: 83-88
Copyright: Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Linear Algebra: The Basics"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10734/2.4/
Pages: 91-95
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Eigenvectors and Eigenvalues"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10736/2.7/
Pages: 96-100
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Matrix Diagonalization"
By: Michael Haag
URL: http://cnx.org/content/m10738/2.5/
Pages: 101-103
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Eigen-stu� in a Nutshell"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10742/2.4/
Pages: 104-104
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

ATTRIBUTIONS 333

Module: "Eigenfunctions of LTI Systems"
By: Justin Romberg
URL: http://cnx.org/content/m10500/2.7/
Pages: 105-107
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Fourier Transform Properties"
By: Don Johnson
URL: http://cnx.org/content/m0045/2.8/
Pages: 108-108
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0

Module: "Periodic Signals"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10744/2.6/
Pages: 111-112
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Fourier Series: Eigenfunction Approach"
By: Justin Romberg
URL: http://cnx.org/content/m10496/2.21/
Pages: 112-115
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Derivation of Fourier Coe�cients Equation"
By: Michael Haag
URL: http://cnx.org/content/m10733/2.6/
Pages: 115-116
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Fourier Series in a Nutshell"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10751/2.3/
Pages: 116-119
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Fourier Series Properties"
By: Justin Romberg, Benjamin Fite
URL: http://cnx.org/content/m10740/2.7/
Pages: 119-122
Copyright: Justin Romberg, Benjamin Fite
License: http://creativecommons.org/licenses/by/1.0

Module: "Symmetry Properties of the Fourier Series"
By: Justin Romberg
URL: http://cnx.org/content/m10838/2.4/
Pages: 122-126
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

334 ATTRIBUTIONS

Module: "Circular Convolution Property of Fourier Series"
By: Justin Romberg
URL: http://cnx.org/content/m10839/2.4/
Pages: 126-127
Copyright: Richard Baraniuk, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Fourier Series and LTI Systems"
By: Justin Romberg
URL: http://cnx.org/content/m10752/2.7/
Pages: 127-130
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Convergence of Fourier Series"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10745/2.3/
Pages: 130-132
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Dirichlet Conditions"
By: Ricardo Radaelli-Sanchez
URL: http://cnx.org/content/m10089/2.9/
Pages: 132-134
Copyright: Ricardo Radaelli-Sanchez
License: http://creativecommons.org/licenses/by/1.0

Module: "Gibbs's Phenomena"
By: Ricardo Radaelli-Sanchez, Richard Baraniuk
URL: http://cnx.org/content/m10092/2.9/
Pages: 134-137
Copyright: Ricardo Radaelli-Sanchez, Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Fourier Series Wrap-Up"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10749/2.4/
Pages: 137-138
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Fourier Analysis"
By: Richard Baraniuk
URL: http://cnx.org/content/m10096/2.10/
Pages: 141-142
Copyright: Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Fourier Analysis in Complex Spaces"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10784/2.7/
Pages: 142-149
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

ATTRIBUTIONS 335

Module: "Matrix Equation for the DTFS"
By: Roy Ha
URL: http://cnx.org/content/m10771/2.6/
Pages: 149-150
Copyright: Roy Ha
License: http://creativecommons.org/licenses/by/1.0

Module: "Periodic Extension to DTFS"
By: Roy Ha
URL: http://cnx.org/content/m10778/2.8/
Pages: 150-154
Copyright: Roy Ha
License: http://creativecommons.org/licenses/by/1.0

Module: "Circular Shifts"
By: Justin Romberg
URL: http://cnx.org/content/m10780/2.6/
Pages: 154-158
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Circular Convolution and the DFT"
By: Justin Romberg
URL: http://cnx.org/content/m10786/2.8/
Pages: 158-162
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "DFT: Fast Fourier Transform"
By: Don Johnson
URL: http://cnx.org/content/m0504/2.8/
Pages: 165-165
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0

Module: "The Fast Fourier Transform (FFT)"
By: Justin Romberg
URL: http://cnx.org/content/m10783/2.5/
Pages: 166-167
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Deriving the Fast Fourier Transform"
By: Don Johnson
URL: http://cnx.org/content/m0528/2.7/
Pages: 167-169
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0

336 ATTRIBUTIONS

Module: "Convergence of Sequences"
By: Richard Baraniuk
URL: http://cnx.org/content/m10883/2.4/
Pages: 171-172
Copyright: Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Convergence of Vectors"
By: Michael Haag
URL: http://cnx.org/content/m10894/2.2/
Pages: 173-176
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Uniform Convergence of Function Sequences"
By: Michael Haag, Richard Baraniuk
URL: http://cnx.org/content/m10895/2.5/
Pages: 176-177
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Discrete Fourier Transformation"
By: Phil Schniter
URL: http://cnx.org/content/m10421/2.10/
Pages: 179-180
Copyright: Phil Schniter
License: http://creativecommons.org/licenses/by/1.0

Module: "Discrete Fourier Transform (DFT)"
By: Don Johnson
URL: http://cnx.org/content/m10249/2.26/
Pages: 181-183
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0

Module: "Table of Common Fourier Transforms"
By: Melissa Selik, Richard Baraniuk
URL: http://cnx.org/content/m10099/2.9/
Pages: 183-184
Copyright: Melissa Selik, Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Discrete-Time Fourier Transform (DTFT)"
By: Richard Baraniuk
URL: http://cnx.org/content/m10108/2.11/
Pages: 184-184
Copyright: Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

ATTRIBUTIONS 337

Module: "Discrete-Time Fourier Transform Properties"
By: Don Johnson
URL: http://cnx.org/content/m0506/2.6/
Pages: 185-185
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0

Module: "Discrete-Time Fourier Transform Pair"
By: Don Johnson
URL: http://cnx.org/content/m0525/2.6/
Pages: 185-186
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0

Module: "DTFT Examples"
By: Don Johnson
URL: http://cnx.org/content/m0524/2.10/
Pages: 186-189
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0

Module: "Continuous-Time Fourier Transform (CTFT)"
By: Richard Baraniuk, Melissa Selik
URL: http://cnx.org/content/m10098/2.9/
Pages: 191-192
Copyright: Richard Baraniuk, Melissa Selik
License: http://creativecommons.org/licenses/by/1.0

Module: "Properties of the Continuous-Time Fourier Transform"
By: Melissa Selik, Richard Baraniuk
URL: http://cnx.org/content/m10100/2.13/
Pages: 192-195
Copyright: Melissa Selik, Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Sampling"
By: Justin Romberg
URL: http://cnx.org/content/m10798/2.6/
Pages: 197-201
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Reconstruction"
By: Justin Romberg
URL: http://cnx.org/content/m10788/2.5/
Pages: 201-205
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

338 ATTRIBUTIONS

Module: "More on Perfect Reconstruction"
Used here as: "More on Reconstruction"
By: Roy Ha, Justin Romberg
URL: http://cnx.org/content/m10790/2.4/
Pages: 205-207
Copyright: Roy Ha, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Nyquist Theorem"
By: Justin Romberg
URL: http://cnx.org/content/m10791/2.5/
Pages: 207-208
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Aliasing"
By: Justin Romberg, Don Johnson
URL: http://cnx.org/content/m10793/2.6/
Pages: 209-212
Copyright: Justin Romberg, Don Johnson
License: http://creativecommons.org/licenses/by/1.0

Module: "Anti-Aliasing Filters"
By: Justin Romberg
URL: http://cnx.org/content/m10794/2.4/
Pages: 212-213
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Discrete Time Processing of Continuous Time Signals"
By: Justin Romberg
URL: http://cnx.org/content/m10797/2.9/
Pages: 214-216
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "The Laplace Transforms"
By: Richard Baraniuk
URL: http://cnx.org/content/m10110/2.12/
Pages: 219-221
Copyright: Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Properties of the Laplace Transform"
By: Melissa Selik, Richard Baraniuk
URL: http://cnx.org/content/m10117/2.9/
Pages: 222-222
Copyright: Melissa Selik, Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

ATTRIBUTIONS 339

Module: "Table of Common Laplace Transforms"
By: Melissa Selik, Richard Baraniuk
URL: http://cnx.org/content/m10111/2.10/
Pages: 223-223
Copyright: Melissa Selik, Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Region of Convergence for the Laplace Transform"
By: Richard Baraniuk
URL: http://cnx.org/content/m10114/2.8/
Pages: 223-225
Copyright: Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "The Inverse Laplace Transform"
By: Steven Cox
URL: http://cnx.org/content/m10170/2.8/
Pages: 225-227
Copyright: Steven Cox
License: http://creativecommons.org/licenses/by/1.0

Module: "Poles and Zeros"
By: Richard Baraniuk
URL: http://cnx.org/content/m10112/2.11/
Pages: 227-229
Copyright: Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "The Z Transform: De�nition"
By: Benjamin Fite
URL: http://cnx.org/content/m10549/2.9/
Pages: 231-236
Copyright: Benjamin Fite
License: http://creativecommons.org/licenses/by/1.0

Module: "Table of Common z-Transforms"
By: Melissa Selik, Richard Baraniuk
URL: http://cnx.org/content/m10119/2.13/
Pages: 236-237
Copyright: Melissa Selik, Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Region of Convergence for the Z-transform"
By: Benjamin Fite
URL: http://cnx.org/content/m10622/2.5/
Pages: 237-246
Copyright: Benjamin Fite
License: http://creativecommons.org/licenses/by/1.0

Module: "Inverse Z-Transform"
By: Benjamin Fite
URL: http://cnx.org/content/m10651/2.4/
Pages: 246-248
Copyright: Benjamin Fite
License: http://creativecommons.org/licenses/by/1.0

340 ATTRIBUTIONS

Module: "Rational Functions"
By: Michael Haag
URL: http://cnx.org/content/m10593/2.7/
Pages: 249-251
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Di�erence Equation"
By: Michael Haag
URL: http://cnx.org/content/m10595/2.5/
Pages: 251-254
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Understanding Pole/Zero Plots on the Z-Plane"
By: Michael Haag
URL: http://cnx.org/content/m10556/2.8/
Pages: 254-258
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Filter Design using the Pole/Zero Plot of a Z-Transform"
By: Michael Haag
URL: http://cnx.org/content/m10548/2.9/
Pages: 258-261
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Vector Spaces"
By: Michael Haag, Steven Cox, Justin Romberg
URL: http://cnx.org/content/m10767/2.4/
Pages: 263-264
Copyright: Michael Haag, Steven Cox, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Norms"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10768/2.4/
Pages: 265-267
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Inner Products"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10755/2.6/
Pages: 268-269
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

ATTRIBUTIONS 341

Module: "Hilbert Spaces"
By: Justin Romberg
URL: http://cnx.org/content/m10840/2.4/
Pages: 270-270
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Cauchy-Schwarz Inequality"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10757/2.5/
Pages: 270-277
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Common Hilbert Spaces"
By: Roy Ha, Justin Romberg
URL: http://cnx.org/content/m10759/2.5/
Pages: 277-280
Copyright: Roy Ha, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Types of Basis"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10772/2.5/
Pages: 280-283
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Orthonormal Basis Expansions"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10760/2.4/
Pages: 283-287
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Function Space"
By: Justin Romberg
URL: http://cnx.org/content/m10770/2.4/
Pages: 287-288
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Haar Wavelet Basis"
By: Roy Ha, Justin Romberg
URL: http://cnx.org/content/m10764/2.7/
Pages: 288-295
Copyright: Roy Ha, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Orthonormal Bases in Real and Complex Spaces"
By: Justin Romberg
URL: http://cnx.org/content/m10765/2.7/
Pages: 295-297
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

342 ATTRIBUTIONS

Module: "Plancharel and Parseval's Theorems"
By: Justin Romberg
URL: http://cnx.org/content/m10769/2.5/
Pages: 297-298
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Approximation and Projections in Hilbert Space"
By: Justin Romberg
URL: http://cnx.org/content/m10766/2.7/
Pages: 298-300
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Homework 1"
By: Richard Baraniuk, Justin Romberg
URL: http://cnx.org/content/m10826/2.9/
Pages: 303-307
Copyright: Richard Baraniuk, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Homework 1 Solutions"
By: Justin Romberg, Richard Baraniuk, Michael Haag
URL: http://cnx.org/content/m10830/2.4/
Pages: 307-318
Copyright: Justin Romberg, Richard Baraniuk, Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Viewing Embedded LabVIEW Content"
By: Matthew Hutchinson
URL: http://cnx.org/content/m13753/1.3/
Pages: 319-319
Copyright: Matthew Hutchinson
License: http://creativecommons.org/licenses/by/2.0/

Signals and Systems
This course deals with signals, systems, and transforms, from their theoretical mathematical foundations to
practical implementation in circuits and computer algorithms. At the conclusion of ELEC 301, you should
have a deep understanding of the mathematics and practical issues of signals in continuous and discrete time,
linear time invariant systems, convolution, and Fourier transforms.

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

