
1

Optimality of Huffman Codes
Theorem Huffman coding is optimal; that is, if C∗ is a Huffman code and C’ is
any other uniquely decodable code, L(C∗) ≤ L(C’).

This is true not only for binary alphabet, but also for a generic D-ary alphabet.

It is important to remember that there are many optimal codes: inverting all
the bits or exchanging two codewords of the same length will give another
optimal code. The Huffman procedure constructs one such optimal code.

Shannon-Fano-Elias Coding
We showed that the codeword lengths l(x) = log1/p(x) satisfy the Kraft inequality
and can therefore be used to construct a uniquely decodable code for the source.

Now we describe a simple constructive procedure that uses the cumulative
distribution function to allot codewords.

Without loss of generality, we can take X = {1, 2, . . .,m}. Assume that p(x) > 0
for all x. The cumulative distribution function F(x) is defined as:

Consider the modified cumulative distribution function

⎡ ⎤

∑
≤

=
xa

apxF)()(

)(
2
1)()(xpapxF

xa
+=∑

≤

2

Shannon-Fano-Elias Coding
Since the random variable is discrete, the cumulative distribution function
consists of steps of size p(x).

The value of the function F(x) is the midpoint of the step corresponding
to x.

Shannon-Fano-Elias Coding
The value of F(x) can be used as a code for x. But, in general, F(x) is a real
number expressible only by an infinite number of bits. So it is not efficient to use
the exact value of F(x) as a code for x.

Assume that we truncate F(x) to l(x) bits (denoted by F(x) l(x)). Thus, we use the
first l(x) bits of F(x) as a code for x. By definition of rounding off, we have

if

.

⎣ ⎦

⎣ ⎦)()(2
1)()(xlxlxFxF <−

1
)(

1log)(+⎥
⎥

⎤
⎢
⎢

⎡
=

xp
xl

)1()(
2

)(
2

1
)(−−=< xFxFxp

xl

3

Shannon-Fano-Elias Coding
Therefore, F(x) l(x) lies within the steo corresponding to x. Thus l(x) bits suffice
to describe x.

In addition to requiring that the codeword identify the corresponding symbol, we
also require the set of codewords to be prefix-free.

To check whether the code is prefix-free, we consider each codeword z1z2 · · · zl
to represent not a point but the interval [0.z1z2 · · · zl , 0.z1z2 · · · zl + 1/2l].

The code is prefix-free if and only if the intervals corresponding to codewords
are disjoint.

⎣ ⎦

Shannon-Fano-Elias Coding
We now verify that the code above is prefix-free. The interval corresponding to
any codeword has length 2−l(x), which is less than half the height of the step
corresponding to x.

The lower end of the interval is in the lower half of the step. Thus, the upper end
of the interval lies below the top of the step, and the interval corresponding to
any codeword lies entirely within the step corresponding to that symbol in the
cumulative distribution function.

Therefore, the intervals corresponding to different codewords are disjoint and
the code is prefix-free.

Note that this procedure does not require the symbols to be ordered in terms of
probability.

4

Expected Length
Since we use bits to represent x, the expected length of
this code is

1
)(

1log)(+⎥
⎥

⎤
⎢
⎢

⎡
=

xp
xl

2)(1
)(

1log)(+<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎥

⎤
⎢
⎢

⎡
=∑ XH

xp
xpL

x

Example 1
We first consider an example where all the probabilities are dyadic

In this case, the average codeword length is 2.75 bits and the entropy is 1.75 bits.
The Huffman code for this case achieves the entropy bound.

There is some inefficiency: for example, the last bit of the last two codewords
can be omitted. But if we remove the last bit from all the codewords, the code is
no longer prefix-free.

5

Construction of S-F-E Codes
In this case, since the distribution is not dyadic, the representation of F(x) in
binary may have an infinite number of bits. We denote 0.01010101 . . . by 0.01.

The above code is 1.2 bits longer on the average than the Huffman code for this
source

Competitive Optimality
Let l(x) be the codeword lengths associated with the Shannon code, and let l(x)
be the codeword lengths associated with any other uniquely decodable code.
Then

For example, the probability that l’(X) is 5 or more bits shorter than l(X) is less
than 1/16 .

Hence, no other code can do much better than the Shannon code most of the
time.

12
1)(')(Pr(−≤+≥ ccXlXl

