Theoretical Computer Science
 @ Dipartimento di Informatica

Università di Verona
http://www.di.univr.it/

11 Aprile 2017

People

Outline

(1) Semantics

(2) Algorithms

(3) Logic
(4) Quantum Computing

Semantics

Provides rigorous foundations for

- Software Engineering (formal methods for analysis and verification)
- Programming Languages (concurrency, quantum and probabilistic λ-calculus)
- CPS, IoT, ...

Outline

(1) Semantics
(2) Algorithms
(3) Logic

4 Quantum Computing

Theoretical Computer Science
Università di Verona

Why study strings?

Text data (sequences of symbols)

- natural language (books, webpages, emails, ...)
- biological sequence data (DNA sequences, protein sequences, ...) All modern biological and medical research relies on sequence data!
- program code
- music
- time series
- multimedia streams
- any data that is stored in a file

A Common Problem：Pattern Matching

Internazionale1197．pdf
－LUnione europea，la Cina，il Messico e Hong Kong hanno annuncia．．． Messico．．．La capitale del Messico sorge su in antico lago che fu．
\qquad Di sicuro，non sono un ．．．tra gli abitanti of Citta del Messico．．．．A．．．

Page 61
Citta del Messico 2016．．．Città del Messico，2016．．．ll res．．．

Page 62

Messico＂I＇acqua Messico．．．＂Lacqua nazionale autono－ma．

Theoretical Computer Science

Jumbled Pattern Matching

In one variant, we are looking for all permutations ("jumbles") of the pattern:
messico, sesicom, ocsimec, ...

$$
\text { Parikh vector } p(t): p(\text { aabacc })=(3,2,1)
$$

Jumbled Pattern Matching

Given strings s (the text) and t (the pattern).
Find all occurrences of substrings u of s s.t. $p(u)=p(t)$.
Ex.: $\Sigma=\{a, b, c\}$, query $t=$ aabacc

Goal

Find efficient algorithms for this problem! (applications in Comp. Biol.)

Prefix normal words

In the context of JPM (jumbled pattern matching) for binary strings the following definition turns out to be useful:

Definition

A binary word s is a prefix normal word (w.r.t. 1) if no substring has more 1's than the prefix of the same length.

Example

$$
\begin{array}{ll}
s=10100110110001110010 & N O \\
s^{\prime}=11101001011001010010 & Y E S
\end{array}
$$

Where you can learn more about this

Master in Medical bioinformatics
"Computational Analysis of Genomic Sequences"(= "Computational methods for textual big data"= "Metodi di analisi testuale per big data")
Zsuzsanna Liptak

Mean Payoff Games

- A Mean-Payoff Game (MPG) is a two-player game played on an arena $\Gamma=\left\langle V, E, w,\left(V_{\text {Max }}, V_{\text {Min }}\right)\right\rangle$.
- $G^{\Gamma}=\langle V, E, w\rangle$ is a finite weighted directed graph whose nodes are partitioned in two classes, $V_{\text {Max }}$ and $V_{\text {Min }}$.
- Every node has at least one outgoing edge.
- Weights are integers, i.e., $w: E \rightarrow \mathbb{Z}$.
- Nodes in V_{p}, where $p \in\{\operatorname{Max}, \operatorname{Min}\}$, are those under control of Player p.

Mean Payoff Games: play example

- Each match starts with a pebble placed at some node $v \in V_{\text {Max }} \cup V_{\text {Min }}$.
- Here $v=A \in V_{\text {Max }}$, the nodes controlled by Player Max.

Player Max chooses an $e \in E$ exiting v and moves the pebble along e.

Mean Payoff Games: play example

- Each match starts with a pebble placed at some node $v \in V_{\text {Max }} \cup V_{\text {Min }}$.
- Here $v=A \in V_{\text {Max }}$, the nodes controlled by Player Max.
- Player Max chooses an arc $e \in E$ exiting v and moves the pebble along e.

Mean Payoff Games: play example

- When the pebble is in a node $v \in V_{p}$, the turn is to Player p.
- Here $v=D \in V_{\text {Min }}$, the nodes controlled by Player Min.

Player Min chooses an $e \in E$ exiting v and moves the pebble along e.

Mean Payoff Games: play example

- When the pebble is in a node $v \in V_{p}$, the turn is to Player p.
- Here $v=D \in V_{\text {Min }}$, the nodes controlled by Player Min.
- Player Min chooses an arc $e \in E$ exiting v and moves the pebble along e.

Mean Payoff Games: play example

- When the pebble is in a node $v \in V_{p}$, the turn is to Player p.
- Here $v=C \in V_{\text {Max }}$, the nodes controlled by Player Max.

Player Max chooses an $e \in E$ exiting v and moves the pebble along e.

Mean Payoff Games: play example

- When the pebble is in a node $v \in V_{p}$, the turn is to Player p.
- Here $v=C \in V_{\text {Max }}$, the nodes controlled by Player Max.
- Player Max chooses an arc $e \in E$ exiting v and moves the pebble along e.

Mean Payoff Games: play example

- The two players move the pebble until a cycle \mathcal{C} is eventually closed.
- The sequence of encountered nodes, i.e., $\pi=v_{0} v_{1} \cdots v_{n} \cdots=A D C D$ is a named a play.
- In this case, the cycle is $\mathcal{C}=D C D$.

Mean Payoff Games: play example

- In order to play well, Player Max wants to:
maximize the average weight $\frac{w(\mathcal{C})}{|\mathcal{C}|}$ of that cycle.
- and Player Min wants to minimize the average weight of that cycle \mathcal{C}.

Algorithms and Complexity for:

(1) Games on Finite Graphs (Games for Formal Verification) [Grädel, 2002]
(2) Temporal Constraint Networks (Temporal Planning and Scheduling) [Dechter, 1991]

Announcement

On Wed. 19 April, Dr. Giorgio Audrito (University of Torino) will give a seminar on Parity Games.

Outline

(1) Semantics

(2) Algorithms
(3) Logic
(4) Quantum Computing

Theoretical Computer Science
Università di Verona

Machine Intelligence

"... The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it. An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves."
(From John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude Shannon, Proposal for the Dartmouth Conference on AI, 1955)

Automated Reasoning

- Precisely described: symbols
- Symbolic reasoning: Logico-deductive, Probabilistic ...

Logico-deductive Reasoning

- Theorem Proving, Constraint Solving or Model Finding: Inference and Search
- $\mathcal{T} \models \varphi, y \simeq x \vee y \simeq z, \mathcal{T}$-model of $\varphi, x^{2}+y^{2} \leq 1 \vee x y>1$, $\neg L_{1} \vee Q_{2} \ldots \vee Q_{k}$, explain, learn, backjump, $a \sqsubseteq b, f \vee \neg e \vee \neg b$, conflict, $\mathcal{T}=\bigcup_{i=1}^{n} \mathcal{T}_{i}$, resolution, linear arithmetic, \simeq, SAT, expansion, contraction, bit-vectors,
- Logic: a Machine Language
- Applications: Verification, Natural Language, Computer Mathematics, Education, ...

Outline

(1) Semantics

(2) Algorithms
(3) Logic

(4) Quantum Computing

The Quest for Quantum Computers

There exist problems so complex, so inscrutable, that to solve them would take current computers more time than the current age of the universe-or even longer.

Quantum Computers

Will we ever be able to defeat exponentiality?

Qantum Computer
Factorisation \Rightarrow RSA

The D-Wave System
Optimisation problems \Rightarrow Machine Learning

The Quest for Topological Quantum Computers

Processors working according to the rules of quantum mechanics are extremely delicate objects. TQC is a scheme to perform quantum computation in a way that is naturally immune from errors. This is because operations are carried out by braiding particles.

Topology

Topology is the part of geometry which survives deformation/perturbation.

Topological properties of quantum systems are robust to perturbation/deformation.

Anyons

Frank Wilczek, Nobel prize in Physics 2004, coined the word anyons for the physical particles with such a topological behaviour.

Do anyons exist, outside of theorists' imaginations?

Conclusion

In Frank Wilczek' words

Everything not forbidden is compulsory.

Nature, in her abundance, provides materials to embody all theoretically consistent possibilities. Trusting in that principle, I strive to exercise what Richard Feynman called "imagination in a straitjacket".

