
1/22

Non-Approximability Results
(2nd part continued)

2/22

Summary
- The PCP theorem

- Application: non-approximability of MAXIMUM
CLIQUE

- Input-Dependent and Asymptotic Approximation
- Approximation algorithm for graph colouring
- Approximation algorithm for set cover
- Asymptotic approximation scheme for edge

colouring

3/22

MAXIMUM CLIQUE
- INSTANCE: Graph G=(V,E)

- SOLUTION: A subset U of V such that, for any two
vertices u and v in U, (u,v) is in E

- MEASURE: Cardinality of U

4/22

Inapproximability of clique
Theorem: MAX CLIQUE ∉PTAS unless P=NP
Proof:

- We show that it's possible to “reduce” MAX 3-SAT to MAX
CLIQUE preserving the approximation for all r. Given that
MAX 3-SAT ∉PTAS, the thesis follows.

- Let (U, C) an instance of MAX 3-SAT. U={variables} C=
{clauses}

- Define the MAX 3-SAT instance as: G=(V, E)
- V = { (l, c) | l∈c ∧ c∈C}, E={((l1, c1), (l2, c2)) | l1 ≠ ¬l2 ∧ c1≠ c2}

- li are literals and ci are clauses

5/22

Inapproximability of clique
Proof (continued):

- V = { (l, c) | l∈c ∧ c∈C}, E={((l1, c1), (l2, c2)) | l1 ≠ ¬l2 ∧ c1≠ c2}

- For any clique V', let f the truth assignment as follows:
- f(u) = true iff exists a clause c such that (u, c) ∈ V'.

- It's easy to show that f() is a consistent truth assignment.
- From E, f() can satisfies ≥|V'| clauses: m((U, C), f) ≥|V'|
- It's easy to show that the max number of satisfiable clauses

is equal to the size of the max clique in G.
- Given a set of clauses C'⊆ C, for any truth assignment f' for C' and

for any c∈C', let lc any literal of c with f'(lc)=true. The set of nodes
(lc, c) is clearly a clique in G.

6/22

Inapproximability of clique
Proof (continued):

- Therefore, any polynomial-time approximation scheme for
MAX CLIQUE can be transformed in a polynomial-time
approximation scheme for MAX 3-SAT.

- But, unless P=NP, MAX 3-SAT ∉PTAS, so the thesis.

7/22

Inapproximability of clique
- MAX CLIQUE has a particular property, self-

improvability, that yields the following result
- Theorem: MAX CLIQUE ∉APX unless P=NP
- Proof:

- If there exists an polynomial-time r'-approximation
algorithm A for MAX CLIQUE, given an instance G, we
will transform G into another, larger, instance f(G) and apply
A to f(G).

- The approximate solution A(f(G)) can be used to find a
better approximate solution to G... therefore A can be
transformed to an approximation scheme.

8/22

Inapproximability of clique
- The self-improvability property: Product graphs

- Given a graph G=(V,E), define Gk(Vk,Ek) as
Vk={(v1,v2,...,vk) | vi ∈ V} (k-th Cartesian product of V)
Ek={(u,v) | (ui=vi) ∨ (ui,vi)∈E for all i}

- If C ⊆ V is a clique in G, it is easy to verify that
{(v1,v2,...,vk) | vi ∈ C for every i} is a clique in f(G) of size |C|k

- m*(f(G)) ≥ (m*(G))k
- If C'⊆Vk is a clique in f(G) with mk verticies, then at least a

coordinate i of the vertices (v1,v2,...,vk) where there are m
different vertices vi in C'. These vertices are a clique in G of
size |C'|1/k. . Let g the procedure that builds this clique from C'

9/22

Inapproximability of clique
- With A we can determine that

m*(G) / m(G, g(A(f(G)))) ≤ (m*(f(G)) / m(f(G), A(f(G))))1/k

≤ r'1/k

- For any r>1, choosing k ≥ log r'/log r, we obtain a
polynomial-time approximation scheme for MAX
CLIQUE.

- Last theorem states that it's impossible unless P=NP

10/22

The NPO world if P≠NP
NPO

APX
MAXIMUM SAT
MINIMUM VERTEX COVER(?)
MAXIMUM CUT(?)

PTAS MINIMUM PARTITION

PO
MINIMUM PATH

MINIMUM TSP
MAXIMUM CLIQUE
MINIMUM BIN PACKING

MINIMUM GRAPH COLORING? Certainly not in PTAS

11/22

Input-Dependent Approximation
- A sequential algorithm for MINIMUM GRAPH

COLORING

begin
 sort V in decreasing order with respect to the degree;

for each node v do
if there exists color not used by neighbors of v then assign this color to v
else create new color and assign it to v

end.

12/22

Input-Dependent Approximation
- Performance of sequential algorithm

- G=({x1,...xn, y1,...yn}, {{xi,yj} | i≠j})

- d(xi)=d(yj)=n-1

- The order (x1,y1...xn,yn)
 requires n colours

- The optimal value is 2
- The performance ratio is n/2
- Generalizing, the performance ratio is Δ+1

where Δ is the highest degree of nodes in G

x1 x2 x3 x4

y1 y2 y3 y4

13/22

begin
 i:=0; U:=V;

while U ≠ ø do
begin

i:=i+1;V[i]:=ø;W:=U;H:=graph induced by W;

while W ≠ ø do
begin

v=node of minimum degree in H;
insert v in V[i];
delete v and its neighbours from W;
U:=U-V[i]

end
end

end.

Input-Dependent Approximation
- Polynomial-time n/log n-approximation algorithm for

MINIMUM GRAPH COLORING

14/22

Input-Dependent Approximation
We first prove that, if G is k-colorable, then the

algorithm uses at most 3|V|/logk|V| colours
- At any iteration of the inner loop, H is k-colorable
- Hence, it contains an independent set of at least

|W|/k nodes of degree at most |W|(k-1)/k
- Minimum degree in H is at most |W|(k-1)/k
- At least |W|-|W|(k-1)/k = |W|/k nodes will be in W at

the next iteration (after remove the |W|/k IS)
- Inner loop ends when W is empty

- At least logk|W| iterations are necessary

15/22

Input-Dependent Approximation
- At the end of inner loop

- |{v | v in W and V[v] = i}| ≥ logk|W|

- For each colour i , the number of vertices coloured
with i is at least logk|U|, where U is the set of
uncoloured nodes before the color i is used

- Before the first outer loop, if |U| ≥ |V|/logk|V|,
logk|U| ≥ logk(|V|/logk|V|) ≥ ½ logk|V|
- U size decrease by at least ½ logk|V| at each iteration

- The first time |U| becomes smaller than |V|/logk|V|, the
algorithm has used no more than 2 |V|/logk|V| colours

16/22

Input-Dependent Approximation
- if |U| < |V|/logk|V|, to colour the remaining nodes

|V|/logk|V| colours suffice

- That is, the algorithm uses at most 3|V|/logk|V|
colours

- The algorithm uses at most 3|V|/logm*(G)|V|, that is,
at most 3n log(m*(G))/log n colours

- The performance ratio is at most
 (3n log(m*(G))/log n) / m*(G) = O(n / log n)

17/22

MINIMUM SET COVER
- INSTANCE: Collection C of subsets of a finite set S

- SOLUTION: A set cover for S, i.e., a subset C’ of C
such that every element in S belongs to at least one
member of C’

- MEASURE: |C’|

18/22

begin
U:=S;
for any set ci in C do c’i := ci ;
C’:=ø;
repeat

i:=index of c’with maximum cardinality;
insert ci in C’;
U := U-{elements of c’i };
delete all elements of ci from all c’;

until U:=ø
end.

Input-Dependent Approximation
- Johnson’s algorithm

- Polynomial-time logarithmic approximation
algorithm for MINIMUM SET COVER

19/22

Input-Dependent Approximation
- It is possible to show that Johnson's algorithm is a

(ln n + 1)-approximate algorithm for the MINIMUM
SET COVER, where n is the number of elements of S

20/22

Class F-APX
- Let F be a class of functions

- The class F -APX contains all NPO problems P that
admit a polynomial-time algorithm A such that, for
any instance x of P, R(x, A(x))) ≤ f(|x|), for a given
function f ∈ F

- P is said to be f(n)-approximable
- A is said to be an f(n)-approximation algorithm

21/22

Class APTAS
- The class APTAS contains all NPO problems P that

admit a polynomial-time algorithm A and a constant k
such that, for any instance x of P and for any rational
r, R(x, A(x,r))) ≤ r+k/m*(x)

- The time complexity of A is polynomial in |x| but not
necessarily in 1/(r-1)

- A is said to be an asymptotic approximation scheme
- A is clearly a (r+k)-approximation algorithm

22/22

The NPO world
NPO

APX MAXIMUM SAT
MINIMUM VERTEX COVER
MAXIMUM CUT

PO MINIMUM PATH

O(n)-APX

O(log n)-APX

MINIMUM GRAPH COLORING

MINIMUM SET COVER

PTAS MINIMUM PARTITION

APTAS MINIMUM EDGE COLORING

