Non-Approximability Results
(2" part continued)



Summary

- The PCP theorem

- Application: non-approximability of MAXIMUM
CLIQUE

- Input-Dependent and Asymptotic Approximation
- Approximation algorithm for graph colouring
- Approximation algorithm for set cover

- Asymptotic approximation scheme for edge
colouring
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Inapproximability of clique

Theorem: MAX CLIQUE LIPTAS unless P=NP

Proof:

- We show that 1t's possible to “reduce” MAX 3-SAT to MAX
CLIQUE preserving the approximation for all ». Given that

MAX 3-SAT UPTAS, the thesis follows.

- Let (U, C) an instance of MAX 3-SAT. U={variables} C=
{clauses}

- Define the MAX 3-SAT instance as: G=(V, E)
- V={(c¢)|10c OcUC}, E={((1,c),(,c)) |1 #-1LUcFc}

i} 1i are literals and C. are clauses
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Inapproximability of clique

Proof (continued):
- V={(,¢)|10c OcOC}, E={((1,,¢c,), (L, c,)) |1, #=1 0Oc #c,}

For any clique V', let f the truth assignment as follows:

- f(u) = true 1ff exists a clause ¢ such that (u, c) LI V'.

It's easy to show that f() 1s a consistent truth assignment.
From E, {() can satisfies >|V'| clauses: m((U, C), {) >|V'|

It's easy to show that the max number of satisfiable clauses
1s equal to the size of the max clique 1n G.

- Given a set of clauses C'L] C, for any truth assignment f' for C' and
for any cLIC', let 1_any literal of ¢ with f'(1 )=true. The set of nodes

(1, c) is clearly a clique in G.
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Inapproximability of clique

Proof (continued):

- Therefore, any polynomial-time approximation scheme for
MAX CLIQUE can be transformed 1n a polynomial-time
approximation scheme for MAX 3-SAT.

- But, unless P=NP, MAX 3-SAT [IPTAS, so the thesis.
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Inapproximability of clique

- MAX CLIQUE has a particular property, self-
improvability, that yields the following result

- Theorem: MAX CLIQUE LJAPX unless P=NP
- Proof:

- If there exists an polynomial-time »"-approximation
algorithm 4 for MAX CLIQUE, given an instance G, we
will transform G 1nto another, larger, instance f(G) and apply
A to 1(G).

- The approximate solution A(f(G)) can be used to find a
better approximate solution to G... therefore 4 can be
transformed to an approximation scheme.
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Inapproximability of clique

- The self-improvability property: Product graphs
- Given a graph G=(V,E), define G*(V*,E*) as
V={(v,,v,...,v) | v.1V} (k-th Cartesian product of V)
E={(u,y) | (u=v) U(u,v)UE for all i}

- If C L Vis a clique 1n G, 1t 1s easy to verify that
{(v,v,...v)|v. OC for every i} is a clique in f(G) of size |C[*

- m*(f(G)) = (m*(G))*

- If C'OV¥is a clique in f(G) with m* verticies, then at least a

coordinate i of the vertices (v ,,v,,...,v ) where there are m

different vertices v, in C'. These vertices are a clique in G of

size |C'|'"*. Let g the procedure that builds this clique from Ci,



Inapproximability of clique

- With 4 we can determine that
m*(G) / m(G, g(A(1(G)))) < (m*(f(G)) / m(f(G), A(f(G))) )™

< I/.fl/k

- For any r>1, choosing k > log r'/log r, we obtain a
polynomial-time approximation scheme for MAX
CLIQUE.

- Last theorem states that 1t's impossible unless P=NP
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The NPO world 1f PZNP

NPO MINIMUM TSP
MAXIMUM CLIQUE
APX MINIMUM BIN PACKING
MAXIMUM SAT

MINIMUM VERTEX COVER( & ?)
MAXIMUM CUT( & ?)

PTAS MINIMUM PARTITION

PO
MINIMUM PATH

MINIMUM GRAPH COLORING? Certainly not in PTAS
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Input-Dependent Approximation

- A sequential algorithm for MINIMUM GRAPH
COLORING

begin
sort V in decreasing order with respect to the degree;
for each nodev do
If there exists color not used by neighbors of v then assign this color to v

else create new color and assignittov

end.
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Input-Dependent Approximation

- Performance of sequential algorithm
- G=(3X e X, YooY S s {{Xi’ij}; [1735) % X ~
- d(x)=d(y,)=n-1 )
- The order (x,,y,...X ,y )
requires n colours

- The optimal value 1s 2

Yo Y3 Ya

- The performance ratio is n/2*

Generalizing, the performance ratio 1s A+1
where A 1is the highest degree of nodes in G
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Input-Dependent Approximation

- Polynomial-time n/log n-approximation algorithm for

MINIMUM GRAPH COLORING

begin
1:=0; U:=V:

whileU Z gdo
begin

while W# gdo

begin
insert vin V[i];
U:=U-V[i]

end
end

end.

1:=i+1;V[i]:=g;W.=U;H:=graph induced by W,

v=node of minimum degree in H;

delete v and its neighbours from W,
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Input-Dependent Approximation

We first prove that, if G 1s k-colorable, then the
algorithm uses at most 3|V|/log,| V] colours

- At any 1teration of the inner loop, H 1s k-colorable

- Hence, 1t contains an independent set of at least
[W\|/k nodes of degree at most |W|(k-1)/k

- Minimum degree 1in H 1s at most |W|(k-1)/k

- At least |[W|-|W|(k-1)/k = |W|/k nodes will be in IV at
the next iteration (after remove the |W|/k IS)

- Inner loop ends when W 1s empty

- At least log,| 7| iterations are necessary
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Input-Dependent Approximation

- At the end of mner loop
- {v|vin Wand V[v] =1}| = log W]

- For each colour i , the number of vertices coloured
with 7 1s at least log |U|, where U 1s the set of

uncoloured nodes before the color i 1s used
- Before the first outer loop, if |U| = |V]/log,|V],

log,|U| 2 log,(|V/log|V]) 2 72 log,|V]

- U size decrease by at least /2 log,| V] at each iteration

- The first time |U| becomes smaller than |V|/log,|V], the
algorithm has used no more than 2 [V|/log |V| colours
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Input-Dependent Approximation

it |U| <|V|/log,|V], to colour the remaining nodes
V|/log,| V] colours suffice

That 1s, the algorithm uses at most 3|V|/log,|V]
colours

The algorithm uses at most 3|V|/log . . [V], that s,
at most 3n log(m*(G))/log n colours

The performance ratio 1s at most
(3n log(m™*(G))/log n) / m*(G) = O(n/log n)
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MINIMUM SET COVER
- INSTANCE: Collection C of subsets of a finite set S

- SOLUTION: A set cover for S, 1.e., a subset C’ of C
such that every element 1n S belongs to at least one
member of C’

- MEASURE: |C’




Input-Dependent Approximation

- Johnson’s algorithm

- Polynomial-time logarithmic approximation
algorithm for MINIMUM SET COVER

begin

U:=S
forany setc inCdoc’, :=c;
C =g,
repeat
I:=index of ¢’with maximum cardinality;
insertc in C';
U = U-{elementsof C’. };
delete all elements of ¢ fromall c’;
until U:=g

end.
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Input-Dependent Approximation

- It 1s possible to show that Johnson's algorithm 1s a
(In n + 1)-approximate algorithm for the MINIMUM
SET COVER, where n 1s the number of elements of S
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Class F-APX

- Let F be a class of functions

- The class F -APX contains all NPO problems P that
admit a polynomial-time algorithm A such that, for
any instance x of P, R(x, A(x))) < f(|x|), for a given
function f O F

- P is said to be f(n)-approximable

- A 1s said to be an f(n)-approximation algorithm
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Class APTAS
- The class APTAS contains all NPO problems P that

admit a polynomial-time algorithm A and a constant &

such that, for any instance x of P and for any rational
r, R(x, A(x,r))) < rtkim*(x)

- The time complexity of A is polynomial in |x| but not
necessarily i 1/(r-1)
- A 1s said to be an asymptotic approximation scheme

- A is clearly a (rtk)-approximation algorithm
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The NPO world

NPO
O(n)-APX MINIMUM GRAPH COLORING
O(log n)-APX MINIMUM SET COVER
APX MAXIMUM SAT

MINIMUM VERTEX COVER
MAXIMUM CUT

APTAS MINIMUM EDGE COLORING

PTAS MINIMUM PARTITION

PO MINIMUM PATH
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