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Circulant and Elliptic Feedback Delay
Networks for Artificial Reverberation

Davide Rocchesso and Julius O. Smith

Abstract—The feedback delay network (FDN) has been pro-
posed for digital reverberation. The digital waveguide network
(DWN) is also proposed with similar advantages. This paper
notes that the commonly used FDN with anN � N orthogonal
feedback matrix is isomorphic to a normalized digital waveguide
network consisting of one scattering junction joiningN reflec-
tively terminated branches. Generalizations of FDN’s and DWN’s
are discussed. The general case of a lossless FDN feedback matrix
is shown to be any matrix having unit-modulus eigenvalues and
linearly independent eigenvectors. A special class of FDN’s using
circulant matrices is proposed. These structures can be efficiently
implemented and allow control of the time and frequency behav-
ior. Applications of circulant feedback delay networks in audio
signal processing are discussed.

I. INTRODUCTION

A RTIFICIAL reverberation is a challenging application in
signal processing because it is necessary to approximate

large systems (such as concert halls) having hundreds of
thousands of poles and zeros in the audio band. Instead
of pursuing explicit models that are prohibitively complex,
it is necessary to find alternative abstractions that can be
implemented at reasonable cost and capture the salient psy-
choacoustical attributes of natural reverberation. An important
practical requirement is a stable numerical implementation of
sparse, high-order, nearly lossless linear systems. This paper
addresses this and related issues.

A. Prior Work

The field of digital artificial reverberation was launched
by Schroeder more than 30 years ago [1]. In his pioneering
work, he introduced recursive comb filters and allpass filters as
suitable means for inexpensive simulation of multiple echoes.
In particular, he introduced use of allpass filters of the form

, with any positive
integer, for achieving dense echoes with a flat amplitude
response. This structure has since been used extensively in
artificial reverberation [2].

In the 1970’s, Gerzon [3] generalized the single-input,
single-output Schroeder allpass to inputs and outputs by
replacing the -sample delay line with an order “unitary
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network” (a square matrix transfer function having a frequency
response matrix that is a unitary matrix at all frequencies, i.e.,
it must be a “paraunitary” transfer function matrix [4]).

Stautner and Puckette [5] introduced what we now call
feedback delay networks(FDN’s) as structures that are well
suited for artificial reverberation. These structures are char-
acterized by a set of delay lines connected in a feedback
loop through a “feedback matrix” (see Fig. 1). The FDN was
obtained as a generalization of the recursive feedback comb
filter by 1) replacing the
single -sample delay line by a diagonal matrix of delay
lines of different lengths and 2) replacing the feedback gain

by the matrix , where is any unitary matrix,1

and is any diagonal matrix having all elements less than
in magnitude, where determines the stability

margin. Specific early reflections were implemented by adding
scaled copies of the source signal into selected points along
the delay lines, corresponding to use of the transposed form
of the FIR filter [6]. Early reflections in artificial reverberation
were apparently first implemented by Moorer using a direct-
form FIR filter in series with Schroeder allpass filters and
air-absorption comb filters [2].

More recently, Jot has extensively studied FDN’s and
developed associated techniques for designing good quality
reverberators. He suggested the use of efficient special cases
of unitary feedback matrices as well as techniques for pole
placement to obtain a desired decay-time versus frequency [7]
and introduced the valuable design principle that for smoothest
(idealized) late reverberation, all modes in a given frequency
band should decay at substantially the same rate in order to
avoid isolated ringing modes in the late reverberation that tend
to sound “metallic” [8].

In 1986,digital waveguide networks(DWN) were proposed
as a useful starting point for digital reverberator design [9].
The idea was to build an arbitrary closed network of digital
waveguides exhibiting the desired early reflections and late
echo density and then introduce loss filters into the network to
achieve the desired decay time versus frequency. Approaching
reverberation via lossless prototypes leads to good numerical
and stability properties [4], [10]. Like FDN’s, DWN’s make
it easy to construct well-behaved, high-order, nearly lossless
systems.

1While papers on this subject speak of unitary feedback matricesU 2 C
N

defined byU�U = I, whereU� denotes the Hermitian transpose ofU , all
practical applications thus far appear to be confined toorthogonalmatrices
U 2 RN .
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B. Lossless Reveberator Prototypes

Reverberator design is often factored into separate designs
of the early reflections and the late “diffuse” reverberation.
Specific early reflections are easily realized using FIR filter
taps. To develop a high-quality late reverberation, it is good
to begin with a lossless prototype reverberator so that the struc-
ture of its late time response can be clearly heard. Nominally, a
lossless prototype reverberator is judged by the quality ofwhite
noiseit generates in response to an impulse signal. For smooth
late reverberation, the white noise should sound uniform
in every respect. Subsequent introduction of sparse lowpass
filters into the prototype network serves to set the desired
reverberation time versus frequency. In other words, starting
with lossless networks allows thedecouplingof reverberation
time from structural aspects of the reverberator. Any “passive”
arithmetic scheme, such as magnitude truncation, can be used
at certain multiplier outputs to eliminate the possibility of limit
cycles and overflow oscillations [10].

Since FDN’s and DWN’s appear to present very different
approaches for constructing lossless reverberator prototypes, it
is natural to ask what connections may exist between them and
whether there may be unique advantages of one over the other.

C. Summary and Outline

In Section II, we briefly review the FDN and discuss some of
its algebraic properties. In Section III, we explore connections
between FDN’s and DWN’s: It is shown how a single-
junction DWN created by the intersection of waveguides
can be interpreted as an order FDN; conversely, it is
shown that any FDN can be interpreted as a DWN, although
its scattering junction is not necessarily physical. We derive
general conditions for lossless FDN feedback matrices in
which the unitary matrix normally used in FDN’s is extended
to any matrix having unit-modulus eigenvalues and linearly
independent eigenvectors. The extension corresponds to a
generalization of signal energy by replacing thenorm with
an elliptic norm induced by any Hermitian, positive-definite
matrix [11]. In Section IV,circulant feedbackmatrices are
proposed as good choices for FDN’s due to their efficiency
and versatility in practice. It is straightforward to control the
eigenvalues of circulant feedback matrices, and therefore, they
can be optimized to yield the best reverberation according to a
specified criteria. Finally, in Section V, we present applications
in artificial reverberation and use of more general-purpose
resonators.

For generality, we treat the complex case, although real
numbers are typically used in practice.

II. FEEDBACK DELAY NETWORKS

This section reviews FDN’s along the lines indicated by Jot
[7] and [8] with some modifications.

As depicted in Fig. 1, an FDN is built using delay lines,
each having a length in seconds given by , where

is the sampling period. The complete FDN is given

Fig. 1. Order 3 feedback delay network.

by the following relations:

(1)

(2)

where , are the delay-line outputs at time
sample . If for each , we obtain the conventional
state-variable description of a discrete-time linear system [12].
In the present case, are normally large integers; therefore,
the variables form only a small subset of the system
state at time , with the remaining state variables being the
samples contained within the delay lines at time. Using the

transform, assuming zero initial conditions, we can rewrite
(2) in the frequency domain as

(3)

(4)

where , ,
and . The diagonal matrix
diag is called the “delay matrix,”
and is called the “feedback matrix.”

The state variables of the FDN can be collected into a vector
as follows: List the variables contained in the first delay

line from the th cell to the second cell and then those
contained in the second delay line from the th cell
to the second cell, and so on for the other delay lines; then,
attach the output variables to and, finally, the first cell
of all the delay lines in increasing order.

By assuming that each delay line is longer than two samples,
the state-variable description corresponding to this variable
format for the system (2) can be found to be

(5)

where

(6)

(7)
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The state-transition matrix is

(8)

where

(9)

(10)

and

(11)

We have

(12)

The order of the system (5) is equal to the sum of the delay-line
lengths:

From (4), the transfer function is easily found to be

(13)

Note that when for all , the FDN specializes to a
fully general state-space description [12]. This implies thatany
linear, time-invariant, discrete-time system can be formulated
as a special case of an FDN since every state-space description
is a special case. This suggests that a wide variety of stable
FDN’s can be generated by starting with any stable LTI system
whatsoever and performing the substitution on
each delay element or any other conformal mapping that takes
the unit circle to itself (another example being the Schroeder
allpass transformation ).
Stability is preserved even when the unit-sample delays of
the original state-space description are mapped using different

conformal maps. This can be seen from the matrix power series
expansion

(14)

As long as , by making use of the triangle
inequality and the Cauchy–Schwarz (or mutual consistency)
inequality [11], we can write

(15)

Therefore, as long as decays exponentially with ,
stability is assured. The above derivation extends immediately
to time-varying feedback matrices , provided
for some worst-case .

The poles of the FDN are the solutions of either

(16)

or

(17)

The matrix is not uniquely determined by . In fact,
our ordering of the state variables differs from that used by
Jot [7]. Our ordering gives

diag (18)

From (18), we see that is unitary if and only if is unitary.
Since a unitary matrix has eigenvalues on the unit circle, we
see from (17) that it is sufficient to choose a unitary matrix
in order to have all the system poles on the unit circle. This
yields a lossless FDN prototype.

By application of the matrix inversion lemma [12] to the
transfer function (13), the system zeros are found as the
solutions of

(19)

The formulation of (2) represents a prototype structure in
the sense that with the appropriate choice of feedback matrix,
it is a lossless structure. In practice, we must insert attenuation
coefficients and filters in the feedback loop. For example, one
may insert a gain [8]

(20)

at the output of each delay line in the FDN. This corresponds
to replacing with in (4). With this choice of
the attenuation coefficients, all the system poles are uniformly
contracted by a factor , thus ensuring a uniform decay of all
the modes.

In a practical realization, we normally need to introduce
frequency-dependent losses such that higher frequencies decay
faster. We can do this by introducing lowpass filters after each
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Fig. 2. Waveguide network consisting of a single scattering junction, indi-
cated by an open circle, to whichN branches are connected. The far end of
each branch is terminated by an ideal, noninverting reflection.

delay line in place of the gains. In this case, local uniformity
of mode decay is still achieved by condition (20), where
and are made frequency dependent:

(21)

where can be interpreted as the per-sample filtering [13],
[14], [8].

Notice that uniform decay of all the modes, albeit arguably
desirable in artificial reverberators for a smooth late time
response, is not found in actual rooms. Normal modes are
associated with standing waves, which have an absorption that
depends on their orientation. For example, in a rectangular
enclosure, waves traveling in a direction normal to a wall
are less absorbed than oblique waves [15, p. 392] so that
the corresponding standing waves (which are expressible as
the superposition of traveling waves in opposite directions)
have different reverberation times. The room-acoustics inter-
pretation of FDN’s provided in Section V points to ways of
modeling such uneven decays.

III. D IGITAL WAVEGUIDE NETWORKS

Digital waveguide networks provide a useful paradigm for
sound synthesis based on physical modeling [14]. They have
also been proposed for constructing arbitrarily complex digital
reverberators [9], which are free of limit cycles and overflow
oscillations if passive arithmetic is used [10]. In this section,
we explore the relationships between DWN’s and FDN’s.

Fig. 2 illustrates an -branch DWN that is structurally
equivalent to the feedback loop of anth-order FDN. It
consists of a single scattering junction, indicated by a white
circle, to which branches are connected. The far end of each
branch is terminated by an ideal noninverting reflection (black
circle). The waves traveling into the junction are associated
with the FDN delay line outputs , and the length of each
waveguide ishalf the length of the corresponding FDN delay
line (since a traveling wave must traverse the branch twice
to complete a round trip from the junction to the termination
and back). When is odd, we may replace the reflecting
termination by a unit-sample delay.

A. Lossless Scattering

The delay-line inputs (outgoing traveling waves) are com-
puted by multiplying the delay-line outputs (incoming travel-
ing waves) by the feedback matrix (scattering matrix)

. By defining , , we
obtain the more usual DWN notation

(22)

where

vector of incoming traveling-wave samples arriving at
the junction at time ,
vector of outgoing traveling-wave samples leaving the
junction at time ,
scattering matrixassociated with the waveguide junc-
tion.

The junction of physical waveguides determines the
structure of the matrix according to the basic principles
of physics.

Considering the parallel junction of lossless acoustic
tubes, each having characteristic admittance, the continuity
of pressure and conservation of volume velocity at the junction
give us the following scattering matrix for the pressure waves:

(23)

where

(24)

Equation (23) can be derived by first writing the volume
velocity at the th tube in terms of pressure waves as

. Applying the conservation of velocity, we can

find the expression for the junction
pressure. Finally, if we express the junction pressure as the
sum of incoming and outgoing pressure waves at any branch,
we derive (23).

B. Normalized Scattering

For ideal numerical scaling in the sense, we may choose
to propagatenormalized wavesthat lead to normalized scat-
tering junctions analogous to those encountered in normalized
ladder filters [17]. Normalized waves may be either normalized
pressure or normalized velocity .
Since the signal power associated with a traveling wave is
simply , they may also be called
root-power waves[10].
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The scattering matrix for normalized pressure waves is
given by

(25)

The normalized scattering matrix can be expressed as a House-
holder reflection

(26)

where , and is the wave admittance
in the th waveguide branch. The geometric interpretation
of (26) is that the incoming pressure waves are reflected
about the vector . Unnormalized scattering junctions can be
expressed in the form of an “oblique” Householder reflection

, where and
.

C. Complexity

It is important to note that a Householder reflection can
be implemented using numerical operations, as op-
posed to operations for a general scattering matrix
(in computing in (26), first precompute the inner product

[18]). Since all junctions of physical waveguides can
be expressed as a Householder reflection, all such scattering
junctions require only computations.

It is interesting to note that Jot [7] proposed a class of
feedback matrices for the efficient implementation of FDN’s
that are specialized Householder reflections. We have just
shown that the same kind of structure arises naturally, in the
context of waveguide modeling, for physically based scattering
matrices.

D. Conditions for Losslessness

The scattering matrices for lossless physical waveguide
junctions give an apparently unexplored class of lossless FDN
prototypes. However, this is just a subset of all possible
lossless feedback matrices. We are therefore interested in the
most general conditions for losslessness of an FDN feedback
matrix.

Consider the general case in whichis allowed to be any
scattering matrix, i.e., it is associated with a not-necessarily-
physical junction of physical waveguides. Following the
definition of losslessness in classical network theory, we may
say that a waveguide scattering matrixis said to belossless
if the total complex power[19] at the junction is scattering
invariant, i.e.,

(27)

where is any Hermitian, positive-definitematrix (which has
an interpretation as a generalized junction admittance). The
form is by definition the square of theelliptic norm of

induced by , or . Setting , we obtain
that must be unitary. This is the case commonly used in
current FDN practice.

The following theorem gives a general characterization of
lossless scattering:

Theorem 1: A scattering matrix (FDN feedback matrix)
is lossless if and only if its eigenvalues lie on the unit circle
and it admits a basis of linearly independent eigenvectors.

Proof: In general, the Cholesky factorization
gives an upper triangular matrix that converts to a
unitary matrix via similarity transformation:

, where .
Hence, the eigenvalues of every lossless scattering matrix lie
on the unit circle. It readily follows from similarity to that

admits linearly independent eigenvectors. In fact,is a
normal matrix (since it is unitary), and normal matrices admit
a basis of linearly independent eigenvectors [20].

Conversely, assume that for each eigenvalue
of and that there exists a matrix of linearly inde-
pendent eigenvectors of . Then, the matrix diagonal-
izes to give ,
where diag . Multiplying, we obtain

. Thus, (27) is satisfied for , which
is Hermitian and positive definite.

Thus, lossless scattering matrices may be fully parameter-
ized as , where is any unit-modulus diagonal
matrix, and is any invertible matrix. In the real case, we
have diag and .

It can be quickly verified2 that all scattering matrices
arising from the parallel intersection of physical waveguides
possess one eigenvalue equal to 1 and eigenvalues
equal to 1 [21]. In the case of physical waveguides of equal
impedances, the eigenvector associated with the eigenvalue 1
corresponds to equal incoming waves, whereas an eigenvector
associated with the eigenvalue1 corresponds to equal incom-
ing waves on branches and a large opposite wave on
the remaining branch that pulls the junction pressure to zero.

Theorem 1 characterizes lossless FDN feedback matrices
as those having eigenvalues on the unit circle, where the

definition of losslessness was given by (27). It remains to be
shown that satisfying (27) implies that the poles of the
corresponding FDN are all on the unit circle. To this end,
recall the form of the state-transition matrix (8), and define
the extended generalized admittance

(28)

By analogy to the derivation of (18), we get

diag (29)

2Using the eigenvectors eT
0

= [1; � � � ; 1] and e
T

k
=

[1; � � � ; 1; 1� �J=�k

kth

; 1; � � � ; 1], k = 1; � � � ; N
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This equation shows that is lossless if and only if is
lossless, and its eigenvalues are on the unit circle by Theorem
1. However, from (17), we have that the eigenvalues of
are the poles of the corresponding FDN. Therefore, the FDN is
lossless, and its impulse response consists only of nonincreas-
ing and nondecaying modes. Desired decay characteristics
versus frequency for obtaining a specific artificial reverberator
can now be controlled separately by means of attenuation
coefficients and filters, as indicated in Section II.

E. Relation of DWN’s to FDN’s

When in the proof of Theorem 1 is diagonal and positive,
a physical waveguide interpretation always exists with
diag . A generalized waveguide interpretation exists for all

via vector transformers [16, p. 55, sec. 4] in whichacts
as an ideal transformer (in the classical network theory sense)
on the vector of all waveguide variables. If
denotes the vector of physical pressures at the junction and

denotes the physical volume velocities, then we
have that the junction power, which is defined as ,
is invariant with respect to insertion of a vector transformer
(similarity transformation applied to the scattering matrix).

A unitary FDN feedback matrix corresponds to a not-
necessarily-physical scattering junction in which the total
complex power is given by the ordinary norm of the
incoming or outgoing traveling waves. Since the physical
power associated with an incoming wave vector is

, where diag , we see that
unitary corresponds to a scattering junction joining waveguides
of equal wave impedance, i.e., diag . In
the more general (unnormalized) case in which the branch
impedances are different, i.e., diag , we
obtain the larger class of scattering matrices that preserve an
elliptic norm as induced by a positive-definite (or Hermitian)
generalized junction impedance.

Since, as discussed above, only a subset of all unitary
matrices is given by a physical junction of waveguides, the
unitary FDN point of view yields lossless systems outside the
scope of those suggested by multiport scattering theory. On
the other hand, since only normalized waveguide junctions
exhibit unitary scattering matrices, the DWN approach gives
rise to new classes of FDN’s. Moreover, by considering more
than one scattering junction, the DWN approach suggests new
classes of network topologies following physical analogies.
Similarly, FDN matrices can be partitioned to embed several
FDN subsystems into larger FDN systems.

Formally, every DWN can be expressed as an FDN by
collecting all of its delay lines into a diagonal delay matrix

as in (4) and finding the matrix that computes the
delay-line inputs from the delay-line outputs. Therefore, every
waveguide network yields a feedback matrix for considera-
tion in the FDN framework. Conversely, every real lossless
FDN can be expressed as a single-junction not-necessarily-
physical normalized waveguide network using an ideal vector
transformer at the junction of equal-impedance waveguide
branches.

F. Finite-Wordlength Effects

We have just seen how the FDN can be seen as a simple
DWN having a not-necessarily-physical scattering matrix. In
order to provide an easy control over the decay, the scattering
matrix has to satisfy the condition of losslessness (27). A
finite-precision implementation of the FDN might incur in
limit cycles or overflow oscillations due to departures from the
infinite-precision lossless prototype. Departures can be of two
kinds: The finite-precision scattering matrix does not satisfy
the lossless condition (27) or the round-off noise in the matrix
by vector multiplication introduces signal amplitude
modifications. By assuming that the scattering matrix satisfies
(27) in a large extent even in finite precision, it is possible to
apply the arguments used in [9], [10], [16], and [22] for the
DWN’s in order to avoid limit cycles or overflow oscillations.
If the matrix by vector multiplication is performed in the
straightforward way as a collection of inner products, and
the matrix coefficients have the samebits of precision as
the signals, it is sufficient to perform these order-inner
products in the extended precision of bits and apply
a passive truncation scheme on the output signal. In two’s
complement arithmetic, a simple passive truncation scheme is
the following:

• If the most significant bits are not equal, replace the
output value by the maximum-magnitude number in-bit
two’s complement having the correct sign (saturation).

• Discard the least significant bits, and add to the
result if it is negative.

As far as the condition on the losslessness of the scattering
matrix is concerned, general requirements for the construction
of “structurally lossless,” or at least “structurally passive,”
scattering matrices have to be worked out. This topic, which
was previously touched on by Gray [22] in the case,
will be discussed in a forthcoming paper since a complete
treatment would enlarge the scope of this paper significantly.

IV. CIRCULANT FEEDBACK DELAY NETWORKS

Consider the class of circulant feedback matrices having
the form

This class of matrices gives rise to a class of FDN’s we call
circulant feedback delay networks(CFDN’s). The following
two facts can be proved [23]:

Fact 1: If a matrix is circulant, it is normal, i.e.,
.

Fact 2: If a matrix is circulant and lossless, it is unitary.
It is well known that every circulant matrix is diagonalized

by the discrete Fourier transform (DFT) matrix [23]. This
implies that the eigenvalues of can be computed by means
of the DFT of the first row:

DFT

where denotes the set of all eigenvalues of, and
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denotes the set of complex DFT samples obtained
from taking the DFT of .

A. Design of Poles and Zeros in CFDN’s

A matrix that is both unitary and circulant has all eigenval-
ues on the unit circle, and the DFT can be used to compute the
eigenvalue phases. In the case of equal-length delay lines, the
eigenvalues determine the resonance frequencies in a simple
way. From (16), when , the system poles are
the th complex roots of the eigenvalues of.

Conversely, we can easily design a circulant matrix to have
a desired distribution of eigenvalues. This is also true for
any lossless matrix since Theorem 1 gives that anyof
the form is lossless, where is any unit-
modulus diagonal matrix, and is any invertible matrix.
Thus, a lossless matrix is characterized by the arguments of
its eigenvalues and a similarity transformation matrix. The
advantage of choosing circulant FDN’s over other kinds of
FDN’s is the possibility of computing from its eigenvalues
very efficiently by means of a single inverse FFT.

As we will see in Section V, in a practical implementation,
the delay lengths are typically not equal. However, the equal-
delay case is easier to analyze. The limitations and advantages
of such a choice will become clearer in Section V.

The actual presence of resonance peaks corresponding to
the eigenvalues depends on the positions of the zeros, as given
by (19). Assuming equal-length delay lines and , (19)
becomes

(30)

which means that the zeros are theth complex roots of the
eigenvalues of .

In order to have “colorless” reverberation, it may be desir-
able to make the envelope of the amplitude response flat. To
do this, each zero should be equal to the reciprocal of a pole.
In prototype CFDN’s, the feedback matrix is lossless, and the
system poles are on the unit circle so that the zeros must equal
the poles. However, when all zeros and poles cancel exactly,
the impulse response of the FDN degenerates to an impulse.3

This is a general problem with any allpass reverberator:
Lengthening the reverberation time without changing the delay
lengths forces the impulse response to converge to an impulse.
In our case, we depart from the idealized case by slightly
changing the delay lengths. As we will show in Section V, this
approach leads to reverberators having a frequency response
that is nearly flat at low frequencies while preserving the
richness of the echo density in the time domain.

Therefore, we continue treating the prototype case of equal-
length delay lines and and show that we can obtain
perfect canceling of zeros and poles by using 1)

and 2) having entries equal to 1, entries
equal to 1, and zeros for the remaining entries. This result
is due to the following

3Since we are discussing discrete-time systems, the term “impulse” means
the same thing as “unit sample pulse.”

Theorem 2: Given a circulant matrix , let
be obtained by adding a constantto each entry of rows
(columns) and subtracting the same constantfrom each entry
of another rows (columns). Then, and have the same
eigenvalues.

Before providing the proof of Theorem 2, we need to prove
the following

Lemma: All the eigenvectors of a circulant matrix other
than the “dc” vector lie in the null space of any
matrix with constant rows. Thus, adding constant rows cannot
alter eigenvalues or eigenvectors other than the zeroth.

Proof: This follows immediately from the fact that
the eigenvectors of every circulant matrix are given by the
columns of the DFT matrix of the same size, and these vectors
are orthogonal. Therefore, a constant row is orthogonal to all
eigenvectors of the DFT matrix except the dc eigenvector.

The lemma states that all we can do by adding constant
rows to a circulant matrix is move the “dc” eigenvector to
some other vector and change its eigenvalue.

Proof of Theorem 2:Consider the matrix given by

(31)

where and . Since
any circulant matrix is diagonalized by the DFT matrix, if we
premultiply and postmultiply both sides of (31) by the DFT
matrices and , we obtain

where is a diagonal matrix, and the term within parentheses
is an matrix having nonnull entries only in position (1,
1) and (2, 1). Moreover, these two entries have opposite sign.
It turns out that has nonnull elements only on the
first column under the diagonal. This means that the matrix

can be triangularized by means of the DFT matrix, and its
eigenvalues (found on the diagonal) are the same as those of

. This argument works for any number of oppositely signed
couples of distinct values arbitrarily distributed in the vector

. The same argument can be followed for proving the claim
relative to the columns. In this case, we would start by forming
the product .

Note that the zeroth eigenvalue is no longer a “dc”
eigenvalue. The corresponding eigenvector must be found
in , where gives the nullspace of
its argument. In the case of a real circulant matrixwith
eigenvalues along the unit circle, we have that (the
sum of the elements of a row of is 1).

With the above choice of and coefficients, we obtain a
perfectly flat amplitude response for equal-length delay lines.
However, this is degenerate since this is the condition for
pole–zero cancellation. As we will show in Section V, when
using slightly different delay lengths, a nearly flat response at
low frequencies is obtained as a perturbation of the pole–zero
cancellation configuration.
B. Computational Complexity

In an th-order FDN, the core computations consist
of updates of the delay lines and a matrix by vector
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multiplication. The delay line operations can proceed in
parallel. The matrix by vector multiplication requires, in
general, operations (multiplications and additions).
If the matrices arise from the scattering coefficients of a
waveguide junction, the computations reduce to . The
same order of complexity is required by the normalized
waveguide junction. For the special case of a junction of equal-
impedance waveguides, the multiplications can be replaced by
shifts when is a power of 2 [9]. In all these efficient cases,
the eigenvalues of the feedback matrix are constrained to
be at 1 or 1. The circulant matrix offers a more general
eigenvalue distribution. Moreover, the matrix by vector mul-
tiplication can be implemented very efficiently in hardware.
This multiplication can be viewed as a circular convolution
of the column vector with the first row of the matrix. Such
a convolution can be performed, when is a power of 2,
using two FFT’s (one of which can be precomputed), an
elementwise product between two vectors, and an inverse
FFT. The complexity of this algorithm is . It
is easy to implement this matrix-vector product in VLSI
by means of the butterfly or other hypercubic architectures
[24]. These architectures allow computations of the FFT in

time steps, and the algorithm can be pipelined.
The parallel implementation of waveguide scattering matri-

ces cannot be done in less than time steps because
of the scalar product that is involved in Householder reflections
of any kind. Hence, in parallel implementations, we lose the
advantage of waveguide scattering matrices over circulant
matrices.

Moreover, we can use number-theoretic Fourier transforms
in order to compute the circular convolution. Such transforms
work over commutative rings and can be arranged in such a
way that all multiplications are replaced by shifts. Since in the
convolution we have both the direct and inverse transforms,
the overall result remains correct.

The circulant structure of is advantageous for purposes
of real-time control as well. In the first place, the entire matrix
is determined by one of its rows or columns, and no matter
how a row or column is modified, as long as the rest of
the matrix is modified accordingly to preserve the circulant
structure, the matrix will have unit-modulus eigenvalues as
needed for losslessness. Furthermore, the top row of a circulant
matrix is obtained from its eigenvalues by means of an
inverse DFT. Therefore, it is possible to efficiently generate
a continuous family of circulant matrices by continuously
varying the complex phases of the eigenvalues. Moreover,
if the matrix-vector multiplication is implemented in the
frequency domain, the inverse DFT is not needed. Thus, we
may move the eigenvalues to arbitrary points on the unit
circle and generate a wide family of efficiently computed
lossless feedback matrices.

V. APPLICATIONS

We have been using circulant networks for various purposes
in sound synthesis and processing. Artificial reverberation is
probably the most significant application, but other significant
areas of interest can be found in sound synthesis and filtering.

A. Digital Reverberation

Two quantities have been proposed as criteria for measuring
the “naturalness” of synthetic reverberation: the time density
and the frequency density [7]. A good reverberator should
provide high values of both densities, thus giving smooth,
dense time and frequency responses.

The frequency density is defined as the average number
of resonances per Hertz. A general expression can be derived
from the order of the system (5), assuming that all the poles
are distinct, and no cancellation occurs:

(32)

In real rooms, the frequency density increases at higher
frequencies (as can be seen from (35) below).

In the prototype case, where the delay lines all have the
same length , we have

(33)

The time density is defined as the number of nonzero
samples per second in the impulse response. In actual rooms,

is an increasing function of time. In order to obtain dense
reverberation after the early reflections (e.g., after 80 ms), it
helps to use different delay lengths.

The actual positions of frequency peaks depend on the
feedback matrix and the delay lengths. If the delay lengths
are fixed, we can vary some time-frequency properties of the
structure simply by varying the distribution of eigenvalues
of the feedback matrix. The total length of the delay lines
should be chosen in such a way that the frequency density,
as determined by (32), is high enough. Then, the matrix
eigenvalues can be adjusted to avoid resonant peak clustering
or other undesirable mode distributions.

It is interesting to discuss the effect of eigenvalues in the
prototype case of equal delays. A uniform distribution of
eigenvalues along the unit circle is optimum for the frequency
response in the sense that it minimizes the maximum distance
between peaks. However, it produces a highly repetitive time
response. Conversely, clustering the eigenvalues around a
point on the unit circle can be good for maximizing the length
of time patterns, but the clustering of frequency peaks produces
a poor reverberator amplitude response versus frequency. We
see from these considerations that there is a time-frequency
tradeoff. This tradeoff can be addressed using circulant ma-
trices.

A couple of examples of different eigenvalue distributions
are given in Fig. 3. The matrix used in Fig. 3(b) is simply
obtained by a right circular shift of the rows of the matrix ,
which is given by the junction of equal-impedance waveguides
and, as already stated, has eigenvalues only at 1 and1. We
can express as the product , where is the right-shift
matrix

(34)
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(a) (b)

Fig. 3. Time and frequency behaviors for two circulant feedback delay networks that differ only by a shift on the rows of the feedback matrix.

Both and are circulant, and therefore, the eigenvalues
of are given by the collection of the element-wise products
of the eigenvalues of and the eigenvalues of , which are
the th complex roots of 1 [23]. For clarity, we set all the
delay lengths equal in the examples.

As a side comment, we notice thatis the scattering matrix
of the circulator, which is a circuit device that can be used
to obtain the multiplication of one-port scattering parameters
[25].

The shape of the frequency response depends also on the
zeros, which were discussed in Section IV. In particular,
Theorem 2 provides a way of setting the zeros exactly over
the poles in the prototype equal-delay case. We anticipated
in Section IV that the way to choose the vectorsand

indicated in Theorem 2 can be useful for getting a flat
amplitude response at low frequencies when the delay lengths
are slightly varied from the prototype case. Fig. 4 depicts
the time and frequency responses for the CFDN using the
same feedback matrix as in Fig. 3(b), having ,

, and delay lengths . As we
can see from Fig. 4, we are able to get a nearly flat amplitude
response at low frequencies without losing the reverberating
character of the time response. We believe that this is a good
alternative to allpass filters, which tend to have degenerate
impulse responses when the poles approach the unit circle.

B. Physical Room Modeling with FDN’s

A flat amplitude response at low frequencies, while de-
sirable in several practical situations, is not found in actual
rooms. Therefore, if the goal is to model the reverberation
of a physical room, the way indicated by Theorem 2 is not
appropriate. Somewhat happily, the FDN can be the kernel
of a model of rectangular room, and its parameters can be
interpreted in a physical and geometrical framework. In this
section, we give only a sketch of this framework since the
details of the underlying metaphor are beyond the scope of
this paper and can be found in [26].

Consider a lossless shoe-box shaped room having length
, depth , and height . For such a room, it is possible

to compute analytically the frequencies of the normal modes
[15] as

(35)

where , and is the speed of sound in
air. Each normal mode is associated with a direction in space,
whose cosines, which are made by the wave propagation with
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(a)

(b)

Fig. 4. Zero positioning that gives a nearly flat low-frequency response
for the CFDN of Fig. 3(b), withb = [1 1 1], c = [0 �1 1], and
Delays = [16 17 15].

respect to the , , and axes, are

(36)

where is the magnitude of the (vector) spatial frequency, and
the subscripts in have been dropped for conciseness.

The triple completely characterizes a
normal mode. All the triples that are multiples are associated
with a harmonic series of frequencies and with the same
direction in space. This suggests that any harmonic series
of normal mode frequencies can be obtained by means of
a linear resonator (in other words, a comb filter) whose
length in seconds is set to , where is the
fundamental frequency of the harmonic series. Therefore,
we can decompose the modal distribution of the response
of an actual room into harmonic subsets (a harmonic of

is obtained by multiplying , , and by
the same integer). Sorting these harmonic subsets according
to their fundamental frequencies and taking the reciprocals
of the lowest fundamental frequencies yields a parallel
comb filter representation of the room (i.e., an FDN with
diagonal feedback matrix) so that the FDN reproduces the
lowest eigenfrequencies exactly. This procedure was already

outlined in [7] as a mean of identifying the parallel comb-filter
parameters from a measured impulse response.

We can elaborate the representation further by interpreting
the quantity as the time taken by a plane wavefront to
travel a certain distance along the direction (36) in space. In
fact, a normal mode and all its harmonically related multiples
can be thought of as a planewave bouncing back and forth in
the closed environment [15]. For a finite medium, in order to
support such an infinite plane wave, the planar fronts have to
be bent at the walls such that they form a constant-area closed
surface. It can be verified that the time is the time interval
between two successive collisions of two plane wavefronts.

Once it is established that in an idealized rectangular room
each harmonic subset of normal modes can be represented by
a linear resonator oriented along a given direction in space,
we can introduce other “second-order” effects into the basic
model.

Let us consider an octant in space. Taking the firstfun-
damental frequencies in the harmonic-subset decomposition of
the normal modes corresponds to sampling in space along
directions. An object in any point of the space will provide
scattering among the directions. The walls themselves,
when they are not ideally smooth, scatter the waves in different
directions. We can think of lumping all these diffusion effects
and representing them in the nondiagonal elements of the
scattering matrix of a FDN. With some approximation, it was
also shown in [26] that an isotropic object in a nondiffusive
rectangular room can be represented by a circulant matrix,
provided that the spatial sampling is almost uniform, and the
proper ordering of directions is chosen.

The geometric interpretation allows one to properly excite
the modes according to the position of the sound source by
simply replacing each coefficient in the vectorwith a suitable
cascade of FIR comb filters [26]. The position at which we
listen to the sound is related to thecoefficients in a similar
way. It is also quite easy to take into account the radiation
pattern of the source and the directivity of the pick up. Perhaps
more importantly, the absorption coefficients of the walls can
be made to be direction dependent, as they are found in reality,
because they affect the different “linear resonators” differently.

In the model at hand, the matrix element scales the
signal transmission from modeto mode . The diagonal of
the feedback matrix determines the strength of the “standing
waves” set up along each pattern. Equivalently, we can think
of a DWN modeling the parallel junction of acoustic tubes,
where each tube gives rise to a harmonic subset of normal
modes.

The physical modeling viewpoint is limited by the fact
that only “standing-wave paths” in the room are being
simulated, and all nonspecular reflections are being forced to
enter some subset of the supported ray paths.

In the model, the diffusivity of the whole reverberation
is lumped in the properties of the scattering matrix. This
is a dramatic simplification, but it allows better control of
diffusivity in isolation from other room parameters.

The geometrical interpretation is useful for computing the
lengths of the delay lines according to the dimensions of a
particular room since each wavefront path corresponds to a
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normal mode. In previous work on artificial reverberation [1]
and [2], the choice of the delay-line lengths in the allpass and
combfilter sections is a primary issue. Typically, the choice is
guided by heuristic rules or number-theoretic criteria, and a
lot of trial and error is often necessary to obtain good values.

C. Physical Room Modeling with DWN’s

Recent developments in physical modeling using digital
waveguides have included the use of awaveguide meshto
model 2-D membranes and 3-D rooms [27]–[29]. In the mem-
brane, for example, a rectilinear mesh of digital waveguides
can be interconnected via four-port scattering junctions to
provide lossless prototypes for “plate reverberators” and the
like. A single dispersive waveguide (made dispersive using
embedded allpass filters) can be used to model “spring rever-
berators.” Saviojaet al. [29] have found that the rectilinear
3-D waveguide mesh has good room simulation properties at
low frequencies.

Since reverberation quality generally increases with the
number dimensions (from spring to plate to acoustic space),
it is plausible to expect that higher dimensional waveguide
meshes will provide better reverberation than we have ever
known. Generalizing (35) to higher dimensions, one can see
that the higher the dimensionality, the more rapidly the mode
density increases with frequency. However, there exists a
“Schroeder limit” at which the average spacing between eigen-
frequencies becomes substantially smaller than the bandwidth
of one mode [30]. Above this limit, there is no reason to
increase the frequency density since it will bring no audible
improvement [7]. Nevertheless, it would be interesting to
pursue the study and implementation of high dimensional
waveguide meshes.

The waveguide mesh is structurally lossless so that there
is no attenuation error in the sampled wave propagation.
However, the grid quantization gives rise todispersionerror:
The speed of sound effectively varies somewhat as a function
of frequency and propagation direction on the mesh. Generally,
results are very accurate at low frequencies, but sound speed
decreases gradually as frequency increases in all but certain
directions that tend to be diagonals along the mesh [27].
The choice of mesh geometry has a strong effect on the
dispersion behavior [28]. It also strongly affects computational
complexity. As an example, whenever an isotropic mesh
utilizes -port scattering junctions in which is a power of 2,
the scattering matrices require no multiplies [9]. For rectilinear
meshes, membranes are multiply free, as are solids in 4-D
(since the number of ports is , in -dimensional space).
The tetrahedral mesh, which is analogous to the diamond
crystal, requires no multiplies to fill 3-D space. Multiply-free
waveguide meshes can be integrated very densely in VLSI.

A final word about waveguide meshes is that they, like any
other LTI systems, can be expressed in a sparse state-space
form that yields an FDN that can be interpreted as a physical
model.

D. Practical FDN Design

In our experience, given an FDN reverberator structure,
setting the delay lengths can be a rather tedious job. The vast

majority of possible delays provide poor results in the sense
that the time response is too “rough” or the frequency response
is too “colored.” An interesting approach to this problem
might be to use nonlinear optimization techniques such as
“simulated annealing” or “genetic algorithms” to optimize the
delay lengths such that “perceptual uniformity” of the response
is maximized in the time and frequency domains jointly.

Designing the delay lengths from room geometry has the
property of giving a reverberator that is always consistent with
a desired room in that the low-frequency modes are matched.
However, there does not seem to be any compelling reason to
match specific low-frequency mode tunings. Noticeable room
resonances are normally perceived as defects in a listening
space. Early reflections, on the other hand, contribute strongly
to the perceived “spatial impression” [31]. In other applica-
tions, however, such as modeling the soundboard of a piano as
a reverberator, the specific coloring or “equalization” provided
by the reverberator is important and must be preserved. In such
applications, it is normally necessary to match low-frequency
resonances accurately and high-frequency resonances only
statistically.

When the FDN order is large (larger than eight for sat-
isfactory results), poor results can still be obtained when
modeling desired room dimensions that are not favorable. In
fact, even for the shoe-box room shape, the relative dimensions
play a very important role in determining the smoothness of
the reverb [32]. Of course,diffusion contributes significant
smoothing to the response; therefore, full feedback matrices (as
opposed to diagonal feedback matrices) are especially needed
to achieve good reverberators using low-order FDN’s.

On balance, it seems that what is needed for good reverber-
ator design, in general, is the following:

1) precise matching of early reflections,
2) minimal coloration due to uneven mode distributions in

the frequency domain,
3) an appropriate smoothly declining decay-time versus

frequency,
4) smooth, rich echo density late in the impulse response

having no noticeable patterns.

These desiderata indicate that rather than attempting to
model real rooms, lossless prototype FDN’s optimizing criteria
(2) and (4) should be found, for a given order, which have at
least one delay line long enough to support injection of specific
early reflections to satisfy (1), and then, lowpass filters as in
(21) should be added to satisfy criterion (3). The main open
issue is how the optimization of (2) and (4) should best be
carried out for specific classes of structurally lossless feedback
matrices.

E. Resonators

FDN’s with short delay lines may be used to produce
resonances irregularly spread over frequency. A possible ap-
plication could be the simulation of resonances in the body or
soundboard of a string instrument.

Mathews and Kohut [33] showed that in this kind of
simulation of the violin body, the exact position and height
of resonances is not usually important; on the contrary, they
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stated that the Q’s of the resonances must be sufficiently large
and the peaks must be sufficiently close together. Thus, even
in rather small physical resonators, a statistical matching may
be as effective as a more precise, mode-for-mode matching.

With CFDN’s, we can easily achieve these goals, and we can
vary the distribution of peaks by acting on the delay lengths
and/or the feedback matrix. In this context, the main advantage
of using CFDN’s over general FDN’s is that the feedback
matrix has parameters that are related to the eigenvalues by
means of a DFT. This means that we have the possibility of
controlling a large number of resonances using a number of
parameters that are linear in the order of the structure, and the
parameter control can be performed very efficiently and safely,
i.e., without running into instabilities. The control over matrix
eigenvalues is complementary with respect to the control of
delay lengths: While changing a delay has a stretching or
squeezing effect on resonance positions all along the frequency
axis, changing the eigenvalues produces alternative changes in
the distribution of resonances, such as clustering the peaks, as
is illustrated in Fig. 3.

Another interesting application of CFDN’s is as resonators
in a feedback loop for pseudo-physical sound-synthesis tech-
niques. By exciting these structures with bursts of white noise,
we obtain a multivariable extension of the Karplus–Strong
algorithm [34] that is very effective for simulating membranes
and bars. Alternatively, we can couple these resonators with
nonlinear exciters and explore new families of sustained
sounds, as in waveguide synthesis [14].

We have been using effectively CFDN’s in live electronic
performances, where the exciting signal is coming from a
traditional instrument, and the CFDN provides a complicated
filtering pattern whose frequency shape can be controlled in
real time by its parameters (eigenvalues or row elements).

VI. CONCLUSION

This paper presented generalizations and new special cases
for the matrix used in feedback delay networks. In particular,
necessary and sufficient conditions were derived for lossless-
ness of such a matrix. The correspondence between FDN’s
and digital waveguide networks can be used to obtain FDN
parameters based on the physics and geometry of a real
acoustic space, rather than by rules of thumb or number-
theoretic rules.

In proposing the CFDN structure, we have tried to achieve
two goals: efficiency and versatility with respect to the time-
frequency behavior. Efficiency is achieved by taking advantage
of the circulant structure of the feedback matrix, and it
increases with the size of the matrix. Versatility is achieved
by introducing the matrix eigenvalues into the design process
for artificial reverberators. Passing from the eigenvalues to the
matrix coefficients requires only a single inverse DFT or FFT.
Eigenvalues act on the distribution of frequency peaks, thus
giving controls pertaining to the color and smoothness of the
reverberation.

In addition to application of CFDN’s in artificial reverbera-
tion, we have outlined some other uses as resonators in sound
synthesis and processing.
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