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Circulant and Elliptic Feedback Delay
Networks for Artificial Reverberation

Davide Rocchesso and Julius O. Smith

Abstract—The feedback delay network (FDN) has been pro- network” (a square matrix transfer function having a frequency
posed for digital reverberation. The digital waveguide network response matrix that is a unitary matrix at all frequencies, i.e.,
(DWN) is also proposed with similar advantages. This paper it must be a “paraunitary” transfer function matrix [4]).
notes that the commonly used FDN with anV x N orthogonal .
feedback matrix is isomorphic to a normalized digital waveguide Stautner and Puckette [5], introduced what we now call
network consisting of one scattering junction joining N reflec- feedback delay network&DN’s) as structures that are well
tively terminated branches. Generalizations of FDN's and DWN'’s  suited for artificial reverberation. These structures are char-
are discussed. The general case of a lossless FDN feedback matrigcterized by a set of delay lines connected in a feedback
is shown to be any matrix having unit-modulus eigenvalues and loop through a “feedback matrix” (see Fig. 1). The FDN was

linearly independent eigenvectors. A special class of FDN's using btained lizati f th ive feedback b
circulant matrices is proposed. These structures can be efficiently obtained as a generalizalion of the recursive teedback com

implemented and allow control of the time and frequency behav- filter y(n) = z(n — N) + gy(n — N) by 1) replacing the
ior. Applications of circulant feedback delay networks in audio single N-sample delay line by a diagonal matrix of delay

signal processing are discussed. lines of different lengths and 2) replacing the feedback gain
g by the matrixG = UD, whereU is any unitary matrix,
|. INTRODUCTION and D is any diagonal matrix having all elements less than

RTIFICIAL reverberation is a challenging application il — ¢ in magnitude, where: > 0 determines the stability
signal processing because it is necessary to approxim3tgrgin- Spgcmc early reflectlons were implemented py adding
large systems (such as concert halls) having hundreds sgpled copies of the source signal into selected points along

thousands of poles and zeros in the audio band. Instd3§ delay lines, corresponding to use of the transposed form

of pursuing explicit models that are prohibitively complexOf the FIR filter [6]. Early reflections in artificial reverberation

it is necessary to find alternative abstractions that can W&'® apparently first implemented by Moorer using a direct-
implemented at reasonable cost and capture the salient g™ FIR filter in series with Schroeder allpass filters and
choacoustical attributes of natural reverberation. An importafif -absorption comb filters [2].

practical requirement is a stable numerical implementation ofMOre recently, Jot has extensively studied FDN's and

sparse, high-order, nearly lossless linear systems. This pafig¥eloped associated techniques for designing good quality
addresses this and related issues. reverberators. He suggested the use of efficient special cases

of unitary feedback matrices as well as techniques for pole
: placement to obtain a desired decay-time versus frequency [7]
A. Prior Work . ) o
] o o . and introduced the valuable design principle that for smoothest

The field of digital artificial reverberation was launchegigealized) late reverberation, all modes in a given frequency
by Schroeder more than 30 years ago [1]. In his pioneeriBgnd should decay at substantially the same rate in order to
work, he introduced recursive comb filters and allpass filters ggoid isolated ringing modes in the late reverberation that tend
suitable means for inexpensive simulation of multiple echo&g, sound “metallic” [8].
In particular, he introduced use of allpass filters of the form |, 1986, digital waveguide network€WN) were proposed
_y(”) = gx(n) +3{(”f N)—=gy(n—N), with IV any positive a5 a useful starting point for digital reverberator design [9].
integer, for achieving dense echoes with a flat amplitudge idea was to build an arbitrary closed network of digital
response. This structure has since been used extensivelyyiiyeguides exhibiting the desired early reflections and late
artificial reverberation [2]. _ ~ echo density and then introduce loss filters into the network to

_In the 1970's, Gerzon [3] generalized the single-inpupchieve the desired decay time versus frequency. Approaching
single-output Schroeder allpass Ad inputs and outputs by reverberation via lossless prototypes leads to good numerical
replacing theN-sample delay line with an orde¥/ “unitary gpg stability properties [4], [10]. Like FDN's, DWN’s make
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B. Lossless Reveberator Prototypes

o | @11 @12 813 [$7

Reverberator design is often factored into separate designs <
pz | S21 Q22823 [Con

of the early reflections and the late “diffuse” reverberation.

Specific early reflections are easily realized using FIR filter Po | 831832853 [Tpr

taps. To develop a high-quality late reverberation, it is good c

to begin with a lossless prototype reverberator so that the struc- s M sn) >
ture of its late time response can be clearly heard. Nominally, a c
lossless prototype reverberator is judged by the qualityhife > , M2 s4n) NN
noiseit generates in response to an impulse signal. For smooth Cs
late reverberation, the white noise should sound uniform ZM3 s4n) ——>
in every respect. Subsequent introduction of sparse lowpass

Y 5

filters into the prototype network serves to set the desired  x(n) d y(n)
reverberation time versus frequency. In other words, starting
with lossless networks allows thldecouplingof reverberation
time from structural aspects of the reverberator. Any “passive”
arithmetic scheme, such as magnitude truncation, can be uB¥dhe following relations:
at certain multiplier outputs to eliminate the possibility of limit N
cycles and overflow oscillations [10]. y(n) = Z cisi(n) + dz(n) (1)

Since FDN’s and DWN'’s appear to present very different i=1
approaches for constructing lossless reverberator prototypes, it N
is natural to ask what connections may exist between them and si(n +my) = Z a;, js;(n) + bixz(n) (2)
whether there may be unique advantages of one over the other. j=1

Fig. 1. Order 3 feedback delay network.

wheres;(n), 1 < ¢ < N are the delay-line outputs at time
samplen. If m; = 1 for eachi, we obtain the conventional
state-variable description of a discrete-time linear system [12].
In Section I, we briefly review the FDN and discuss some gh the present caser; are normally large integers; therefore,
its algebraic properties. In Section Ill, we explore connectiofise variabless;(n) form only a small subset of the system
between FDN's and DWN's: It is shown how a singlestate at timen, with the remaining state variables being the
junction DWN created by the intersection 6f waveguides samples contained within the delay lines at timeUsing the
can be interpreted as an ordé&f FDN; conversely, it is » transform, assuming zero initial conditions, we can rewrite
shown that any FDN can be interpreted as a DWN, although) in the frequency domain as
its scattering junction is not necessarily physical. We derive

C. Summary and Outline

_ T
general conditions for lossless FDN feedback matrices in Y(z) =c"S(z) +dX(2) (3)
which the unitary matrix normally used in FDN's is extended S(z) =D(2)[AS(z) + bX(2)] (4)
to any matrix having unit-modulus eigenvalues and linear] T _ T _
independent eigenvectors. The extension corresponds t%\x:%?rgf (_Z) [c_ _[jg_l(zc)’r] 'I"rfé\ (éi);,g:nal _magfr:Li;(D(;)bAl
generalization of signal energy by replacing thenorm with diag(7—"’1_ 7_,];’2 o ];_'mN) is called the “delay matrix.”

an fl_llptllclnolrm Smdtj.cedl\k;y _anyl H(tarfmlt(ljabn, m&?ye—deﬂmteandA = [a:. j]vxw is called the “feedback matrix.”
matrix [11]. In Sec lon 1V, circuian ,ee ackmatrices aré . siate variables of the FDN can be collected into a vector
proposed as good choices for FDN's due to their efﬁuenc&;

o . . . as follows: List the variables contained in the first delay
and versatility in practice. It is straightforward to control th(ﬁne from the(m; — 1)th cell to the second cell and then those

eigenvalues of circulant feedback matrices, and therefore, ﬂ%%tained in the second delay line from thes — 1)th cell
. . . . 2 =
can be optimized to yield the best reverberation according t?oathe second cell, and so on for the other delay lines; then

specified criteria. Finally, in Section V, we present applicatior‘éﬁtach the output variables to s, and, finally, the first cell
in artificial reverberation and use of more general-purpogtfa all the delay lines in increasirrllg oréer '

reior;atorrs].r litv. we treat th mplex thouah r IBy assuming that each delay line is longer than two samples,
or generality, we treat the complex-case, although Teg, “siate-variable description corresponding to this variable
numbers are typically used in practice.

format for the system (2) can be found to be

y(n) =~ w(n) + du(n)

w(n +1) =Afw(n) + pz(n) (5)
Il. FEEDBACK DELAY NETWORKS
where
This section reviews FDN's along the lines indicated by Jot
[7] and [8] with some modifications. BT =10, -, 0, b?] (6)
As depicted in Fig. 1, an FDN is built usiny delay lines, - T
each having a length in seconds givenfy= m;T, where 7 =00,-,0,¢ 0, 0,]' (7)

T = 1/F, is the sampling period. The complete FDN is given N
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The state-transition matrix is conformal maps. This can be seen from the matrix power series
U, 0 0 -~ 0 0 Ry expansion
0O U, 0 --- 0 0 R [-D()A] ™ =I+D(2)A +---+DF(2)A* +... (14)
Al= 0 0 0 --- Uy 0 Ry (8) As long as|D(e’*)|| < I, by making use of the triangle
P, P, P3s -+ Py O 0 inequality and the Cauchy—Schwarz (or mutual consistency)
o o o --- 0 A O inequality [11], we can write
where IT+ -+ D*2)A* + .-
01 0 ... 0 < |+ -+ |DH) AN + -
- o o 1 .-~ 0 o <144 | D) - JA¥)| 4
=l e |, (9) <14t DA A + -
0o 0 0 ... 1 "
L0 0 O --- 0 §1+-1--+||A|| + e
0 0 0 ... 0 1— A
Rj=| - (10) Therefore, as long agA||™ decays exponentially with:,
9.0 1 0 0 -0 stability is assured. The above derivation extends immediately
L j-1 - to time-varying feedback matrices;,, provided||A|| < 1—e¢
and _ } for some worst-case > 0.
O 0 0 --- 0 The poles of the FDN are the solutions of either
G=1¢8 o e e B “1y)
0 0 0 ... 0 det[A—D(z7")] =0 (16)
P; = 1 o o0 --- 0 |- (11) or
0O 0 0 - 0 det [2I — AT] =0, z#0. (17)
0 0 0 ... 0 The matrix AT is not uniquely determined by. In fact,
- - our ordering of the state variables differs from that used by
We have Jot [7]. Our ordering gives
U, eclmi=2ximi=2) ATAT =diag(L,,_1, -+, Lny_1, AAT).  (18)
T7l_7—2 N . . . . . .
R; € ¢t > From (18), we see tha\ is unitary if and only ifAf is unitary.
P, eCcNxmi=2. (12) Since a unitary matrix has eigenvalues on the unit circle, we

) see from (17) that it is sufficient to choose a unitary matrix
The order of the system (5) is equal to the sum of the delay-lifje order to have all the system poles on the unit circle. This

lengths: yields a lossless FDN prototype.
N By application of the matrix inversion lemma [12] to the
Nt = Z ms. transfer function (13), the system zeros are found as the
i=1 solutions of
From (4), the transfer function is easily found to be det |A—b % < —D("Y| =0. (19)
Y(2)
H(z) = X(2) The formulation of (2) represents a prototype structure in

_ _ the sense that with the appropriate choice of feedback matrix
_ T 1\ _ 1 )

=c [D(z7) — A7 b +d. (13) it is a lossless structure. In practice, we must insert attenuation
Note that whenn; = 1 for all i, the FDN specializes to g coefficients and filters in the feedback loop. For example, one

fully general state-space description [12]. This implies grgt MY insert a gain [8]
linear, time-invariant, discrete-time system can be formulated

as a special case of an FDN since every state-space description

is a special case. This suggests that a wide variety of stabtethe output of each delay line in the FDN. This corresponds
FDN'’s can be generated by starting with any stable LTI systetm replacing D(z) with D(z/«) in (4). With this choice of
whatsoever and performing the substitution' « =™ on the attenuation coefficients, all the system poles are uniformly
each delay element or any other conformal mapping that talemntracted by a factat, thus ensuring a uniform decay of all

the unit circle to itself (another example being the Schroediére modes.

allpass transformation= «— (p + 27™)/(1 + pz~™)). In a practical realization, we normally need to introduce
Stability is preserved even when the unit-sample delays foéquency-dependent losses such that higher frequencies decay
the original state-space description are mapped using differéaster. We can do this by introducing lowpass filters after each

gi=a™ (20)
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. A. Lossless Scattering
4 The delay-line inputs (outgoing traveling waves) are com-
puted by multiplying the delay-line outputs (incoming travel-
ing waves) by theV x N feedback matrix (scattering matrix)
e o o . -
A = [q; ;]. By definingp;” = s;(n), p; = si(n+m;), we
obtain the more usual DWN notation
sq(n+my) Y sn(n+mp)
®- —— -@ p~ = Ap* (22)
sq(n) sn(n)
where
< my/. »| € mp/2 » . . . ..
il " N pt vector of incoming traveling-wave samples arriving at

the junction at timen,

Fig. 2. Waveguide network consisting of a single scattering junction, indi- P vector of outgoing traveling-wave samples leaving the
cated by an open circle, to whicN' branches are connected. The far end of junction at timen,

each branch is terminated by an ideal, noninverting reflection. A scattering matrixassociated with the waveguide junc-
tion.

delay line in place of the gaing. In this case, local uniformity  The junction of N physical waveguides determines the
of mode decay is still achieved by condition (20), whefe structure of the matrixA according to the basic principles

and « are made frequency dependent: of physics.
. Considering the parallel junction oN lossless acoustic
Gi(z) = A™(2) (21) tubes, each having characteristic admittaligethe continuity

of pressure and conservation of volume velocity at the junction

‘[’ﬂ‘]?re[g(z) can be interpreted as the per-sample filtering [13}iye ys the following scattering matrix for the pressure waves:

Notice that uniform decay of all the modes, albeit arguably -or, T, PINCE
desirable in artificial reverberators for a smooth late time T - 1 e T
response, is not found in actual rooms. Normal modes are ;1“ o 7 21;’
associated with standing waves, which have an absorption that ~ , _ 21 22 g N 23
=1 I ry ry (23)

depends on their orientation. For example, in a rectangular
enclosure, waves traveling in a direction normal to a wall

are less absorbed than oblique waves [15, p. 392] so that A Az Ay

the corresponding standing waves (which are expressible as - Ly Ly Ly B

the superposition of traveling waves in opposite directions)

have different reverberation times. The room-acoustics inté¥here

pretation of FDN's provided in Section V points to ways of N

modeling such uneven decays. r, - Z r. (24)
i=1

I1l. DIGITAL WAVEGUIDE NETWORKS

Digital waveguide networks provide a useful paradigm fdequation (23) can be derived by first writing the volume
sound synthesis based on physical modeling [14]. They haxgocity at thejth tube in terms of pressure waves gs=
also been proposed for constructing arbitrarily complex digitéqur —p; )I';. Applying the conservation of velocity, we can
reverberators [9], which are free of limit cycles and overfloWind the expressiop = 2 Eﬁ\;l L;pf /T for the junction
oscillations if passive arithmetic is used [10]. In this sectiofpressure. Finally, if we express the junction pressure as the

we explore the relationships between DWN'’s and FDN's. sum of incoming and outgoing pressure waves at any branch,
Fig. 2 illustrates anN-branch DWN that is structurally we derive (23).

equivalent to the feedback loop of aNth-order FDN. It

consists of a single scattering junction, indicated by a white , .

circle, to which’ branches are connected. The far end of eafh Normalized Scattering

branch is terminated by an ideal noninverting reflection (black For ideal numerical scaling in the, sense, we may choose
circle). The waves traveling into the junction are associatéd propagatenormalized waveshat lead to normalized scat-
with the FDN delay line outputs;(n), and the length of each tering junctions analogous to those encountered in normalized
waveguide ishalf the length of the corresponding FDN delayadder filters [17]. Normalized waves may be either normalized
line m; (since a traveling wave must traverse the branch twigeessurei’ = p /T'; or normalized velocity = v /T

to complete a round trip from the junction to the terminatio8ince the signal power associated with a traveling wave is
and back). Whenn; is odd, we may replace the reflectingsimply 77;” = (ﬁ;r)2 = (z?jf) , they may also be called
termination by a unit-sample delay. root-power waveq10].
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The scattering matrix for normalized pressure waves wghereI' is any Hermitian, positive-definitamatrix (which has

given by an interpretation as a generalized junction admittance). The
-~ - form z*I'z is by definition the square of theliptic norm of
2 1 2vIil, 2vIily z induced byT, or ||z||3 = z*T'z. Settingl' = I, we obtain
Iy L'y Uy that A must be unitary. This is the case commonly used in
2T 2T, 2Ll current FDN practice.
A= r; T, r; (25) The following theorem gives a general characterization of
lossless scattering:
Theorem 1: A scattering matrix (FDN feedback matrid
2T, I 2T, I 2, 1 is lossless if and only if its eigenvalues lie on the unit circle
L Ty L, r; i and it admits a basis of linearly independent eigenvectors.

Proof: In general, the Cholesky factorizatidh= U*U
Ugsl\?és an upper triangular matriXJ that convertsA to a
unitary matrix via similarity transformatioml@A*T’'A =T =

2 o A*U*UA = U*U = A*A =T, where A = UAU L.
—I'T" -1 (26) : : .
||T||2 Hence, the eigenvalues of every lossless scattering matrix lie

on the unit circle. It readily follows from similarity t@\ that
whereIl'” = [T, ---, /T'y], andl; is the wave admittance A admits N linearly independent eigenvectors. In fadt,is a
in the sth waveguide branch. The geometric interpretatiomormal matrix (since it is unitary), and normal matrices admit
of (26) is that the incoming pressure waves are reflectadoasis of linearly independent eigenvectors [20].
about the vectol'. Unnormalized scattering junctions can be Conversely, assume thdgd| = 1 for each eigenvalue
expressed in the form of an “oblique” Householder reflectionf A and that there exists a matrif’ of linearly inde-
A =2117/(1,T) - I, where1? = [1, ..., 1] andI'Y = pendent eigenvectors cA. Then, the matrixT diagonal-

The normalized scattering matrix can be expressed as a Ho
holder reflection

A=

L, -, Il izes A to give T !AT = D = T*A*T* = D*
where D = diag(\y, ---, Ax). Multiplying, we obtain
C. Complexity T*A*T*T!AT = D'D = I = AT T !A =

o _ T-1*T~L. Thus, (27) is satisfied foFF = T—*T~!, which
It is important to note that a Householder reflection &R Hermitian and positive definite O

be |mplement2ed usmg?(N) numerical operatlons_, as 0P~ 1nys, lossless scattering matrices may be fully parameter-
posed toO(N*?) operations for a general scattering matr|>|<Zed asA = T-'DT, whereD is any unit-modulus diagonal

(in computingAj* in (26), first precompute the inner prOdUCtmatrix andT is any invertible matrix. In the real case, we
I'Tp* [18]). Since all junctions ofV physical waveguides can have]ﬁ _ diag(+1) and T € RNXY, ' ’

be expressed as a Householder reflection, all such scattering can be
junctions require onlyO(N) computations.

It is interesting to note that Jot [7] proposed a class
feedback matrices for the efficient implementation of FDN’
that are specialized Householder reflections. We have ji
shown that the same kind of structure arises naturally, in t
context of waveguide modeling, for physically based scatteri
matrices.

quickly verifie8l that all scattering matrices
ising from the parallel intersection &f physical waveguides
0ssess one eigenvalue equal to 1 awd- 1 eigenvalues
ual to—1 [21]. In the case of physical waveguides of equal
edances, the eigenvector associated with the eigenvalue 1
Srresponds to equal incoming waves, whereas an eigenvector
Wsociated with the eigenvalud corresponds to equal incom-
ing waves onN — 1 branches and a large opposite wave on
the remaining branch that pulls the junction pressure to zero.
Theorem 1 characterizes lossless FDN feedback matrices
The scattering matrices for lossless physical waveguide as those having eigenvalues on the unit circle, where the
junctions give an apparently unexplored class of lossless FDR(finition of losslessness was given by (27). It remains to be
prototypes. However, this is just a subset of all possib&own thatA satisfying (27) implies that the poles of the
lossless feedback matrices. We are therefore interested in ¢agesponding FDN are all on the unit circle. To this end,
most general conditions for losslessness of an FDN feedbdgkall the form of the state-transition matrix (8), and define

D. Conditions for Losslessness

matrix. the extended generalized admittance
Consider the general case in whighis allowed to be any I o
scattering matrix, i.e., it is associated with a not-necessarily- r [0 I‘} (

physical junction of N physical waveguides. Following the o
definition of losslessness in classical network theory, we m&Yy analogy to the derivation of (18), we get

say that a waveguide scattering matAxis said to beossless ATIAT = diag(Ln,—1, -+ Iny—1, ATTA).  (29)
if the total complex powef19] at the junction is scattering

invariant, i.e.,

ot — 5= *To—
p Tp"=p'Tp 2Using the eigenvectorsel = [1,---,1] and el =
= A'TA=T @27 [, 1,1 =TT, 1,---,1,k=1,-.-, N

——

kth
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This equation shows thaA is lossless if and only ifAt is F. Finite-Wordlength Effects

lossless, and its eigenvalues are on the unit circle by Theorempe have just seen how the FDN can be seen as a simple
1. However, from (17), we have that the eigenvaluesAdf pyyN having a not-necessarily-physical scattering matrix. In
are the poles of the corresponding FDN. Therefore, the FDNdgjer to provide an easy control over the decay, the scattering
lossless, and its impulse response consists only of nonincreagitrix has to satisfy the condition of losslessness (27). A
ing and nondecaying modes. Desired decay characteristigte-precision implementation of the FDN might incur in
versus frequency for obtaining a specific artificial reverberatfimit cycles or overflow oscillations due to departures from the
can now be controlled separately by means of attenuatigiinite-precision lossless prototype. Departures can be of two
coefficients and filters, as indicated in Section Il. kinds: The finite-precision scattering matrix does not satisfy
the lossless condition (27) or the round-off noise in the matrix
by vector multiplication Ap™ introduces signal amplitude
E. Relation of DWN'’s to FDN'’s modifications. By assuming that the scattering matrix satisfies

WhenU in the proof of Theorem 1 is diagonal and positive(,27) in a large extent even in finite precision, it is possible to
a physical waveguide interpretation always exists with= @PPly the arguments used in [9], [10], [16], and [22] for the
diag(T"). A generalized waveguide interpretation exists for aff "WN'S in order to avoid limit cycles or overflow oscillations.
U via vector transformers [16, p. 55, sec. 4] in whithacts If the matrix by vector multiplication is performed in the

as an ideal transformer (in the classical network theory Sen%}gflghtfqrward way as a collection of_mner proqlt_;cts, and
) . 4 _ matrix coefficients have the samebits of precision as
on the vector of allNV waveguide variables. p = p* +p

. . : the signals, it is sufficient to perform these ordérinner
denotes the vector of physical pressures at the junction an . L .
o . . roducts in the extended precision2sf+ N — 1 bits and apply
v = vt 4+ v~ denotes the physical volume velocities, then

. . o . assive truncation scheme on the output signal. In two’s
_haYe th_at the _Junctlon power, Wh'_Ch is definedRs= v'p, co&plement arithmetic, a simple passive tFr)uncagon scheme is
is invariant with respect to insertion of a vector transformeEF|e following:
(similarity transformation applied to the scattering matrix).

A unitary FDN feedback matrix corresponds to a not-
necessarily-physical scattering junction in which the total
complex power is given by the ordinarf, norm of the
incoming or outgoing traveling waves. Since the physical
power associated with an incoming wave veqhdr is Py =
p™*I'p*, whereI' = diag(l'y, ---, 'y), we see thatA
unitary corresponds to a scattering junction joining waveguid

« If the N —1 most significant bits are not equal, replace the
output value by the maximum-magnitude numbenhit
two's complement having the correct sign (saturation).

« Discard then least significant bits, and add™*! to the
result if it is negative.

As far as the condition on the losslessness of the scattering

trix is concerned, general requirements for the construction
of “structurally lossless,” or at least “structurally passive,”

of equal wave impedance, i.ell = diag(l, ---, 1). In spattering matrices have to be worked out. This topic, which
the more general (unnormalized) case in which the bran\(,:\las reviously touched on by Gray [22] in thé — 2 case
impedances are different, i.el; = diag(l'y, ---, ['y), we P y y y N '

will be discussed in a forthcoming paper since a complete

obtain the larger class of scattering matrices that preserve Al ment would enlarge the scope of this paper significantly.
elliptic norm as induced by a positive-definite (or Hermitians

generalized junction impedance. IV. CIRCULANT FEEDBACK DELAY NETWORKS

Since, as discussed above, only a subset a¥allV unitary . . . .
. o T ; . Consider the class of circulant feedback matrices having
matrices is given by a physical junction 8f waveguides, the the form

unitary FDN point of view yields lossless systems outside the
scope of those suggested by multiport scattering theory. On
the other hand, since only normalized waveguide junctions A =
exhibit unitary scattering matrices, the DWN approach gives
rise to new classes of FDN's. Moreover, by considering more a(1) a(N-1)  a(0)
than one scattering junction, the DWN approach suggests new his class of matrices gives rise to a class of FDN's we call
classes of network topologies following physical analogiesirculant feedback delay networK€FDN's). The following
Similarly, FDN matrices can be partitioned to embed sever&yo facts can be proved [23]:
FDN Subsystems into |arger FDN systems_ Fact 1: If a matrix is Circulant, it is normal, |eA*A =

Formally, every DWN can be expressed as an FDN byA™.
collecting all of its delay lines into a diagonal delay matrix Fact 2: If a matrix is circulant and lossless, it is unitary.
D(z) as in (4) and finding the matriA that computes the It is well known that every circulant matrix is diagonalized
delay-line inputs from the delay-line outputs. Therefore, eveBy the discrete Fourier transform (DFT) matrix [23]. This
waveguide network yields a feedback matrix for considerfplies that the eigenvalues @ can be computed by means
tion in the FDN framework. Conversely, every real lossledd the DFT of the first row:
FDN.can be egpressed as a single—junctipn not—'necessarily- A ={A(k)}
physical normalized waveguide network using an ideal vector T

. i . . =DFT {[a(0) --- a(N = 1)]* }

transformer at the junction of equal-impedance waveguide
branches. where {A\(A)} denotes the set of all eigenvalues Af and

a(0) a(1) a(N - 1)
a(N —1) a(0) a(N —2)
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{A(k)} denotes the set of complex DFT samples obtainedTheorem 2: Given a circulantN x N matrix A, let A’
from taking the DFT of{a(-)}. be obtained by adding a constanto each entry ofn rows
(columns) and subtracting the same constgndm each entry
of anothern rows (columns). ThenA and A’ have the same
) ) ) . . eigenvalues.
A matrix that is both unitary and circulant has all eigenval- gefore providing the proof of Theorem 2, we need to prove
ues on the unit circle, and the DFT can be used to compute the following
eigenvalue phases. In the case of equal-length delay lines, theemma: All the eigenvectors of a circulant matrix other
eigenvalues determine the resonance frequencies in a simpl&, the “dc” vector[1, -- -, 1]7 lie in the null space of any
way. From (16), wheD(z~*) = 2z™L the system poles are mairix with constant rows. Thus, adding constant rows cannot
the mth complex roots of the eigenvalues Af alter eigenvalues or eigenvectors other than the zeroth.
Conversely, we can easily design a circulant matrix to have proof: This follows immediately from the fact that
a desired distribu'gion _of eigenvalues. This is also true fgre eigenvectors of every circulant matrix are given by the
any lossless matrix since Theorem 1 gives that @yof  colymns of the DFT matrix of the same size, and these vectors
the form A = T-'DT is lossless, whereD is any unit- e grthogonal. Therefore, a constant row is orthogonal to all
modulus diagonal matrix, and” is any invertible matrix. ejgenvectors of the DFT matrix except the dc eigenvector.
Thus, a lossless matrix is characterized by the arguments Ofrhe |emma states that all we can do by adding constant
its eigenvalues and a similarity transformation mafixThe | o\ws to a circulant matrix is move the “dc” eigenvector to
advantage of choosing circulant FDN's over other kinds @yme other vector and change its eigenvalue.

FDN's is the possibility of computing\ from its eigenvalues  proof of Theorem 2:Consider the matrixA’ given by
very efficiently by means of a single inverse FFT.

As we will see in Section V, in a practical implementation, A=A —bc” (31)
the delay lengths are typically not equal. However, the equal- T T .
delay case is easier to analyze. The limitations and advantagggre_b I_ t[l’ _tl_’ 0, d’ 0] ar|1_d Cd b_ [t1h7 1I’DFT7 1].tS_|n(_:fe
of such a choice will become clearer in Section V. ny circulant matrix 1S diagonalized by the matrix, It we

The actual presence of resonance peaks correspondin rl%multiply and postmultiply both sides of (31) by the DFT
ricesF* and F, we obtain

the eigenvalues depends on the positions of the zeros, as gi

A. Design of Poles and Zeros in CFDN'’s

by (19). Assuming equal-length delay lines ashd= 1, (19) F*A'F = F*AF — F*bc! F
becomes —D - F' (b’ F)
det[A —bct — 2™ =0 (30) whereD is a diagonal matrix, and the term within parentheses

is anN x N matrix having nonnull entries only in position (1,
which means that the zeros are tieh complex roots of the 1) and (2, 1). Moreover, these two entries have opposite sign.
eigenvalues ofA — bc?. It turns out thatF*bc? F has nonnull elements only on the

first column under the diagonal. This means that the matrix

In order to have “colorless” reverberation, it may be desi ; ) ' - !
able to make the envelope of the amplitude response flat. %o ¢@n be triangularized by means of the DFT matrix, and its

do this, each zero should be equal to the reciprocal of a pdfigenvalues (found on the diagonal) are the same as those of
In prototype CFDN’s, the feedback matrix is lossless, and ti¥ This argument works for any number of oppositely signed
system poles are on the unit circle so that the zeros must e ples of distinct values arbitrarily distributed in the vector
the poles. However, when all zeros and poles cancel exacfly, The Same argument can be followed for proving the claim

the impulse response of the FDN degenerates to an imbmggl’ative to the columns. In this case, we would start by forming

This is a general problem with any allpass reverberatdh® producE*be”. _ _ -
Lengthening the reverberation time without changing the delayNOte that the zeroth eigenvalue is no longer a “dc”
lengths forces the impulse response to converge to an impufegenvalue. Tlee corresponding eigenvector must be found
In our case, we depart from the idealized case by slighty ker (A —bc® — AoI), whereker () gives the nullspace of
changing the delay lengths. As we will show in Section V, this argument. In the case of a real circulant matixwith
approach leads to reverberators having a frequency respofi@envalues along the unit circle, we have thgt= 1 (the

that is nearly flat at low frequencies while preserving thedm of the elements of a row ot is 1). - _
richness of the echo density in the time domain. With the above choice db andc coefficients, we obtain a

Therefore, we continue treating the prototype case of equap_rfectly flat amplitude response for equal-length delay lines.
length delay lines and = 1 and show that we can obtaintowever, this is degenerate since this is the condition for
perfect canceling of zeros and poles by using Hj = pole—zero cancellation. As we will show in Section V, when
[1,1,-,1] and 2)c havingn entries equal to 1y entries using slightly different delay lengths, a nearly flat response at

equal to—1, and zeros for the remaining entries. This resuW frequencies is obtained as a perturbation of the pole-zero
is due to the following cancellation configuration.

B. Computational Complexity

3Since we are discussing discrete-time systems, the term “impulse” meanén an Nth-order FDN, th? core computatlpns consist
the same thing as “unit sample pulse.” of N updates of the delay lines and a matrix by vector
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multiplication. The delay line operations can proceed iA. Digital Reverberation

parallel. Th62 matrix by vector multiplication requires, in 1,5 guantities have been proposed as criteria for measuring
general, O(N=) operations (multiplications and additions)y,e “naturainess” of synthetic reverberation: the time density
If the matrices arise from the scattering coefficients of @4 the frequency density [7]. A good reverberator should
waveguide junction, the computations reducelt@V). The provide high values of both densities, thus giving smooth,
same order of complexity is required by the normalize§anse time and frequency responses.

yvaveguide junction.. For the speci.al case of a junction of equal-rpo frequency density); is defined as the average number
impedance waveguides, the multiplications can be replaced Q¥ esonances per Hertz. A general expression can be derived

shifts when.V is a power of 2 [9]. In all these efficient caseSgom the order of the system (5), assuming that all the poles
the eigenvalues of the feedback matrix are constrained 4@ gistinct. and no cancellation occurs:

be at+1 or —1. The circulant matrix offers a more general

eigenvalue distribution. Moreover, the matrix by vector mul- 1 X
tiplication can be implemented very efficiently in hardware. Dy = F. Z M. (32)
This multiplication can be viewed as a circular convolution =1

of the C0|u_mn vector with the first row Of the matrix. SUChn real rooms, the frequency density increases at h|gher
a convolution can be performed, whéevi is a power of 2, frequencies (as can be seen from (35) below)_

using two FFT's (one of which can be precomputed), an|n the prototype case, where the delay lines all have the
elementwise product between twé vectors, and an inversesame lengthm, we have

FFT. The complexity of this algorithm i®[N log (N)]. It
is easy to implement this matrix-vector product in VLSI Dy = Nm' (33)
by means of the butterfly or other hypercubic architectures F

[24]. These architectures allow computations of the FFT in The time densityD, is defined as the number of nonzero

Ollog (V)] time steps, and the algorithm can be pipelined. o, hje5 per second in the impulse response. In actual rooms,
The parallel implementation of waveguide scattering matr

be done in | h@floe (N1 ti b b, is an increasing function of time. In order to obtain dense
ces cannot be done in e_ss_t ﬁOg(_ )] time steps €CaUSE o\ erperation after the early reflections (e.g., after 80 ms), it
of the scalar product that is involved in Householder reflectlorl'lélps to use different delay lengths
of any kind. Hence, in_parallel implementa_tions, we Io;se the The actual positions of frequency peaks depend on the
adva_ntage of waveguide scattering matrices over C'rCU|a}QEdback matrix and the delay lengths. If the delay lengths
m?\;rlces. ber-th ic Fouri ‘ are fixed, we can vary some time-frequency properties of the
_Moreover, we can use num er-t eore'glc ourier transtormg, .1re simply by varying the distribution of eigenvalues
in order to compute the circular convolution. Such transforrrbsf the feedback matrix. The total length of the delay lines
work over commutative rings and can be arr_ange(_j in Suc%ﬁ‘ould be chosen in such a way that the frequency density,
way that all multiplications are replaced by shifts. Since in thgs determined by (32), is high enough. Then, the matrix
tcr:) nvolut|o”n we lf:ave b.Oth the dlrtect and inverse tranS1Eom]aﬁgenvalues can be adjusted to avoid resonant peak clustering
grr?ver_a :esu remains ;or_rec(.j ¢ or other undesirable mode distributions.

e circulant structure oA IS advantageous for purposes ; o interesting to discuss the effect of eigenvalues in the
of real-time control as well. In the first place, the entire matrlgrototype case of equal delays. A uniform distribution of
|hs determined by ?ne Of. Its rogv_f; gr colulmns, andhno matt fgenvalues along the unit circle is optimum for the frequency

ow a row or column IS modihied, as long as the _rest %sponse in the sense that it minimizes the maximum distance
the matrix is modified accordingly to preserve the circulanfo, een peaks. However, it produces a highly repetitive time
structure, the matrix will have unit-modulus elgenvalu_es E1‘§sponse. Conversely, clustering the eigenvalues around a
need_ed.for Ioss_lessness. F.urthe.rmore, the top row of a cwculBBfm on the unit circle can be good for maximizing the length
matrix 'SDFO_IPU’_‘I!ﬂed ffrom. Its e|ger_1t\)/|alues f?,V, m(Tans of &k ime patterns, but the clustering of frequency peaks produces
Inverse ' ¢ er.? or(?, Itis IpOSS' etoe l|)C|enty genera}tg poor reverberator amplitude response versus frequency. We
a continuous family of circulant matrices by continuouslyeq from these considerations that there is a time-frequency

varying the complex phases of the eigenvalues. Moreovﬁradeoff. This tradeoff can be addressed using circulant ma-

if the matrix-vector multiplication is implemented in thetrices

frequency domain,_ the inverse DFT_ Is not n_eeded. Thus, WEA couple of examples of different eigenvalue distributions
may move theN eigenvalues to arbitrary points on the unit, o given in Fig. 3. The matriA, used in Fig. 3(b) is simply

circle and generate a wide family of efficiently computegbtained by a right circular shift of the rows of the matrix,

lossless feedback matrices. which is given by the junction of equal-impedance waveguides
and, as already stated, has eigenvalues only at 1-dnd\e
can expresa\, as the producA; IT, wherell is the right-shift

matrix
We have been using circulant networks for various purposes

in sound synthesis and processing. Artificial reverberation is
probably the most significant application, but other significant
areas of interest can be found in sound synthesis and filtering.

V. APPLICATIONS

(34)

=

I
= o O
OO
O = O
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Fig. 3. Time and frequency behaviors for two circulant feedback delay networks that differ only by a shift on the rows of the feedback matrix.

Both A; andII are circulant, and therefore, the eigenvalueB. Physical Room Modeling with FDN'’s
of A, are given by the collection c_>f the element-W|s§ productsA flat amplitude response at low frequencies, while de-
of the eigenvalues oA ; and the eigenvalues al, which are . . . _ : .

sirable in several practical situations, is not found in actual

the Nth complex roots of 1 [23]. For clarity, we set all the . . .
delay lengths equal in the examples. rooms. Therefore, if the goal is to model the reverberation

As a side comment, we notice tHaLis the scattering matrix ©f @ physical room, the way indicated by Theorem 2 is not
of the circulator, which is a circuit device that can be usedppropriate. Somewhat happily, the FDN can be the kernel
to obtain the multiplication of one-port scattering parametee$ a model of rectangular room, and its parameters can be
[25]. interpreted in a physical and geometrical framework. In this

The shape of the frequency response depends also ondbetion, we give only a sketch of this framework since the
zeros, which were discussed in Section IV. In particulagetails of the underlying metaphor are beyond the scope of
Theorem 2 provides a way of setting the zeros exactly ovgyig paper and can be found in [26].

the poles in the prototype equal-delay case. We amidpate(bonsider a lossless shoe-box shaped room having length
in Section IV that the way to choose the vectdssand . . .
I, depthl,, and height/.. For such a room, it is possible

c indicated in Theorem 2 can be useful for getting a flaf . .
amplitude response at low frequencies when the delay IengmsCompute analytically the frequencies of the normal modes
are slightly varied from the prototype case. Fig. 4 depic
n 2 n 2 n 2 H2
) (@) ()] o
. ; Iy ly l.

can see from Fig. 4, we are able to get a nearly flat amplitude

response at low frequencies without losing the reverberating
character of the time response. We believe that this is a gotferen., ny, n. =0, 1, 2, ---, andcis the speed of sound in

the time and frequency responses for the CFDN using the
alternative to allpass filters, which tend to have degenerai. Each normal mode is associated with a direction in space,

same feedback matrix as in Fig. 3(b), havin§ = [1, 1, 1],
c’ = [0, —1, 1], and delay lengths, = [16, 17, 15]. As we Jre,ny,n. =
impulse responses when the poles approach the unit circlewhose cosines, which are made by the wave propagation with

[\eR e
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Fig. 4. Zero positioning that gives a nearly flat low-frequency respon
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(36)

outlined in [7] as a mean of identifying the parallel comb-filter
parameters from a measured impulse response.

We can elaborate the representation further by interpreting
the quantityd, as the time taken by a plane wavefront to
travel a certain distance along the direction (36) in space. In
fact, a normal mode and all its harmonically related multiples
can be thought of as a planewave bouncing back and forth in
the closed environment [15]. For a finite medium, in order to
support such an infinite plane wave, the planar fronts have to
be bent at the walls such that they form a constant-area closed
surface. It can be verified that the tirdg is the time interval
between two successive collisions of two plane wavefronts.

Once it is established that in an idealized rectangular room
each harmonic subset of normal modes can be represented by
a linear resonator oriented along a given direction in space,
we can introduce other “second-order” effects into the basic
model.

Let us consider an octant in space. Taking the fi¥stun-
damental frequencies in the harmonic-subset decomposition of
the normal modes corresponds to sampling in space a¥ng
directions. An object in any point of the space will provide
scattering among théV directions. The walls themselves,
when they are not ideally smooth, scatter the waves in different
directions. We can think of lumping all these diffusion effects
and representing them in the nondiagonal elements of the
scattering matrix of a FDN. With some approximation, it was
also shown in [26] that an isotropic object in a nondiffusive
Yectangular room can be represented by a circulant matrix,
provided that the spatial sampling is almost uniform, and the
proper ordering of directions is chosen.

The geometric interpretation allows one to properly excite
the modes according to the position of the sound source by
simply replacing each coefficient in the vectowith a suitable
cascade of FIR comb filters [26]. The position at which we
listen to the sound is related to tkecoefficients in a similar
way. It is also quite easy to take into account the radiation
pattern of the source and the directivity of the pick up. Perhaps
more importantly, the absorption coefficients of the walls can
be made to be direction dependent, as they are found in reality,

wherev is the magnitude of the (vector) spatial frequency, argecause they affect the different “linear resonators” differently.
the subscripts irf,., , »,, ». have been dropped for conciseness. In the model at hand, the matrix element; scales the
The triplen = (ng, ny, n.) completely characterizes asignal transmission from modgto mode:. The diagonal of
normal mode. All the triples that are multiples are associat#lte feedback matrix determines the strength of the “standing
with a harmonic series of frequencies and with the sameaves” set up along each pattern. Equivalently, we can think
direction in space. This suggests that any harmonic serisa DWN modeling the parallel junction @¥ acoustic tubes,
of normal mode frequencies can be obtained by meanswdfiere each tube gives rise to a harmonic subset of normal
a linear resonator (in other words, a comb filter) whosmodes.
length in seconds is set tdy = 1/fy, where fy is the The physical modeling viewpoint is limited by the fact
fundamental frequency of the harmonic series. Therefotbat only N “standing-wave paths” in the room are being
we can decompose the modal distribution of the resporsienulated, and all nonspecular reflections are being forced to
of an actual room into harmonic subsets (a harmonic efhter some subset of the supported ray paths.
Jns,n,,n. 1S Obtained by multiplyingn,, n,, and n. by In the model, the diffusivity of the whole reverberation
the same integer). Sorting these harmonic subsets accordindumped in the properties of the scattering matrix. This
to their fundamental frequencies and taking the reciprocass a dramatic simplification, but it allows better control of
of the N lowest fundamental frequencies yields a parall@iffusivity in isolation from other room parameters.
comb filter representation of the room (i.e., an FDN with The geometrical interpretation is useful for computing the
diagonal feedback matrix) so that the FDN reproduces thlengths of the delay lines according to the dimensions of a
lowest eigenfrequencies exactly. This procedure was alregmirticular room since each wavefront path corresponds to a



ROCCHESSO AND SMITH: CIRCULANT AND ELLIPTIC FEEDBACK DELAY NETWORKS 61

normal mode. In previous work on artificial reverberation [1inajority of possible delays provide poor results in the sense
and [2], the choice of the delay-line lengths in the allpass atitat the time response is too “rough” or the frequency response
combfilter sections is a primary issue. Typically, the choice is too “colored.” An interesting approach to this problem
guided by heuristic rules or number-theoretic criteria, andnaight be to use nonlinear optimization technigues such as
lot of trial and error is often necessary to obtain good valuesimulated annealing” or “genetic algorithms” to optimize the
) ) ) delay lengths such that “perceptual uniformity” of the response

C. Physical Room Modeling with DWN'’s is maximized in the time and frequency domains jointly.

Recent developments in physical modeling using digital Designing the delay lengths from room geometry has the
waveguides have included the use ofvaveguide mesio property of giving a reverberator that is always consistent with
model 2-D membranes and 3-D rooms [27]-[29]. In the mem-desired room in that the low-frequency modes are matched.
brane, for example, a rectilinear mesh of digital waveguidétpwever, there does not seem to be any compelling reason to
can be interconnected via four-port scattering junctions match specific low-frequency mode tunings. Noticeable room
provide lossless prototypes for “plate reverberators” and th@sonances are normally perceived as defects in a listening
like. A single dispersive waveguide (made dispersive usiiggpace. Early reflections, on the other hand, contribute strongly
embedded allpass filters) can be used to model “spring revier-the perceived “spatial impression” [31]. In other applica-
berators.” Saviojeet al. [29] have found that the rectilineartions, however, such as modeling the soundboard of a piano as
3-D waveguide mesh has good room simulation propertiesaateverberator, the specific coloring or “equalization” provided
low frequencies. by the reverberator is important and must be preserved. In such

Since reverberation quality generally increases with tf@pplications, it is normally necessary to match low-frequency
number dimensions (from spring to plate to acoustic spacégsonances accurately and high-frequency resonances only
it is plausible to expect that higher dimensional waveguid#atistically.
meshes will provide better reverberation than we have everWhen the FDN order is large (larger than eight for sat-
known. Generalizing (35) to higher dimensions, one can sisactory results), poor results can still be obtained when
that the higher the dimensionality, the more rapidly the modeodeling desired room dimensions that are not favorable. In
density increases with frequency. However, there existsfact, even for the shoe-box room shape, the relative dimensions
“Schroeder limit” at which the average spacing between eiggplay a very important role in determining the smoothness of
frequencies becomes substantially smaller than the bandwithi reverb [32]. Of coursediffusion contributes significant
of one mode [30]. Above this limit, there is no reason témoothing to the response; therefore, full feedback matrices (as
increase the frequency density since it will bring no audiblepposed to diagonal feedback matrices) are especially needed
improvement [7]. Nevertheless, it would be interesting tt® achieve good reverberators using low-order FDN's.
pursue the study and implementation of high dimensional On balance, it seems that what is needed for good reverber-
waveguide meshes. ator design, in general, is the following:

The waveguide mesh is structurally lossless so that therel) precise matching of early reflections,
is no attenuation error in the sampled wave propagation.2) minimal coloration due to uneven mode distributions in
However, the grid quantization gives rise dspersionerror: the frequency domain,
The speed of sound effectively varies somewhat as a functiorg) an appropriate smoothly declining decay-time versus
of frequency and propagation direction on the mesh. Generally, frequency,
results are very accurate at low frequencies, but sound speed) smooth, rich echo density late in the impulse response
decreases gradually as frequency increases in all but certain having no noticeable patterns.
directions that tend to be diagonals along the mesh [27].These desiderata indicate that rather than attempting to
The choice of mesh geometry has a strong effect on thgydel real rooms, lossless prototype FDN's optimizing criteria
dlsperspn behavior [28]. It also strongly aﬁect; compytation@) and (4) should be found, for a given order, which have at
complexity. As an example, whenever an isotropic megBast one delay line long enough to support injection of specific
utilizes V-port scattering junctions in which is a power of 2, early reflections to satisfy (1), and then, lowpass filters as in
the scattering matrices require no multiplies [9]. For rectilinegp1) should be added to satisfy criterion (3). The main open
meshes, membranes are multiply free, as are solids in 4d3ye is how the optimization of (2) and (4) should best be

(since the number of ports @V, in N-dimensional space). carried out for specific classes of structurally lossless feedback
The tetrahedral mesh, which is analogous to the diamoRghtrices.

crystal, requires no multiplies to fill 3-D space. Multiply-free
waveguide meshes can be integrated very densely in VLSI.
A final word about waveguide meshes is that they, like arfy Resonators
other LTI systems, can be expressed in a sparse state-spa¢DN’s with short delay lines may be used to produce
form that yields an FDN that can be interpreted as a physiagasonances irregularly spread over frequency. A possible ap-

model. plication could be the simulation of resonances in the body or
) ) soundboard of a string instrument.
D. Practical FDN Design Mathews and Kohut [33] showed that in this kind of

In our experience, given an FDN reverberator structursimulation of the violin body, the exact position and height
setting the delay lengths can be a rather tedious job. The vakresonances is not usually important; on the contrary, they
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