
Mila Dalla Preda

Code Obfuscation

and Malware Detection

by Abstract Interpretation

Ph.D. Thesis

Università degli Studi di Verona

Dipartimento di Informatica

Advisor:
prof. Roberto Giacobazzi

Series N◦: TD ????

Università di Verona
Dipartimento di Informatica
Strada le Grazie 15, 37134 Verona
Italy

Summary

An obfuscating transformation aims at confusing a program in order to make it
more difficult to understand while preserving its functionality. Software protec-
tion and malware detection are two major applications of code obfuscation. Soft-
ware developers use code obfuscation in order to defend their programs against
attacks to the intellectual property, usually called malicious host attacks. In fact,
by making the programs more difficult to understand it is possible to obstruct
malicious reverse engineering – a typical attack to the intellectual property of
programs. On the other side, malware writers usually obfuscate their malicious
code in order to avoid detection. In this setting, the ability of code obfuscation
to foil most of the existing detection techniques, such as misuse detection al-
gorithms, relies in their purely syntactic nature that makes malware detection
sensitive to slight modifications of programs syntax. In the software protection
scenario, researchers try to develop sophisticated obfuscating techniques that are
able to resist as many attacks as possible. In the malware detection scenario,
on the other hand, it is important to design advanced detection algorithms in
order to detect as many variants of obfuscated malware as possible. It is clear
how both malicious host and malicious code attacks represent harmful threats
to the security of computer networks.

In this dissertation, we are interested in both security issues described above.
In particular, we describe a formal approach to code obfuscation and malware
detection based on program semantics and abstract interpretation. This theoret-
ical framework is useful in contrasting some well known drawbacks of software
protection through code obfuscation, as well as for improving existing malware
detection schemes. In fact, the lack of rigorous theoretical bases for code obfus-
cation prevents any possibility to formally study and certify their effectiveness
in protecting proprietary programs. Moreover, in order to design malware de-
tection schemes that are resilient to obfuscation we have to focus on program
semantics rather than on program syntax.

ii

Our formal framework for code obfuscation relies on a semantics-based def-
inition of code obfuscation that characterizes each program transformation T
as a potential obfuscation in terms of the most concrete property preserved by
T on program semantics. Deobfuscating techniques, and reverse engineering in
general, usually begin with some sort of static program analysis, which can be
specified as an abstraction of program semantics. In the software protection
scenario, this observation naturally leads to model attackers as abstractions of
program semantics. In fact, the abstraction modeling the attacker expresses the
amount of information, namely the semantic properties, that the attacker is able
to observe. It follows that, comparing the degree of abstraction of an attacker A
with the one of the most concrete property preserved by an obfuscating trans-
formation T , it is possible to understand whether obfuscation T defeats attack
A. Following the same reasoning it is possible to compare the efficiency of dif-
ferent obfuscating transformations, as well as the ability of different attackers
in contrasting a given obfuscation. We apply our semantics-based framework to
a known control code obfuscation technique that aims at confusing the control
flow of the original program by inserting opaque predicates.

As argued above, an obfuscating transformation modifies a program while
preserving an abstraction of its semantics. This means that different obfus-
cated versions of the same malware have to share (at least) the malicious in-
tent, namely the maliciousness of their semantics, even if they may express it
through different syntactic forms. The basic idea of our formal approach to
malware detection is to use program semantics to model both malware and pro-
gram behaviour, and semantic abstractions to hide the details changed by the
obfuscation. Thus, given an obfuscation T , we are interested in defining an ab-
straction of program semantics that does not distinguish between the semantics
of malware M and the semantics of its obfuscated version T (M). In particular,
we provide this suitable abstraction for an interesting class of commonly used
obfuscating transformations. It is clear that, given a malware detector D, it is
always possible to define its semantic counterpart by analyzing how D works
on program semantics. At this point, by translating both malware detectors
and obfuscating transformations in the semantic world, we are able to certify
which obfuscations a detector is able to handle. This means that our semantics-
based framework provides a formal setting where malware detectors designers
can prove the efficiency of their algorithms.

Acknowledgements

The first person that I would like to thank is my advisor Roberto Giacobazzi
for his precious guide and encouragement over these years. He taught me how
to develop my ideas and how to be independent.

A great thanks goes to Saumya Debray for his very kind hospitality and
constant support while I was visiting the department of Computer Science at
Tucson. I sincerely thank Somesh Jha and Mihai Christodorescu for the inter-
esting discussions we had and their precious collaboration. I also thank Matias
Madou and Koen De Boscheere for the work done together.

A warm thank goes to the participants of the Doctoral Symposium affiliated
to Formal Methods 2006 and in particular to the organizers Ana Cavalcanti,
Augusto Sampaio and Jim Woodcock for their interesting comments and advices
on my work.

I would also like to thank my PhD thesis referees Christian Collberg and
Patrick Cousot, but also Andrea Masini and Massimo Merro for their precious
advices and comments on my studies.

Contents

Preface . ix

1 Introduction . 1
1.1 Motivations . 1
1.2 The Problem . 3
1.3 The Idea: A Semantics-based Approach . 6
1.4 Main Results . 8
1.5 Overview of the Thesis . 10

2 Basic Notions . 13
2.1 Mathematical Background . 13

2.1.1 Sets . 13
2.1.2 Ordered structures . 16
2.1.3 Fixpoints . 20
2.1.4 Closure operators . 21
2.1.5 Galois connections . 22
2.1.6 Galois connections and closure operators 24

2.2 Abstract Interpretation . 24
2.2.1 Lattice of abstract interpretations . 28
2.2.2 Abstract Operations . 30
2.2.3 Abstract Semantics . 35

2.3 Syntactic and Semantic Program Transformations 36

3 Code Obfuscation . 43
3.1 Software Protection . 44

3.1.1 Obfuscating Transformations and their Evaluation 47
3.1.2 A Taxonomy of Obfuscating Transformations 49
3.1.3 Positive and Negative Theoretical Results 52
3.1.4 Code Deobfuscation . 55

3.2 Malware Detection . 55

vi Contents

3.2.1 Detection Techniques . 57
3.2.2 Metamorphic Malware . 59
3.2.3 Theoretical Limitations . 62
3.2.4 Formal Methods Approaches . 62

4 Code Obfuscation as Semantic Transformation 65
4.1 Standard Definition of Code Obfuscation . 67
4.2 Semantics-based Definition of Code Obfuscation 69

4.2.1 Constructive characterization of δt . 73
4.2.2 Comparing Transformations . 75

4.3 Modeling Attackers . 76
4.4 Case study: Constant Propagation . 77
4.5 Discussion . 82

5 Control Code Obfuscation . 85
5.1 Control Code Obfuscation . 86

5.1.1 Semantic Opaque Predicate Insertion . 87
5.1.2 Syntactic Opaque Predicate Insertion 89
5.1.3 Obfuscating behaviour of opaque predicate insertion 93
5.1.4 Detecting Opaque Predicates . 96

5.2 Opaque Predicates Detection Techniques . 99
5.2.1 Dynamic Attack . 100
5.2.2 Brute Force Attack . 101

5.3 Breaking Opaque Predicates by Abstract Interpretation 102
5.3.1 Breaking Opaque Predicates n|f(x) . 103
5.3.2 Experimental results . 112
5.3.3 Breaking Opaque Predicates h(x) = g(x) 114
5.3.4 Comparing Attackers . 118

5.4 Discussion . 119

6 A Semantics-Based approach to Malware Detection 123
6.1 Overview . 125

6.1.1 Proving Soundness and Completeness of Malware Detectors 127
6.1.2 Programming Language . 129

6.2 Semantics-Based Malware Detection . 132
6.3 Obfuscated Malware . 134
6.4 A Semantic Classification of Obfuscations . 137

6.4.1 Conservative Obfuscations . 138
6.4.2 Non-Conservative Obfuscations . 145
6.4.3 Composition . 150

6.5 Further Malware Abstractions . 153
6.5.1 Interesting States . 153

Contents vii

6.5.2 Interesting Behaviors . 156
6.5.3 Interesting Actions . 157

6.6 Relation to Signature Matching . 158
6.7 Case Study: Completeness of the Semantics-Aware Malware

Detector . 161
6.8 Discussion . 170

7 Conclusions . 173

References . 179

Sommario . 189

Preface

This thesis is composed by seven chapters. Each chapter provides a brief intro-
duction explaining its contents, while the chapters describing original work have
also a final discussion section about the problems addressed and the solutions
proposed in the chapter.

Much of the content of this thesis has already been published. In particular,
Chapter 4 was developed together with Roberto Giacobazzi [48], Chapter 5
presents the results obtained in two related works one in collaboration with
Roberto Giacobazzi [47] and the other one with Roberto Giacobazzi, Koen De
Bosschere and Matias Madou [49], while Chapter 6 is based on a recent joint
work with Mihai Christodorescu, Saumya Debray and Somesh Jha [46] that
was developed during my visit at the Department of Computer Science of the
University of Arizona where I’ve joint the research group of Saumya Debray.

The work of this thesis focuses on code obfuscation – a program transfor-
mation that is commonly used by software developers to protect the intellectual
property of their programs and by malicious code writers to avoid detection. In
the first scenario we are interested in the design of powerful obfuscating tech-
niques, while in the second one in the design of advanced tools for defeating
obfuscation. The work presented in this thesis clearly represents the dual nature
of the main application fields of code obfuscation.

1

Introduction

The widespread development of computer networks and Internet technology gave
rise to new computational frameworks. If, on the one hand, remote execution,
distributed computing and code mobility add flexibility and new computing
abilities, on the other hand they raise security and safety problems that were
not an issue when computation was carried out on stand-alone machines. Hosts
and networks must be protected from malicious agents (programs) and agents
(programs) must be protected from malicious hosts. A key concern for software
developers is to defend their programs against malicious host attacks, that usu-
ally aim at stealing, modifying or tampering with the code in order to take
(economic) advantages over it. Besides, a related security issue involves the exe-
cution of malicious code on a host machine. A malicious program may try to gain
privileged or unauthorized access to resources or private information, or may at-
tempt to damage the machine on which it is executed (e.g., computer viruses).
Both malicious host and malicious code attacks represent harmful threats to the
security of computer networks.

1.1 Motivations

The Malicious Host Perspective

Malicious reverse engineering, software piracy and software tampering are the
most common attacks against proprietary programs [33]. Given a software ap-
plication the aim of reverse engineering is to analyze it in order to understand
its inner working and acquire the knowledge needed to redesign the program.
Observe that reverse engineering can be used also for benign purposes, as for
example by software developers to improve their own products. The difficulty
of software reverse engineering relies in reconstructing enough knowledge about
a program in order to modify it, reuse parts of it or interface with it. It is clear
that this knowledge can be used for unlawful purposes – this is called malicious

2 1 Introduction

reverse engineering. In fact, programmers may reduce both cost and time of
software development by extracting proprietary algorithms and data structures
from a rival application, and reuse these parts in their own products. Obviously,
this kind of attacks violate the intellectual property of software. Observe that
both software tampering and software piracy need a preliminary reverse engi-
neering phase in order to understand the inner working of the program they want
to tamper with or to steal. Thus, preventing malicious reverse engineering is a
crucial issue when defending programs against malicious host attacks. A number
of legal and technical methods to protect the intellectual property of software
exists. While legal defenses are usually expensive, and therefore prohibitive for
small companies, technical methods are generally cheaper and may represent
a more attractive solution. In particular, making reverse engineering so diffi-
cult to be impractical, ideally impossible, is a common goal of many technical
approaches to software protection. These defense techniques include the use of
hardware devices, server-side execution, encryption, and obfuscation. Hardware
devices protect a program by relating its execution to the presence of certain
hardware features (e.g., a dongle). However, hardware devices do not provide a
complete solution to the malicious host problem, and their employment usually
meets stiff resistance from users. Server-side execution techniques prevent the
malicious host from having physical access to the program by running it re-
motely, and it is therefore sensitive to performance degradation due to network
communication. Program encryption works only if the encryption/decryption
process takes place in hardware and therefore suffers from the same limita-
tions as hardware devices. Code obfuscation techniques aim at transforming
programs in order to make them difficult to understand and analyze, while pre-
serving their functionality. Code obfuscation is a low cost technique that does
not affect portability and it represents one of the most promising methodologies
for defending mobile programs against malicious host attacks. This is witnessed
by the increasing interest in this technology, which, in recent years, has lead to
the design of many obfuscating transformations (e.g., [29,31,33,35,100,123,148]).

The Malicious Code Perspective

Malicious programs are usually classified according to the type of damage they
perform and the methodology they use to spread (e.g., viruses, worms, Trojan
horses) [110]. In general, the term malware is used to refer to a malicious code
regardless of classification. In fact, a malware is defined to be a program with a
malicious intent designed to propagate with no user consent and to damage the
machine over which it is executed or the network over which it communicates.
For example, a piece of malware may be designed to gain unauthorized access to
sensitive information in order to tamper with it, delete it or communicate it to a

1.2 The Problem 3

third party with malicious intent. One major cause of the widespread use of ma-
licious code is the global connectivity of computers through the Internet, that
makes machines vulnerable to attacks from remote sources and increases the
speed of malware infection. The growth in the complexity of modern computing
systems makes it difficult, if not impossible, to avoid bugs. This increments the
possibility of malicious code attacks, that usually exploit such vulnerabilities
in order to damage the systems. Moreover, it is easier to mask or hide mali-
cious code in complex and sophisticated systems. In fact, when the size and
complexity of a system grow it becomes more difficult to analyze it in order
to prove that it is not infected. Thus, the threat of malicious code attacks is
an unavoidable problem in computer security, and therefore it is crucial to de-
tect the presence of malicious code in software systems. A considerable body of
literature on techniques for malware detection exists – Szor provides an excel-
lent summary [140]. In particular, two major approaches to malware detection
are misuse and anomaly detection. Misuse detection, also called signature-based
detection, classifies a program P as infected by a malware when the malware
signature – a sequence of instructions characterizing the malware – occurs in
P . In general, signature-based algorithms detect already known malware, while
they are ineffective against unknown malicious programs, since no signature is
available for them. On the other side, anomaly detection algorithms are based on
a notion of normal program behaviour and classify as malicious any behaviour
deviating from normality. In general, machine learning techniques and statistical
methods are used to define normal behaviours, which turn out to be a quite hard
task. It is clear that anomaly detection does not need any a priori knowledge
of the malicious code, and can therefore handle previously unseen malware. As
a drawback, this technique generally produces many false alarms, since systems
often exhibit unseen or unusual behaviours that are not malicious. Thus, misuse
detection and anomaly detection techniques have advantages that complement
each other, together with limitations with no clear solution up to now [111].

1.2 The Problem

In this dissertation we are interested in both aspects of computer security: the
malicious host perspective, concerning the protection of the intellectual prop-
erty of a proprietary program running on a malicious host, and the malicious
code view related to the defense of hosts against malware attacks.

The Malicious Host Perspective

As observed above code obfuscation provides a promising technical approach for
protecting the intellectual property of software. However, the lack of a rigorous

4 1 Introduction

theoretical background is a major drawback of code obfuscation. The absence of a
theoretical basis makes it difficult to formally analyze and certify the effective-
ness of such obfuscating techniques in contrasting malicious host attacks. There-
fore, it is hard to compare different obfuscating transformations with respect to
their resilience to attacks, making it difficult to understand which technique is
better to use in a given scenario. Few theoretical works on code obfuscation
exist, so that the design of a formal framework where modeling, studying and
relating obfuscating transformations and attacks is still in an early stage. Thus,
it is not surprising that different definitions of code obfuscation exist, some of
them have led to promising results, while other have led to impossibility results.
For example, the positive theoretical results by Wang et al. [147, 148] showing
the np-hardness of a specific code obfuscation technique, the related ones by
Ogiso et al. [123], and the pspace-hardness result by Chow et al. [22], provide
evidence that code obfuscation can be an effective technique for preventing ma-
licious reverse engineering. By contrast, a well known negative theoretical result
by Barak et al. [11] shows that, according to their formalization of obfuscation,
code obfuscation is impossible. At a first glance, this result seems to prevent
code obfuscation at all. However, this result is stated and proved in the context
of a rather specific and ideal model of code obfuscation. Given a program P ,
Barak et al. [11] define an obfuscator as a program transformer O that satisfies
the following conditions: (1) O(P) is functionally equivalent to P , (2) the slow-
down of O(P) with respect to P is polynomial both in time and space, and (3)
anything that one can compute from O(P) can also be computed from the input-
output behaviour of P . This formalizes an “ideal” obfuscator, while in practice
these constraints are commonly relaxed. For example, in [33–35,124,148] the au-
thors allow the obfuscated programs to be significantly slower or larger than the
original ones, or to have different side-effects. In fact, according to a standard
definition, an obfuscator is a potent program transformation that preserves the
observational program behaviour, namely the behaviour experimented by the
user. Here, potent means that the transformed program is more complex, i.e.,
more difficult to reverse engineer, than the original one [31,34,35]. Consequently,
the notion of code obfuscation is based on a fixed metric for program complex-
ity, which is usually defined in terms of syntactic program features, such as code
length, number of nesting levels, numbers of branching instructions, etc. [34].
Complexity measures based on program semantics are instead less common, even
if they may provide a deeper insight in the real potency of code obfuscation.
In fact, if, on the one hand, code obfuscation aims at confusing some (usually
syntactic) information, on the other hand it has to preserve program behaviour
(namely program semantics to some extent).

1.2 The Problem 5

The Malicious Code Perspective

In the malware detection scenario, we focus on signature-based algorithms that
are widely used thanks to their low false positive rate and ease of use. In order
to deal with advanced detection systems, malware writers, viz. hackers, recur
to sophisticated hiding techniques. This parallel evolution of defense and attack
techniques have led to the development of smart malware, as for example the
so-called metamorphic malware. The basic idea of metamorphism is that each
successive generation of a malware changes the syntax while leaving the seman-
tics unchanged in order to foil misuse detection systems. In this setting, code
obfuscation may be used to syntactically transform a malware, and therefore
its signature, while maintaining its functional behaviour, namely its malicious
intent. In fact, code obfuscation turns out to be one of the most powerful counter-
measures used by hackers against signature-based detection algorithms. Recent
results [24] show that signature-based algorithms can be defeated using simple
obfuscating techniques, including code transposition, semantic nop insertion,
substitution of equivalent instruction sequences, opaque predicate insertion and
variable renaming. These results provide strong evidence that signature match-
ing methodologies are not resilient to slight modifications of malware and that
they need a frequently updated database of malware signatures, i.e., one for
each version of the malware. Therefore, an important requirement for a robust
malware detection technique is the capability of handling obfuscating transfor-
mations. The reason why obfuscation can easily foil signature matching lies in
the syntactic nature of this approach that ignores program functionality. In
fact, code obfuscation changes the malware syntax but not its intended be-
haviour, which has to be preserved. Formal methods for program analysis, such
as semantics-based static analysis and model checking, could be useful in design-
ing more sophisticated malware detection algorithms that are able to deal with
obfuscated versions of the same malware. For example, Christodorescu et al. [25]
put forward a semantics-aware malware detector that is able to handle some of
the obfuscations commonly used by hackers, while Kinder et al. [84] introduce
an extension of the CTL temporal logic, which is able to express some malicious
properties that can be used to detect malware through standard model checking
algorithms. These preliminary works confirm the potential benefits of a formal
approach to malware detection.

Since hackers frequently recur to code obfuscation in order to avoid detec-
tion, one major criterion for evaluating a new malware detection algorithm is its
resilience to obfuscation. In general, the identification of the set of obfuscations
that a malware detector can handle is a complex and error-prone task. The main
difficulty comes from the fact that there exists a large number of obfuscating
techniques developed both by hackers and software developers. Moreover, spe-
cific techniques can always be introduced in order to foil a particular detection

6 1 Introduction

scheme. Further difficulties are related to the fact that detectors and obfuscating
transformations are commonly defined using different languages (e.g., program
analysis vs program transformation). Thus, in order to certify the efficiency of
malware detection algorithms a formal framework where to prove the resilience
of a malware detector scheme against classes of obfuscating transformations
would be useful.

1.3 The Idea: A Semantics-based Approach

The Malicious Host Perspective

As argued above, obfuscating transformations change how programs are written
while preserving their functional behaviour, namely their semantics. In order
to formalize and quantify the amount of “obscurity” added by an obfuscating
transformation, namely how much more complex the transformed program is to
reverse engineer with respect to the original one, we need a formal model for
obfuscation as well as for attackers, i.e., code deobfuscation. Deobfuscating tech-
niques, and reverse engineering in general, usually begin with some sort of static
program analysis. Recently, it has been shown how the combination of static and
dynamic analyses may lead to powerful deobfuscating tools [144]. If, on the one
hand, a static program analysis can be specified as an abstract interpretation,
i.e., an approximation, of a concrete program semantics [41], on the other hand
a dynamic analysis can be seen as a possibly non-decidable approximation of a
concrete program semantics. This observation suggests that attackers may be
modeled as abstraction of concrete program semantics and confirms the poten-
tial benefits that may originate from the introduction of semantics-based metrics
for program complexity. In fact, measuring the differences between the original
and the obfuscated program in terms of their semantics provides a better insight
on what the transformation really hides, and therefore on what an attacker is
able to observe and deduce from the obfuscated code. Program semantics pre-
cisely formalizes the meaning of a program, namely its behaviour, and it is not
sensitive to minor changes in program syntax, namely how a program is written.
The idea is to address code obfuscation from a semantic point of view, by consid-
ering the effects that obfuscating transformations have on program semantics.
Recall that program semantics formalizes the behaviour of a program for every
possible input, and that the precision of such description depends on the level of
abstraction of the considered semantics, namely on the precision of the domain
over which the semantics is defined. In particular, Cousot [40] defines a hierarchy
of semantics, where semantics at different levels of abstractions are specified as
successive approximations of a given concrete semantics, namely trace seman-
tics. In the following, concrete program semantics refers to trace semantics, that
observes step by step the history of each possible computation, while abstract

1.3 The Idea: A Semantics-based Approach 7

semantics refers to any abstraction of trace semantics. Note that the semantics
modelling the input-output (observational) behaviour of a program, being an
abstraction of trace semantics, is an element in this hierarchy.

A recent result by Cousot and Cousot [44] formalizes the relation between
syntactic and semantic transformations within abstract interpretation, where
programs are seen as abstractions of their semantics. In this setting, abstract
interpretation theory provides the right framework in which to relate syntac-
tic and semantic transformations. In fact, according to well known results in
abstract interpretation, given a concrete (semantic) transformation it is always
possible to define its abstract (syntactic) counterpart and vice versa. Hence, this
gives us the right tool for reasoning about the semantic aspects of obfuscating
transformations, and for deriving new obfuscating techniques as approximations
of semantic transformations of interest.

According to the standard definition of code obfuscation, the original and
obfuscated program exhibit the same observational behaviour, meaning that
obfuscation has to preserve an abstraction of program trace semantics. Rea-
soning on the semantic aspects of obfuscation, one is naturally led to model
obfuscating transformations in terms of the most concrete preserved semantic
property, and attackers as abstractions of concrete program semantics. In par-
ticular, we provide a theoretical framework, based on program semantics and
abstract interpretation, where formalizing, studying and relating different ob-
fuscating transformations with respect to their potency and resilience to attacks.

The Malicious Code Perspective

As argued above, a semantics-based approach to malware detection may be the
key for improving existing detection algorithms. In fact, different obfuscated ver-
sions of the same malware have to share (at least) the malicious intent, namely
the maliciousness of their semantics, even if they may express it through dif-
ferent syntactic forms. Our idea is to use program trace semantics to model
both malware and program behaviours, and abstract interpretation to hide the
details changed by obfuscation. In fact, it turns out that the semantics of dif-
ferent obfuscated versions of the same malware have to be equivalent up to some
abstraction. Thus, given an obfuscation O, we are interested in the abstract se-
mantic property A that the semantics of a malware M shares with the semantics
of its obfuscated version O(M). The knowledge of the semantic abstraction A
allows us to characterize program infection in terms of A. A malware detection
algorithm that verifies infection following this semantic test is called a semantic
malware detector. It is clear that, given an obfuscation O, a crucial point of
such an approach is the definition of a suitable abstraction A. In fact, if A is too
coarse then a lot of programs would be misclassified as infected while they are

8 1 Introduction

not, i.e., we might have an high false positive rate, meaning that the proposed
detection algorithm is not sound. On the other side, if A is too concrete, then the
detection process is very sensitive to obfuscation and a lot of infected programs
will be classified as malware free while they are not, i.e., we might have many
false negatives, meaning that the detection algorithm is not complete. Thus,
the efficiency of the proposed detection approach clearly depends on the chosen
abstraction A.

Given a general malware detector D, it is always possible to define its se-
mantic counterpart by analyzing how D works on program semantics. Next, by
translating both malware detectors and obfuscating transformations in the se-
mantic world we are able to certify the family of obfuscations that the detector
is able to handle. In this setting program semantics turns out to be the right
tool for proving soundness and completeness of malware detection algorithms
with respect to a given class of obfuscating transformations.

1.4 Main Results

The Malicious Host Perspective

We observed how attackers, i.e., static and dynamic analyzers, at different lev-
els of precision can be naturally modeled as abstractions of concrete program
semantics. In fact, the abstract domain of computation modeling an attacker
precisely captures the amount of information that the attacker is able to de-
duce while observing a program, or, otherwise stated, the semantic properties
in which the attacker is interested. Thus, a coarse abstraction models an at-
tacker that observes simple semantic properties while finer abstractions, being
closer to program concrete semantics, model attackers that are interested in the
very details of computation. Our model allows us to compare attackers with
respect to their degrees of precision. Moreover, we propose a formal definition
of code obfuscation where obfuscating transformations are characterized by the
most concrete property they preserve on program semantics. In particular, a
program transformation T is a Q-obfuscator, where Q is the most concrete
property preserved by T on program semantics, namely the most precise infor-
mation that the original and transformed program have in common. According
to this definition, any program transformation can be seen as a code obfuscation
where the most concrete preserved property precisely expresses what can still
be known after obfuscation, despite syntactic modifications, and therefore what
attackers can deduce from the obfuscated program. In order to characterize the
obfuscating behaviour of each program transformation, we provide a systematic
methodology for deriving the most concrete property preserved by a given trans-
formation. This notion of obfuscation is clearly parametric on the most concrete
preserved property, and the observational behaviour is just a particular instance

1.4 Main Results 9

of this definition. In particular, we show that our semantics-based notion of code
obfuscation is a generalization of the standard definition of obfuscation. Since
semantic properties are modeled, as usual, by abstractions of trace semantics, it
turns out that obfuscating transformations can be compared to each other with
respect to the degree of abstraction of the most concrete property they preserve.
Given a Q-obfuscator, the more abstract Q is the more potent the obfuscation
is, meaning that a lot of details of the original program have been lost during the
obfuscation phase. On the other hand, when Q is close to the concrete program
semantics, it turns out that few details have been hidden by the obfuscation.

The semantics-based definition of code obfuscation, together with the ab-
stract interpretation-based model of attackers, turn out to be particularly useful
when considering control code obfuscation by opaque predicate insertion. Here,
the obfuscating transformation confuses the original control flow of programs by
inserting “fake” conditional branches guarded by opaque predicates, i.e., pred-
icates that always evaluate to a constant value. It is clear that an attacker A
is able to defeat such an obfuscation when A is able to disclose the inserted
opaque predicates. Modeling attackers as abstract domains allows us to prove
that the degree of precision needed by an attacker to break an opaque predicate
can be expressed as an abstract domain property, known as completeness in ab-
stract interpretation. This result is particularly interesting because it provides
a precise formalization of the amount of information needed by an attacker to
break a given opaque predicate. Moreover, this allows us to compare different
attackers with respect to their ability to break a given opaque predicate, and
different opaque predicates, according to their resilience to attackers.

The Malicious Code Perspective

In order to define a suitable abstraction A that allows a semantic malware de-
tector to deal with as many obfuscations as possible, we focused on the effects
that obfuscating transformations may have on malware semantics in order to
isolate a common pattern. This leads us to the definition of a particular class
of obfuscating transformations, characterized by the fact that they cause minor
changes on malware semantics. These transformations are called conservative,
since the original malware semantics is somehow still present in the semantics of
the obfuscated malware, even if the syntax of the two codes may be quite differ-
ent. We show that most obfuscating transformations commonly used by malware
writers are actually conservative, and that the property of being conservative is
preserved by composition. For this class of obfuscating transformations we are
able to provide a suitable abstraction AC that yields a precise detection of con-
servative variants of malware. In particular, we prove that the semantic malware
detector based on AC is both sound and complete for the above mentioned class
of conservative obfuscations.

10 1 Introduction

On the other hand, non-conservative transformations deeply modify malware
semantics and this explains why we are not able to find a common pattern for
handling non-conservative transformations as a whole. In fact, in this case, it
is necessary to define an ad-hoc abstraction for each non-conservative transfor-
mation. However, we provide some possible solutions for deriving the desired
abstraction. As an example, we design an abstraction that is able to precisely
detect the variants of a malware obtained through variable renaming, which is
a well known non-conservative obfuscation.

Of course, malware writers combine different obfuscating techniques in or-
der to evade misuse detection. Thus, we investigate the relationship occurring
between the abstractions that are able to deal with single obfuscations and the
abstraction that is needed to defeat their combinations. In particular, it turns
out that, under certain assumptions, the ability to deal with “elementary” ob-
fuscations allows us to handle also their combinations.

The proposed semantic model turns out to be quite flexible. In fact, since
our detection technique is based on the definition of a suitable abstraction and
since abstractions can be composed, it turns out that our methodology can be
weakened in many different ways in order to fit specific situations. In particular,
a deeper knowledge of a given malware allows us to further specify the detection
algorithm with respect to that malware and therefore to handle a wider class of
obfuscating transformations.

In order to show how our framework can be used to prove soundness and
completeness of malware detectors, we consider the semantics-aware malware
detector defined by Christodorescu et. al [25] and the well known signature
matching algorithm. In particular, we are able to prove the completeness of
the semantics-aware malware detector for certain obfuscating transformations
(soundness was already proved in [25]), and we show that signature-based de-
tection is generally sound but not complete, namely it is complete for a very
restricted class of obfuscating transformations.

1.5 Overview of the Thesis

This thesis is structured as follows. Chapter 2 provides notation and the ba-
sic algebraic notions that we are going to use in the following of the thesis,
together with a brief introduction to abstract interpretation. In particular we
present the recent work of Cousot and Cousot [44], where abstract interpreta-
tion is applied to program transformation. In Chapter 3 we present both the
major techniques for software protection and the most common algorithms form
malware detection. In particular, we recall Collberg’s taxonomy of obfuscating
transformations [34] and the most important theoretical results achieved in this
field [11,123,148]. Moreover, we discuss advantages and disadvantages of exist-

1.5 Overview of the Thesis 11

ing malware detection schemes together with the most sophisticated tricks used
by malware to avoid detection – such as polymorphism and metamorphism.

In Chapter 4 we present our semantics-based approach to code obfuscation.
We describe how code obfuscation can be defined in terms of the most concrete
property it preserves on program semantics, and how attackers can be modeled
as abstractions of concrete program semantics. Furthermore, we describe how
the proposed semantic model allows us to compare the resilience of different
obfuscating transformations to attackers. Studying the obfuscating behaviour
of constant propagation, we provide an example of the fact that any program
transformation can be seen as an obfuscation in the proposed semantic frame-
work.

In Chapter 5 we focus on control code obfuscations based on opaque predi-
cate insertion. We study the effects of this transformation on program semantics
and we derive an iterative algorithm for opaque predicate insertion following
the methodology proposed in [44]. We consider two classes of numerical opaque
predicates widely used by existing tools for obfuscation, and we show that the
ability of an attacker to disclose such predicates can be expressed as a complete-
ness problem in the abstract interpretation field. Next, we propose an opaque
predicate detection algorithm based on this theoretical result which has better
performances than existing detection schemes.

In Chapter 6 we address the malware detection problem from a semantic
point of view. We provide a semantics-based notion of malware infection and
we show how abstract interpretation can be used to deal with obfuscated mal-
ware. We provide a classification of obfuscating transformations based on their
effects on program semantics. In particular, a transformation is conservative if
it preserves the structure of trace semantics, non-conservative otherwise. We
provide a methodology for handling conservative obfuscations and we prove
that most commonly used obfuscating transformations are conservative. Next,
we discuss how to deal with non-conservative obfuscations. To conclude we use
our semantics-based framework to prove the precision of some existing malware
detection algorithms.

Chapter 7 sums up the major contributions of this thesis and briefly describes
future works that we would like to explore.

2

Basic Notions

In this chapter, we introduce the basic algebraic notation that we are going to
use in the thesis. In Section 2.1 we describe the mathematical background, re-
calling the basic notions of sets, functions and relations, followed by an overview
of fixpoint theory [42,142]. Moreover, we give a brief presentation of lattice the-
ory, recalling the basic algebraic ordered structures and the definitions of upper
closure operators and Galois connections and we describe how these two notions
are related to each other. Standard references for lattice theory are [50, 62, 67].
In Section 2.2 we introduce abstract interpretation [41, 43], characterizing ab-
stract domains in terms of both Galois connections and upper closure operators.
Moreover, we describe the properties of soundness and completeness of abstract
domains with respect to a given function, and we recall the existence of a domain
transformer that adds the minimal amount of information to a given abstract
domain in order to make it complete [61]. In Section 2.3 we describe the re-
cent application of abstract interpretation to program transformations, where
programs are seen as abstractions of their semantics [44], together with the pre-
sentation of the syntax and semantics of a simple imperative language that we
will use in the rest of the thesis.

2.1 Mathematical Background

2.1.1 Sets

A set is a collection of objects (or elements). We use the standard notation
x ∈ C to express the fact that x is an element of the set C, namely that x
belongs to C. The cardinality of a set C represents the number of its elements
and it is denoted as |C|. Let C and D be two sets. C is a subset of D, denoted
C ⊆ D, if every element of C belongs to D. When C ⊆ D and there exists at
least one element of D that does not belong to C we say that C is properly
contained in D, denoted C ⊂ D. Two sets C and D are equal, denoted C = D,

14 2 Basic Notions

if C is a subset of D and viceversa, i.e., C ⊆ D and D ⊆ C. Two sets C and D
are different, denoted C 6= D, if there exists an element in C (in D) that does
not belong to D (to C). Let ∅ denote the empty set, namely the set without
any element. In this case, for every element x we have that x /∈ ∅ and for every
set C we have that ∅ ⊆ C. The set C ∪D of elements belonging to C or to D is
called the union of C and D, and it is defined as C ∪D

def
= {x | x ∈ C ∨ x ∈ D}.

The set C∩D containing the elements belonging both to C and D identifies the
intersection of C and D, and it is defined as C ∩D

def
= {x | x ∈ C ∧x ∈ D}. Two

sets C and D are disjoint if their intersection is the empty set, i.e., C ∩D = ∅.
Let C r D denote the set of elements of C that do not belong to D, formally
C rD

def
= {x | x ∈ C ∧ x /∈ D}. The powerset ℘(C) of a set C is defined as the

set of all possible subsets of C: ℘(C)
def
= {D | D ⊆ C}. Let C∗ denote the set of

finite sequences of elements of C, where a sequence is denoted as x1...xn with
xi ∈ C and ǫ ∈ C∗ denotes the empty sequence.

Relations

Let us see how it is possible to establish a relation between elements of sets. Let
x, y be two elements of a set C, we call ordered pair the element (x, y), such
that (x, y) 6= (y, x). This notion can be extended to the one of ordered n-tuple
of n elements x1...xn, with n ≥ 2, by (...((x1, x2), x3)...), denoted by (x1...xn).

Definition 2.1. Given n sets {Ci}1≤i≤n. We define the cartesian product of the
n sets Ci as the set of ordered n-tuple:

C1 × C2 × ...× Cn
def
=

{
(x1...xn)

∣∣∀i : 1 ≤ i ≤ n : xi ∈ Ci

}

Let Cn, n ∈ N and n ≥ 1, denote the n-th cartesian self product of C. Given
two not empty sets C and D, any subset of the cartesian product C×D defines
a relation between the elements of C and the elements of D. In particular, when
C = D any subset of C × C defines a binary relation on C. Given a relation
R between C and D, i.e., R ⊆ C × D, and two elements x ∈ C and y ∈ D,
then (x, y) ∈ R and xRy are equivalent notations denoting that the pair (x, y)
belongs to the relation R, namely that x is in relation R with y. In the following
we introduce two important classes of binary relations on a set C.

Definition 2.2. A binary relation R on a set C is an equivalence relation if R
satisfies the following properties:

– reflexivity: ∀x ∈ C : (x, x) ∈ R;
– symmetry: ∀x, y ∈ C : (x, y) ∈ R ⇒ (y, x) ∈ R;
– transitivity: ∀x, y, z ∈ C : (x, y) ∈ R ∧ (y, z) ∈ R ⇒ (x, z) ∈ R.

2.1 Mathematical Background 15

Given a set C equipped with an equivalence relation R, we consider for each ele-
ment x of C the subset Cx of C containing all the elements y ∈ C in equivalence
relation with x, i.e., Cx = {y ∈ C | xRy}. The sets Cx are called equivalence
classes of C as regard relation R, and they are usually denoted as [x]R with
x ∈ C.

Definition 2.3. A binary relation ≤ on a set C is a partial order on C if the
following properties hold:

– reflexivity: ∀x ∈ C : x ≤ x;
– antisymmetry: ∀x, y ∈ C : x ≤ y ∧ y ≤ x⇒ x = y;
– transitivity: ∀x, y, z ∈ C : x ≤ y ∧ y ≤ z ⇒ x ≤ z.

Functions

Let C and D be two sets. A function f from C to D is a relation between C and
D such that for each x ∈ C there exists exactly one y ∈ D such that (x, y) ∈ f
and in this case we write f(x) = y. Usually the notation f : C → D is used to
denote a function from C to D, where C is the domain and D the co-domain
of function f . The set f(X)

def
= {f(x) | x ∈ X} is the image of X ⊆ C under f .

In particular, the image of the domain, i.e., f(C), is called the range of f . The
set f−1(X)

def
= {y ∈ C | f(y) ∈ X} is called the reverse image of X ⊆ D under

f . If there exists an elements x ∈ C such that the element f(x) is not defined,
we say that function f is partial, otherwise function f is said to be total. Let us
recall some basic properties of functions.

Definition 2.4. Given two sets C and D and function f : C → D, we have
that:

– function f is injective or one-to-one if for every x1, x2 ∈ C : f(x1) = f(x2)⇒
x1 = x2;

– function f is surjective or onto if: f(C) = D;
– function f is bijective if f is both injective and surjective.

Thus, a function is injective if it maps distinct elements into distinct elements,
while a function is surjective if every element of the co-domain is image of at
least one element of the domain. Two sets are isomorphic, denoted ∼=, if there
exists a bijection between them. An interesting function is the identity function
id : C → C that associates each element to itself, i.e., ∀x ∈ C : id(x) = x. The
composition g◦f : C → E of two functions f : C → D and g : D → E, is defined
as g ◦ f(x)

def
= g(f(x)). When it is clear from the context the symbol ◦ may be

omitted and the composition can simply be denoted as gf . Sometimes, function
f on variable x is denoted as λx.f(x). If f : Xn → Y is an n-ary function
then its pointwise extension fp : ℘(X)n → ℘(Y) to powersets is defined as
fp(S1, ..., Sn)

def
= {f(x1, ..., xn) | 1 ≤ i ≤ n, xi ∈ Si}.

16 2 Basic Notions

2.1.2 Ordered structures

It is useful to work with structures that, unlike sets, embody the relations ex-
isting between their elements. Let us first consider structures obtained by com-
bining sets and their ordering relations.

Definition 2.5. A set C with ordering relation ≤ is a partial ordered set, also
called poset, and it is denoted as 〈C,≤〉.

Let us consider two elements x and y of a poset 〈C,≤〉. We say that x is covered
by y in C, written x�y, if x < y and there is no z ∈ C with x < z < y. Relation �

can be used to define a Hasse diagram for a finite ordered set C: the elements of
C are represented by points in the plane, where x is drown above y if x < y, and
a line is drown from point x to point y precisely when x�y. The following figure
shows the graphical representation of the ordered sets C1 = {a, b, c, d, f, g} and
C2 = {a, b, c, d, e, g} in which a < b, b < d, b < e, d < f, d < g, c < e, e < g.

��

��

��

��

��

��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��

C2

g

d

b

a

f

e

c

g

d

b

a

e

c

C1

Fig. 2.1. Hasse diagram of C1 and C2

In particular, given a poset 〈C,≤〉, if all pairs of elements of C are in ordering
relation ≤, then ≤ is a total order and C is a chain.

Definition 2.6. Let 〈C,≤〉 be a poset. C is a chain if ∀x, y ∈ C : x ≤ y or
y ≤ x.

Hence, a chain is a totally ordered set. A typical example of a partial order set
is the powerset ℘(X) of any set X, ordered by subset inclusion. This is a partial
order, in fact given x, y, z ∈ X we have that {x, y} 6⊆ {y, z} and {y, z} 6⊆ {x, y}.
On the other side, the set of numbers with the standard ordering relation is a
typical example of a chain. Given a poset 〈C,≤〉 we denote with 〈Cδ,≤δ〉 its
dual, where x ≤δ y if and only if y ≤ x. This definition leads to the following
principle.

Definition 2.7. Given any statement Φ true on all posets, its dual Φδ holds for
all posets.

Given a poset 〈C,≤〉 it is possible to define two interesting families of sets of
elements in C based on the ordering relation ≤.

2.1 Mathematical Background 17

Definition 2.8. Let 〈C,≤〉 be a poset. A subset Q ⊆ C is an ideal of C, if we
have that ∀x ∈ Q, y ∈ C : y ≤ x⇒ y ∈ Q. A subset Q ⊆ C is a filter if it is the
dual of an ideal.

Observe that these sets can be built starting from a general subset of C. The
filter closure (or upward closure) of a set Q ⊆ C, is given by ↑ Q

def
= {y ∈ C | ∃x ∈

Q : x ≤ y}, where 〈C,≤〉 is a poset. The ideal closure (or downward closure) ↓ Q
is dually defined. In the following we use the shortland ↓ x (resp. ↑ x) for ↓ {x}
(resp. ↑ {x}). For example, considering the poset C1 in Fig. 2.1, we have that
the sets {c}, {a, b, c, d, e} and {a, b, d, f} are all ideals, while {b, d, e} is not an
ideal and ↓ {b, d, e} = {a, b, c, d, e}. Moreover, the set {e, f, g} is a filter, while
{a, b, d, f} is not a filter and ↑ {a, b, d, f} = {a, b, d, e, f, g}.

Definition 2.9. Let 〈C,≤〉 be a poset, and let X ⊆ C. An element a is an upper
bound of X if ∀x ∈ X : x ≤ a, if a belongs also to X it is the maximal. The
smallest element of the set of upper bounds of X, when it exists, is called the
least upper bound (lub or sup or join) of X, and it is denoted as

∨
X. When the

lub belongs to C it is called maximum (or top) and it is usually denoted as ⊤.

Considering the ordered sets in Fig. 2.1 we have that: the set {a, b, c} has least
upper bound e, C1 has maximal elements f and g and no greatest element,
while C2 has greatest element g. The notions of lower bound, minimal element,
greatest lower bound (glb or inf or meet) of a set X, denoted

∧
X, and minimum

(or bottom), denoted by ⊥ are dually defined. It is clear that, if a poset has a top
(or bottom) element from the antisymmetry property of the ordering relation,
it is unique. In the following we use x ∧ y and x ∨ y to denote respectively the
elements

∧
{x, y} and

∨
{x, y}.

Algebraic ordered structures can be further characterized. A poset C is a
direct set if each non-empty finite subset of C has least upper bound in C. A
typical example of a direct set is a chain.

Definition 2.10. A complete partial order (or cpo) is a poset 〈C,≤〉 such that
⊥ ∈ C and for each direct set D in C we have that

∨
D ∈ C.

It is clear that every finite poset is a cpo. Moreover, it holds that a poset C is
a cpo if and only if each chain in C has least upper bound.

Definition 2.11. A poset 〈C,≤〉, with C 6= ∅, is a lattice if ∀x, y ∈ C we have
that x ∨ y and x ∧ y belong to C. A lattice is complete if for every S ⊆ C we
have that

∨
S ∈ C and

∧
S ∈ C.

As usual, a complete lattice C with ordering relation ≤, lub ∨, glb ∧, top
element ⊤ =

∨
C =

∧
∅, bottom element ⊥ =

∧
C =

∨
∅, is denoted as

〈C,≤,∨,∧,⊤,⊥〉. Often, ≤C will be used to denote the underlying ordering of
poset C, and ∨C , ∧C , ⊤C and ⊥C denote the basic operations and elements of

18 2 Basic Notions

a complete lattice C. Observe that the ordered sets in Fig. 2.1 are not lattices
since elements a and c do not have glb. The set N of natural numbers with the
standard ordering relation is a lattice where the glb and the lub of a set are
given respectively by its minimum and maximum element. However, 〈N,≤〉 is
not complete because any infinite subset of N, as for example {n ∈ N | n > 100},
has no lub. On the other hand, an example of complete lattice often used in the
thesis, is the powerset ℘(X), where X is any set. In this case the ordering is
given by set inclusion, the glb by the intersection of sets and the lub by the
union of sets.

In the following we use the term domain to refer to a generic ordered struc-
ture. Let us introduce the notion of Moore family, which is a particular complete
lattice that plays a crucial role in abstract interpretation.

Definition 2.12. Let C be a complete lattice. The subset X ⊆ C is a Moore
family of C if X =M(X)

def
= {

∧
S | S ⊆ X}, where

∧
∅ = ⊤ ∈M(X).

This particular lattice can be built starting form a subset X ⊆ C through
the Moore closure (or meet closure) M. In fact M(X) is the smallest, with
respect to set inclusion, subset of C containing X and being a Moore family
of C. In a lattice it is possible to characterize some particular elements called
meet-irreducible (resp. join-irreducible) based on the meet (resp. join) operator.

Definition 2.13. Let C be a lattice. An element e of C such that e 6= ⊤ is
meet-irreducible if e = x ∧ y implies that e = x or e = y. Let Mirr(C) denote
the set of meet-irreducible elements of C.

A lattice C is meet-generated by its meet-irreducibles if the Moore closure of its
meet-irreducible elements generates each element of C, i.e., C =M(Mirr(C)).
The notions of join-irreducible elements and join-generated lattice are dually
defined.

Definition 2.14. A poset C satisfies the ascending chain condition (ACC) if
for each x1 ≤ x2 ≤ ... ≤ xn ≤ ... increasing sequence of elements of C, there
exists k such that: xk = xk+1 =

It is clear that the ordered set of even numbers {n ∈ N | n mod 2 = 0} does not
satisfy the ascending chain condition, since the ascending chain of even numbers
does not converge. A poset satisfying the descending chain condition (DCC) is
dually defined as a poset without infinite descending chains.

An interesting operation on the elements of a complete lattice is the comple-
ment.

Definition 2.15. Let C be a poset with ⊥ and ⊤. Given an element x ∈ C we
say that y ∈ C is the complement of x if x ∧ y = ⊥ and x ∨ y = ⊤.

A complemented lattice is a lattice where each element has a complement.

2.1 Mathematical Background 19

Definition 2.16. A complemented and distributive lattice is called a Boolean
algebra, where distributive means that for each x, y, z ∈ C: x ∧ (y ∨ z) = (x ∧
y) ∨ (x ∧ z).

A complete boolean algebra is a complete lattice which is both complemented
and distributive. There is another possible notion of complementation known as
pseudo-complement.

Definition 2.17. Consider an element x of a lattice C. An element x∗ is a
pseudo-complement of x if: x ∧ x∗ = ⊥ and ∀y ∈ C : x ∧ y = ⊥ ⇒ y ≤ x∗.

Observe that if a pseudo-complement exists then it is unique, so that we can refer
to the pseudo-complement of a given element. Thus, the pseudo-complement of
an element x is the greatest element, whose glb with x returns bottom, while it
has no condition on the lub. A pseudo-complemented lattice is a lattice where
each element has a pseudo-complement. Considering the lattice in Fig. 2.2 we
have that the complement of element a is d and viceversa, while we have the
following pseudo-complements: a∗ = d, c∗ = d and d∗ = a.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

d

⊤

⊥

a b

c

Fig. 2.2. Pseudo-complement

Given a lattice C, the relative pseudo-complement of a pair of elements x, y ∈ C
is x∗y : x∧x∗y ≤ y and, for each z ∈ C we have that if x∧z ≤ y then x ≤ x∗y.
A lattice C is relatively pseudo-complemented if the relative pseudo-complement
of each x, y ∈ C belongs to C.

Functions on domains

Let us consider the functions on domains and their properties.

Definition 2.18. Let 〈C,≤C〉 and 〈D,≤D〉 be two posets, and consider a func-
tion f : C → D, then:

– f is monotone (or order preserving) if for each x, y ∈ C such that x ≤C y we
have that f(x) ≤D f(y);

– f is order embedding if for every x, y ∈ C we have that x ≤C y ⇔ f(x) ≤D

f(y);

20 2 Basic Notions

– f is an order isomorphism if f is order embedding and surjective.

The continuous and additive functions are particularly important when studying
program semantics.

Definition 2.19. Given two cpo C and E, a function f : C → E is (Scott)-
continuous if it is monotone and if it preserves the limits of direct sets, namely
if for each direct set D of C, we have f(

∨
C D) =

∨
E f(D).

Co-continuous functions can be defined dually.

Definition 2.20. Given two cpo C and D, a function f : C → D is (completely)
additive if for each subset X ⊆ C, we have that f(

∨
C X) =

∨
D f(X).

Hence, an additive function preserves the limits (lub) of all subsets of C (empty-
set included), meaning that an additive function is also continuous. The notion
of co-additive functions is dually defined.

We use the symbol ⊑ to denote the pointwise ordering between functions:
if X is any set, C is a poset and f, g : X → C then f ⊑ g if for all x ∈ X:
f(x) ≤C g(x).

2.1.3 Fixpoints

Definition 2.21. Let f : C → C be a function on a poset C. An element x ∈ C
is a fixpoint of f if f(x) = x. Let Fix(f)

def
= {x ∈ C | f(x) = x} be the set of all

fixpoints of function f .

Thanks to the ordering relation ≤C on C, we can define the least fixpoint of f ,
denoted lfp≤C (f) (or simply lfp(f) when the ordering relation is clear from the
context), as the unique element x ∈ Fix(f) such that for all y ∈ Fix(f) : x ≤C y.
The notion of greatest fixpoint, denoted gfp≤C (f) (or simply gfp(f) when the
ordering relation is clear from the context), is dually defined. Let us recall the
well known Knaster-Tarski’s fixpoint theorem.

Theorem 2.22. Given a complete lattice 〈C,≤,∨,∧,⊤,⊥〉 and a monotone
function f : C → C, then the set of fixpoints of f is a complete lattice with or-
dering ≤. In particular, if f is continuous, the least fixpoint can be characterized
as:

lfp(f) =
∨

n≤ω

fn(⊥)

where, given x ∈ C, the i-th power of f in x is inductively defined as follows
f0(x) = x; f i+1(x) = f(f i(x)).

Hence, the least fixpoint of a continuous function on a complete lattice can
be computed as the limit of the iteration sequence obtained starting from the
bottom of the lattice. Dually, the greatest fixpoint of a co-continuous function
f on a complete lattice C, can be computed staring from the top of the lattice,
namely gfp(f) =

∧
n≤ω f

n(⊤).

2.1 Mathematical Background 21

2.1.4 Closure operators

Let us introduce the notion of closure operator, which is very important when
dealing, for example, with abstract interpretation.

Definition 2.23. An upper closure operator, or simply a closure, on a poset
〈C,≤〉 is an operator ρ : C → C that is:

– extensive: ∀x ∈ C : x ≤ ρ(x);
– monotone: ∀x, y ∈ C : x ≤ y ⇒ ρ(x) ≤ ρ(y);
– idempotent: ∀x ∈ C : ρ(ρ(x)) = ρ(x).

Function f : C → C in Fig. 2.3 (a) is an upper closure operator while function
g : C → C in Fig. 2.3 (b) is not since it is not idempotent.

��������

����

����

����

����

��

��

��

g

(a) (b)

f

f

f

f

f

g

g

g

g

Fig. 2.3. f is an upper closure operator while g is not

Let uco(C) denote the set of all upper closures operators of domain C. If
〈C,≤,∨,∧,⊤,⊥〉 is a complete lattice, then for each closure operator ρ ∈ uco(C)
we have that:

ρ(c) =
∧{

x ∈ C
∣∣x = ρ(x), c ≤ x

}

meaning that the image of an elements c through ρ is the minimum fixpoint of
ρ greater than c. Moreover, ρ is uniquely determined by its image ρ(C), that
is the set of its fixpoints ρ(C) = Fix(ρ). In fact, the following properties of a
closure operator have been proved [149]:

– if ρ ∈ uco(C) then ρ(C) ⊆ C is a Moore family;
– if X ⊆ C is a Moore family then ηX : C → C is a closure on C, where

λc.η(c) =
∧ {

x ∈ X
∣∣ c ≤ x

}
;

– moreover, it holds that: ηX(C) = X and ηρ(C) = ρ.

In the following, the notation ρ denotes closures defined both as functions or
Moore families. Observe that, given a complete lattice C, the Moore closure
operator M : ℘(C) → ℘(C), i.e., M(X) = {

∧
Y | Y ⊆ X}, is a closure on

22 2 Basic Notions

the powerset ℘(C) ordered by set inclusion. Thus, given X ⊆ C, we have that
M(X) can be characterized as the smallest set meet-closed in C that contains
X.

Given a complete lattice C and a closure ρ ∈ uco(C), the image ρ(C) is
a complete lattice 〈ρ(C),≤C ,∨ρ,∧C ,⊤C , ρ(⊥C)〉 on the ordering ≤C inherited
from C, where:

– the lub is defined as ∨ρ(X) = ρ(∨CX) for every X ⊆ ρ(C);
– the glb and the top element coincides with the ones of C;
– the bottom element is given by the image of the bottom of C, i.e., ρ(⊥C).

Given the closures ρ, η ∈ uco(C) and a subset Y ⊆ C we have that:

– ρ(
∧
ρ(Y)) =

∧
ρ(Y);

– ρ(
∨
Y) = ρ(

∨
ρ(Y));

– η ⊑ ρ⇔ η ◦ ρ = ρ⇔ ρ ◦ η = ρ;
– ρ ◦ η ∈ uco(C)⇔ ρ ◦ η = η ◦ ρ = η ⊔ ρ.

An important result on closures states that the set of closure of a complete
lattice is a complete lattice with respect to the pointwise ordering on functions.
In particular, given a complete lattice C, then 〈uco(C),⊑,⊔,⊓, λx.⊤, λx.x〉 is
a complete lattice [149], where for each ρ, η ∈ uco(C), {ρi}i∈I ⊆ uco(C) and
x ∈ C we have that:

– ρ ⊑ η iff ∀c ∈ C : ρ(c) ≤ η(c) iff η(C) ⊆ ρ(C);
– (⊓i∈Iρi)(x) = ∧i∈Iρi(x);
– (⊔i∈Iρi)(x) = x⇔ ∀i ∈ I : ρi(x) = x;
– λx.⊤ is the top element and λx.x is the bottom element.

2.1.5 Galois connections

Another notion typically used in abstract interpretation is the one of Galois
connection.

Definition 2.24. Tow posets 〈C,≤C〉 and 〈D,≤D〉 and two monotone functions
α : C → D and γ : D → C such that:

– ∀c ∈ C : c ≤C γ(α(c)) and
– ∀d ∈ D : α(γ(d)) ≤D d,

form a Galois connection, equivalently denoted by (C,α, γ,D) or C −→←−α

γ
D.

The definition of Galois connection is equivalent to the one of adjunction be-
tween C and D, where (C,α, γ,D) is an adjunction if:

∀c ∈ C,∀d ∈ D : α(c) ≤D d⇔ c ≤C γ(d)

2.1 Mathematical Background 23

In this case α (resp. γ) is called the right adjoint (resp. left adjoint) of γ (resp.
α).

A Galois connection (C,α, γ,D) where ∀d ∈ D : α(γ(d)) = d is called a

Galois insertion. A Galois insertion is denoted also by C →−→←−α

γ
D. Observe that

a Galois connection (C,α, γ,D) can be reduced to a Galois insertion collecting
together all the elements d ∈ D that have the same image under γ.

There are a number of interesting properties that hold on Galois connections.
In particular, if (C,α, γ,D) and (C,α′, γ′,D) are two Galois connections then
α = α′ ⇔ γ = γ′. In fact, it is possible to prove that given a Galois connection
(C,α, γ,D) each function can be uniquely determined by the other one, in fact
given c ∈ C and d ∈ D we have that:

– α(c) =
∧

D

{
y ∈ D

∣∣ c ≤C γ(y)
}
;

– γ(d) =
∨

C

{
x ∈ C

∣∣α(x) ≤D∈ d
}
.

Thus, in order to specify a Galois connection it is enough to provide the right
or left adjoint since the other one is uniquely determined by the above equal-
ities. Moreover, it has been proved that given a Galois connection (C,α, γ,D)
the function α preserves existing lub (i.e., if X ⊆ C and ∃

∨
C X ∈ C then

∃
∨

D α(X) ∈ D and α(
∨

C X) =
∨

D α(X)) and γ preserves existing glb. In par-
ticular, when C and D are complete lattices we have that α is additive and γ is
co-additive. Thus, given two complete lattices C and D, each additive function
α : C → D or co-additive function γ : D → C determines a Galois connection
(C,α, γ,D) where:

– ∀y ∈ D : γ(y) =
∨

C

{
x ∈ C

∣∣α(x) ≤D y
}
;

– ∀x ∈ C : α(x) =
∧

D

{
y ∈ D

∣∣x ≤C γ(y)
}
.

This means that, α maps each element c ∈ C in the smallest element in D whose
image under γ is greater than c as regards ≤C . Viceversa, γ maps each element
d ∈ D in the greatest element in C whose image by α is lower than d as regards
≤D. Given a Galois connection (C,α, γ,D) where C and D are posets we have
that:

– if C has a bottom element ⊥C , then D has bottom element α(⊥C);
– dually, if D has top element ⊤D, then C has top element γ(⊤D);
– α ◦ γ ◦ α = α and γ ◦ α ◦ γ = γ;
– if (D,α′, γ′, E) is a Galois connection, then (C,α′ ◦ α, γ ◦ γ′, E) is a Galois

connection, namely it is possible to compose Galois connections;
– if (C,α, γ,D) is a Galois insertion and C is a complete lattice, then D is a

complete lattice;
– α is surjective if and only if γ is injective if and only if (C,α, γ,D) is a Galois

insertion.

24 2 Basic Notions

From the last property above we have that a Galois insertion between two
complete lattices C and D is fully specified by a surjective and additive map
α : C → D or by an injective and co-additive map γ : D → C.

Two Galois connections (C1, α1, γ1,D1) and (C2, α2, γ2,D2) are isomorphic,
denoted ∼=, if C1

∼= C2, D1
∼= D2 and functions α1, α2 and γ1, γ2 coincide up to

isomorphism. It is possible to show that this holds if and only if γ1(D1) ∼= γ2(D2).
In particular, when C1 = C2, this holds if and only if γ1(D1) = γ2(D2).

2.1.6 Galois connections and closure operators

The notion of Galois connection and the one of closure operators are closely
related. Given a Galois connection (C,α, γ,D) we can prove that the map γ ◦α
is an upper closure on C, i.e., γ◦α ∈ uco(C). Moreover, if C is a complete lattice
then γ(D) is a Moore family of C. On the other side, given a poset C and a
closure ρ ∈ uco(C) then (C, ρ, λx.x, ρ(C)) defines a Galois insertion. Moreover,
we have that:

– if (C,α, γ,D) is a Galois insertion then (C, γ◦α, λx.x, γ(α(C))) ∼= (C,α, γ,D);
– the closure on C defined by the Galois insertion (C, ρ, λx.x, ρ(C)) induced

by the closure ρ ∈ uco(C) trivially coincides with ρ.

Thus, the notions of Galois insertion and closure operators are equivalent. This
holds also for Galois connections up to reduction.

2.2 Abstract Interpretation

According to a widely recognized definition: “Abstract interpretation is a gen-
eral theory for approximating the semantics of discrete dynamic systems” [39].
The key idea of abstract interpretation is that the behaviour of a program at
different levels of abstraction is an approximation of its (concrete) semantics.
Let S denote a formal definition of the semantics of programs in P written in a
certain programming language, and let C be the semantic domain on which S is
computed. Let us denote with S♯ an abstract semantics expressing an approx-
imation of the concrete semantics S. The definition of the abstract semantics
S♯ is given by the definition of the concrete semantics S where the domain C
has been replaced by an approximated semantic domain A in Galois connection
with C, i.e., (C,α, γ,A). Then, the abstract semantics is obtained by replacing
any function F : C → C, used to compute S, with an approximated function
F ♯ : A→ A that correctly mimics the behaviour of F in the domain properties
expressed by A.

2.2 Abstract Interpretation 25

Concrete and Abstract Domains

The concrete program semantics S of a program P ∈ P is computed on the
so-called concrete domain, i.e., the poset of mathematical objects on which the
program runs, here denoted by 〈C,≤C〉. The ordering relation encodes relative
precision: c1 ≤C c2 means that c1 is a more precise (concrete) description than
c2. For instance, the concrete domain for a program with integer variables is
simply given by the powerset of integer numbers ordered by subset inclusion
〈℘(Z),⊆〉.

Approximation is encoded by an abstract domain 〈A,≤A〉, which is a poset of
abstract values that represent some approximated properties of concrete objects.
Also in the abstract domain, the ordering relation models relative precision:
a1 ≤A a2 means that a1 is a better approximation (i.e., more precise) than a2.
For example, we may be interested to the sign of an integer variable, so that
a simple abstract domain for this property may be Sign = {⊤, 0−, 0, 0+,⊥}
where ⊤ gives no sign information, 0−/0/0+ state that the integer variable is
negative/zero/positive, while ⊥ represent an uninitialized variable or an error
for a variable (e.g., division by zero): thus, we have that ⊥ < 0 < 0− < ⊤ and
⊥ < 0 < 0+ < ⊤, so that, in particular, the abstract values 0− and 0+ are
incomparable.

As observed earlier, in standard abstract interpretation, concrete and ab-
stract domains are related through a Galois connection (C,α, γ,A). In this case,
α : C → A is called the abstraction function and γ : A → C the concretization
function. Given a Galois connection (C,α, γ,A), we say that A is an abstrac-
tion (or abstract interpretation) of C, and that C is a concretization of A. The
abstraction and concretization maps express the meaning of the abstraction pro-
cess: α(c) is the abstract representation of c, and γ(a) represents the concrete
meaning of a. Thus, α(c) ≤A a and, equivalently, c ≤C γ(a) means that a is a
sound approximation in A of c. Galois connections, being adjunctions, ensure
that α(c) actually provides the best possible approximation in the abstract do-
main A of the concrete value c ∈ C. In the abstract domain Sign, for example,
we have that α({−1,−5}) = 0− while α({−1,+1}) = ⊤. This confirms the fact
that Galois connection is the right tool for modeling the approximation process.
Moreover, closure operators ρ ∈ uco(C), being equivalent to Galois connections,
have properties (monotonicity, extensivity and idempotency) that well fit the
abstraction process. The monotonicity ensures that the approximation process
preserves the relation of being more precise than. If a concrete element c1 con-
tains more information than a concrete element c2, then after approximation we
have that ρ(c1) is more precise than ρ(c2). Approximating an object means that
we could loose some of its properties, therefore it is not possible to gain any
information during approximation. Hence, when approximating an element we
obtain an object that contains at most the same amount of information of the

26 2 Basic Notions

original object. This is well expressed by the fact that the closure operator is ex-
tensive. Finally, we have that the approximation process looses information only
on its first application, namely if the approximated version of the object c is the
element a, then approximating a we obtain a. Meaning that the approximation
function as to be idempotent. Hence, it is possible to describe abstract domains
on C in terms of both Galois connections and upper closure operators [43]. The
formulation of abstract domains through upper closures is particularly conve-
nient when reasoning about properties of abstract domains independently from
the representation of their objects (i.e., independently from the names of objects
in A).

Of course, abstract domains can be compared with respect to their relative
degree of precision: if A1 and A2 are both abstract domains of a common con-
crete domain C, we have that A1 is more precise than A2, denoted by A1 ⊑ A2,
when for any a2 ∈ A2 there exists a1 ∈ A1 such that γ1(a1) = γ2(a2), i.e., when
γ2(A2) ⊆ γ1(A1). This ordering relation on the set of all possible abstract do-
mains defines the lattice of abstract interpretations.

Consider the concrete domain given by the powerset of integers 〈℘(Z),⊆〉,
and assume that we are interested in the sign of a given integer number. Fig. 2.4
presents some possible abstractions of ℘(Z) expressing properties on the sign
of integers. The abstraction and concretization functions are the obvious ones

Sign

ZZZ
∅

0

0+0-

+ -

0-0+

A+ A−

Fig. 2.4. Abstractions of ℘(Z)

(e.g., α({0,−1,−2}) = 0−, α({−1, 2}) = Z, while γ(0+) = {z ≥ 0} and γ(−) =
{z < 0}). It is easy to show that A+, A− and Sign are in Galois connection with
℘(Z) and that the abstract domain Sign is more abstract, i.e., less precise, than
both A+ and A−, while A+ and A− are incomparable. The examples provided
in the rest of the chapter will often refer to the abstract domain of Sign thanks
to its simplicity.

The abstract domain of intervals

When considering the concrete domain of the powerset of integers a non trivial
and well known abstraction is given by the abstract domain of intervals, here

2.2 Abstract Interpretation 27

denoted by 〈Interval ,≤I〉 [117]. The elements of the Interval domain are defined
by the following:

Interval
def
= {⊥} ∪ {[l, h] | l ≤ h, l ∈ Z ∪ {−∞}, h ∈ Z ∪ {+∞}}

where the standard ordering on integers is extended to Z∪{+∞,−∞}, by setting
that −∞ ≤ +∞ and that for all z ∈ Z: z ≤ +∞ and −∞ ≤ z. The idea is that
the abstract element [l, h] corresponds to the interval from l to h including the
end points if they are in Z, while ⊥ denotes the empty interval. Intuitively an
interval int1 is smaller than an interval int2, denoted int1 ≤I int2, when int1 is
contained in int2 . Formally we have:

– for all int ∈ Interval : ⊥ ≤I int ≤ (−∞,+∞);
– for all l1, l2 ∈ Z ∪ {−∞}, h1, h2 ∈ Z ∪ {+∞}: [l1, h1] ≤I [l2, h2] ⇔ l1 ≥

l2 ∧ h1 ≤ h2;

•

• • • • •

• • • •

• • •• •

• •• •

•• •

•

⊥

[-2,-2] [-1,-1]

[0,0]

[1,1] [2,2]

[-2,-1] [-1,0] [0,1] [1,2]

(-∞,-2] [-2,0]

[-1,1]

[0,2] [2,+∞)

(-∞,-1] [-2,1] [-1,2] [1,+∞)

(-∞,0]

[-2,2]

[0,+∞)

(-∞,+∞)

HHHHHHHHH

@
@

@
@

@
@

@

�
�

�
�

�
�

�

����������
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

@
@@

@
@

@
@@

�
�

�
��

@
@

@
@

@
@

@

�
��

@
@

@
@

@
@

@
@

@

�
�

�
��

@
@

@
@@

· · · · · ·

· · · · · ·

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. .
.

. . .

. . .

.

. .
.

. .
.

. .
.

. . .

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

Fig. 2.5. The Interval abstract domain.

Fig. 2.5 represents the abstract domain of intervals. (℘(Z), αI , γI , Interval) is a
Galois insertion where the abstraction αI : ℘(Z)→ Interval and concretization
γI : Interval → ℘(Z) maps are defined as follows, let l, h ∈ Z then:

28 2 Basic Notions

αI(S) =

⊥ if S = ∅

[l, h] if min(S) = l ∧max (S) = h
(−∞, h] if 6 ∃min(S) ∧max (S) = h
[l,+∞) if min(S) = l∧ 6 ∃max (S)
(−∞,+∞) if 6 ∃min(S)∧ 6 ∃max (S)

γI(int) =

∅ if int = ⊥
{z ∈ Z | l ≤ z ≤ h} if int = [l, h]
{z ∈ Z | z ≤ h} if int = (−∞, h]
{z ∈ Z | z ≥ l} if int = [l,+∞)Z if int = (−∞,+∞)

For example, the set {2, 5, 8} is abstracted in the interval [2, 8], while the infinite
set {z ∈ Z | z ≥ 10} is abstracted in the interval [10,+∞). It is possible
to prove that 〈Interval ,≤I〉 is a complete lattice [41] with top element given
by (−∞,+∞), bottom element given by ⊥, glb ⊓I and lub ⊓I defined in the
following.

[l1, h1] ⊓I [l2, h2] = [max ({l1, l2}),min({h1, h2})]

For example, [2, 10]⊓I [5, 20] = [5, 10] and [2, 10]⊓(−∞, 5] = [2, 5], while [2, 10]⊓I

[20, 25] = ⊥. Thus, the glb of a set of intervals returns the bigger interval
contained in all of them.

[l1, h1] ⊔I [l2, h2] = [min({l1, l2}),max ({h1, h2})]

For example, [2, 10] ⊔I [5, 20] = [2, 20] and [2, 10] ⊔I (−∞, 5] = (−∞, 10], while
[2, 10]⊔I [20, 25] = [2, 25]. Hence, the lub of a set of intervals returns the smallest
interval that contains all of them.

It is clear that the abstract domain of intervals and the abstract domain of
sign can be compared with respect to their degree of precision. In particular,
Interval provides a more precise representation of the powerset of integers than
what Sign does, meaning that Interval ⊑ Sign.

2.2.1 Lattice of abstract interpretations

The ordering relation between abstract domains corresponds precisely to the
pointwise ordering of the corresponding closure operators on uco(C). In partic-
ular, consider two Galois connections (C,α1, γ1, A1) and (C,α2, γ2, A2) and the
corresponding closure operators ρ1, ρ2 ∈ uco(C), i.e., ρi(C) ∼= Ai, then A1 is
more precise than A2, i.e., A1 ⊑ A2, iff ρ1 ⊑ ρ2 in uco(C) iff ρ2(C) ⊆ ρ1(C).
Thus, given a domain C, 〈uco(C),⊑〉 is isomorphic to the lattice of abstract
interpretations introduced earlier. This is the reason why the symbol ⊑ is used
also to compare abstract domains with respect to their relative precision. Let
us see the meaning of least upper bound and greatest lower bound as operators
on domains.

2.2 Abstract Interpretation 29

Least common abstraction

The lub operator ⊔ on uco(C) corresponds to the computation of the least
common abstraction. In particular, consider the set {Ai}i∈I ⊆ uco(C) of ab-
straction, then ⊔i∈IAi is the least (with respect to ⊑) common abstraction of
all the Ai’s, i.e., the most concrete domain in uco(C) which is abstraction of
all Ai’s. In particular, (⊔i∈Iρi(C)) =

⋂
i∈I ρi(C). In Fig. 2.6 we consider two

abstractions of ℘(Z), Sign+ and Parity0 expressing respectively the sign and
parity of integer numbers (ev represents all the even integers and od all the odd
integers), and the domain obtained by their intersection, expressing their least
common abstraction.

Parity0

Z Z Z
0

0

0

0-

+ -

ev

od
6= 0

∅ ∅ ∅

0+
=⊔

Sign+

Fig. 2.6. Least upper bound of closures

Reduced Product

On the other side, the glb operator ⊓ on uco(C) is called the reduced product
(basically cartesian product plus reduction) [37,43]. In particular, ⊓i∈IAi is the
most abstract domain in uco(C), which is more concrete than every Ai’s. Let
us remark that ⊓i∈IAi =M(

⋃
i∈I Ai). The reduced product is typically used to

combine known abstract domains in order to design new abstractions. In Fig. 2.7
we consider the domain Sign and Parity , abstractions of ℘(Z), and their reduced
product.

Pseudo-complement

Complementation (or pseudo-complement) corresponds to the inverse of reduced
product [37, 57], namely an operator that, given two domains C ⊑ D, gives as
result the most abstract domain C⊖D, whose reduced product with D is exactly
C, i.e., (C ⊖D)⊓D = C. Because of the peculiar structure of abstract domains
in abstract interpretation, the pseudo-complement of an abstract domain does
not correspond to the set theoretic complement C rD. This because the result
would not be in general an abstract domain. Thus, the pseudo-complement of
an abstract domain D is defined as:

30 2 Basic Notions

0+

Z Z
0

0-
od

∅ ∅

ev
⊓ =

(Z, ev)

Z
(0+,Z) (0−,Z) (Z, Z)

(0+, od) (0−, od)

∅

(0, ev)

(0+, ev) (0−, ev)

Fig. 2.7. Reduced product of closures

C ⊖D
def
= ⊔ {E ∈ uco(C)|D ⊓ E = C}

Fig. 2.8 considers the Sign domain and one of its abstraction and computes the
complement domain.

0+

∅ ∅

0-
0-

0

Z Z Z
0+

⊖ =

Fig. 2.8. Abstract domain complementation

2.2.2 Abstract Operations

Soundness

In abstract interpretation, a concrete semantic operation is formalized as any
(possibly n-ary) function f : C → C on the concrete domain. For example,

2.2 Abstract Interpretation 31

a (unary) integer squaring operation sq on the concrete domain ℘(Z) is given
by sq(X) = {x2 ∈ Z | x ∈ X}, while an integer increment (by one) operation
plus is given by plus(X) = {x+ 1 ∈ Z | x ∈ X}. A concrete semantic operation
must be approximated on some abstract domain A by a sound abstract operation
f ♯ : A→ A. This means that f ♯ must be a correct approximation of f in A: for
any c ∈ C and a ∈ A, if a approximates c then f ♯(a) must approximate f(c).
This is therefore encoded by the condition:

∀c ∈ C : α(f(c)) ≤A f ♯(α(c)) (2.1)

For example, a correct approximation sq♯ of sq on the abstract domain Sign can
be defined as follows: sq♯(⊥) = ⊥, sq♯(0) = 0, sq♯(0−) = 0+, sq♯(0+) = 0+ and
sq♯(⊤) = ⊤; while a correct approximation plus♯ of plus on Sign is given by:
plus♯(⊥) = ⊥, plus ♯(0−) = ⊤, plus♯(0) = 0+, plus ♯(0+) = 0+ and plus♯(⊤) =
⊤. Soundness can be also equivalently stated in terms of the concretization map:

∀a ∈ A : f(γ(a)) ≤C γ(f ♯(a)) (2.2)

In Fig. 2.9 we have a graphical representation of soundness. In particular,
Fig. 2.9 (a) refers to the condition α ◦ f(x) ≤A f ♯ ◦ α(x), which compares the
computational process in the abstract domain, while Fig. 2.9 (b) refers to the
condition f ◦γ(x) ≤C γ ◦f ♯(x), which compares the results of the computations
on the concrete domain. Given a concrete operation f : C → C, we can order
the correct approximations of f with respect to (C,α, γ,A): let f ♯

1 and f ♯
2 be

two correct approximations of f in A, then f ♯
1 is a better approximation of f ♯

2 if

f ♯
1 ⊑ f

♯
2. Hence, if f ♯

1 is better than f ♯
2, it means that, given the same input, the

output of f ♯
1 is more precise than the one of f ♯

2. It is well known that, given a
concrete function f : C → C and a Galois connection (C,α, γ,A), there exists a
best correct approximation of f on A, usually denoted as fA. In fact, it is possible
to show that α◦f ◦γ : A→ A is a correct approximation of f on A, and that for
every correct approximation f ♯ of f we have that: ∀x ∈ A : α(f(γ(x))) ≤A f ♯(x),
i.e., α ◦ f ◦ γ ⊑ f ♯. Observe that the definition of best correct approximation
only depends upon the structure of the underlying abstract domain, namely the
best correct approximation of any concrete function is uniquely determined by
the Galois connection (C,α, γ,A). For example, consider the concrete square
operation on ℘(Z) introduced earlier, and the abstract operation sq♯ which is
an approximation of the square function on the abstract domain Sign defined
following the rule of signs. It is clear that this provides a sound approximation
of the square function, that is ∀x, y ∈ Sign : sq(γ(x)) ⊆ sq♯(γ(x)).

Completeness

When the concrete and abstract processes of calculus preserve the same pre-
cision, i.e., when soundness is satisfied with equality, we say that the abstract

32 2 Basic Notions

⊥

f

f(x)

x

α(f(x))

α(x)

f♯(α(x))

α

α

(a)

(b)

f♯

f♯(x)γ(f♯(x))

f(γ(x))

f

γ

γ

γ(x) x

f♯

⊥

⊤⊤

⊥

⊤ ⊤

⊥

Fig. 2.9. Soundness

function is a complete approximation of the concrete one. The equivalent sound-
ness conditions (2.1) and (2.2) introduced above can be strengthened to two
different (i.e., incomparable) notions of completeness.

Definition 2.25. Given a Galois connection (C,α, γ,A) and a concrete function
f : C → C and an abstract function f ♯ : A→ A then:

– if α ◦ f = f ♯ ◦ α the abstract function f ♯ is backward-complete for f ;
– if f ◦ γ = γ ◦ f ♯ the abstract function f ♯ is forward-complete for f .

Both backward (B) and forward (F) completeness encode an ideal situation
where no loss of precision arises in abstract computations: B-completeness con-
siders abstractions on the output of operations while F-completeness considers
abstractions on the input to operations. For example, sq♯ is B-complete for sq on
Sign while it is not F-complete because sq(γ(0+)) = {x2 ∈ Z | x > 0} ({x ∈Z | x > 0} = γ(sq♯(0+)). Also, observe that plus ♯ is neither backward nor for-
ward complete for plus on Sign. Moreover, observe that the abstract domain Sign
is not B-complete for addition, in fact α({3, 5}+ {−2, 0}) = α({1, 2, 3, 5}) = 0+
while α({3, 5}) ⊕ α({−2, 0}) = 0 + ⊕ 0− = Z. In Fig. 2.10 (a) we provide a

2.2 Abstract Interpretation 33

graphical representation of B-completeness, while Fig. 2.10 (b) represents the
F-completeness case. The two notions of completeness can be expressed in terms
of closure operators, in particular:

– ρ ∈ uco(℘(C)) is B-complete for f if ρ ◦ f = ρ ◦ f ◦ ρ;
– ρ ∈ uco(℘(C)) is F-complete for f if f ◦ ρ = ρ ◦ f ◦ ρ.

Clearly, when ρ is both B and F complete for f , then ρ is a morphism f◦ρ = ρ◦f .
While any abstract domain A induces the so-called canonical best correct

approximation, not all abstract domains induce a B (F)-complete abstraction.
However, if there exists a complete function for f on the abstract domain α(C),
then α◦f ◦γ is also complete and viceversa [43]. This means that it is possible to
define a complete function for f on α(C) if and only if α ◦ f ◦γ is complete [61].

f

f

f(x)

x α(x)
α

α

(a)

(b)

f♯

f♯(x)

γ

γ

γ(x) x

⊥

⊤⊤

⊥

⊤ ⊤

⊥⊥

f♯(α(x)) = α(f(x))

f(γ(x)) = γ(f♯(x))

f♯

Fig. 2.10. Completeness

34 2 Basic Notions

Completeness Refinements

It turns out that both B and F-completeness are abstract domain properties,
namely they only depend on the structure of the underlying abstract domain, in
the sense that the abstract domain A determines whether it is possible to define
a backward or forward complete operation f ♯ on A [60, 61]. Let us introduce a
family of domain transformers that make an abstract domain complete. These
transformations, defined in terms of a function f on the concrete domain C,
transform an abstract domain A, namely a closure operator, in order to make it
complete as regards function f adding the smallest possible amount of informa-
tion. Thus, these transformers are obtained by finding the most abstract domain
that contains A and that is complete for f , generally called complete shell of A.
Observe that completeness can be obtained also by erasing form A the minimal
amount of information in order to make it complete (complete core of A). In this
thesis we only consider complete shells. The following result gives the basis for
the definition of a systematic method for minimally refining a domain in order
to make it complete for a given function.

Theorem 2.26. [60, 61] Let f : C → C be continuous and ρ ∈ uco(C). Then:

– ρ is B-complete for f iff
⋃

y∈ρ(C) max(f
−1(↓ y)) ⊆ ρ(C);

– ρ is F-complete for f iff ∀x ∈ ρ(C).f(x) ∈ ρ(C).

This means that B-complete domains are closed under maximal inverse image
of the function f , while F-complete domains are closed under direct image of f .
Let us consider domain transformations that allow to minimally transform any
abstract domain A, not complete for f , in order to get completeness.

Definition 2.27. [60] Let C be a complete lattice and f : C → C be a contin-
uous function. We define RB

f , R
F
f : uco(C)→ uco(C) such that:

– RB
f

def
= λX ∈ uco(C).M(

⋃
y∈X max(f−1(y)));

– RF
f

def
= λX ∈ uco(C).M(f(X)).

It is clear that RB
f is monotone on uco(C), because f is monotone on the com-

plete lattice 〈℘(C),⊆〉. Moreover, by definition, RB
f (X) ⊑ X. The definition of

RB
f follows the idea that the inverse image of f contains all the elements that

make a domain backward complete for f . On the other side, also RF
f is monotone

and RF
f (X) ⊑ X. Analogously, the definition of RF

f follows the idea that the
image of f contains all the elements that make a domain forward complete. Ob-
serve that an abstract domain A is B-complete for f if and only if A ⊑ RB

f (A),

and analogously A is F-complete for f if and only if A ⊑ RF
f (A). These obser-

vations allow us to build the B(F)-complete domain as a fixpoint. In particular
we have the following result.

2.2 Abstract Interpretation 35

Theorem 2.28. [60, 61] Consider a closure ρ ∈ uco(C) and assume that it is
not backward complete neither forward complete with regard to the concrete
function f : C → C.

– The backward complete shell of ρ is given by:

RB
f (ρ) = gfp⊑λϕ.ρ ⊓RB

f (ϕ)

– The forward complete shell of ρ is given by:

RF
f (ρ) = gfp⊑λϕ.ρ ⊓RF

f (ϕ)

Therefore, given a continuous function f : C → C and an abstract domain
A ∈ uco(C), the more abstract domain which includes A and is B(F)-complete
for f is respectively RB

f (A) and RF
f (A).

For example, it turns out that the backward complete shell of the ab-
stract domain Sign with respect to addition is given by the abstract domain
of Interval [61], namley RB

+(Sign) = Interval . In fact, as observed above
αSign({3, 5} + {−2, 0}) 6= αSign({3, 5}) ⊕ αSign({−2, 0}), whereas for intervals
αI({3, 5} + {−2, 0}) = αI({1, 2, 3, 5}) = [1, 5] and αI({3, 5}) ⊕ αI({−2, 0}) =
[3, 5] ⊕ [−2, 0] = [1, 5].

2.2.3 Abstract Semantics

As observed earlier, one interest of abstract interpretation theory is the system-
atic design of approximate semantics of programs. Consider a Galois connection
(C,α, γ,A) and the concrete semantics S of programs P computed on the con-
crete domain C. As usual, the semantics obtained replacing C with one of its
abstractions A, and each function F defined on C with a corresponding correct
approximation F ♯ on A, is called the abstract semantics. The abstract semantics
S♯, as well as abstract functions, has to be correct with respect to the concrete
semantics S, that is for every program P ∈ P, α(S[[P]]) has to be an approxima-
tion of S♯[[P]]. Let us consider the concrete semantics S[[P]] of program P given,
as usual, in fixpoint form S[[P]] = lfp≤CF [[P]], where the semantic transformer
F : C → C is monotonic and defined on the concrete domain of objects C. The
abstract semantics S♯[[P]] can be computed as lfp≤AF ♯, where F ♯ = α ◦ F ◦ γ
is given by the best correct approximation of F in A. In this case soundness
is guaranteed, namely α(lfp≤C (F)) ≤A lfp≤AF ♯, i.e., α(S[[P]]) ≤A S♯[[P]]. Thus,
a correct approximation of the concrete semantics S can be systematically de-
rived by computing the least fixpoint of the best correct approximation of F on
the abstract domain A. As usual, completeness of the abstract semantics is not
always guaranteed. The following well known result (see e.g. [5, 43]) states that
if the abstract domain A is B-complete for the monotone function F : C → C,
then the abstract semantics is complete as well.

36 2 Basic Notions

Theorem 2.29. [Fixpoint transfer] Given a Galois connection (C,α, γ,A),
and a concrete monotone function F : C → C, if α ◦F = F ♯ ◦α (resp. α ◦F ≤A

F ♯ ◦ α) then α(lfp≤CF) = lfp≤AF ♯ (resp. α(lfp≤CF) ≤A lfp≤AF ♯).

This means that if the abstract domain is B-complete for the semantic transfer
F , then the abstract semantics coincides with the abstraction of the concrete
semantics, i.e., S♯[[P]] = α(S[[P]]). Thus, when the abstract domain is B-complete
for F the least fixpoint of the best correct approximation of F on A provides a
precise, i.e., complete, approximation of the concrete semantics.

2.3 Syntactic and Semantic Program Transformations

A program transformation is a meaning preserving mapping defined on program-
ming languages [125]. Program transformations aim at improving reliability,
productivity, maintenance, security, and analysis of software without sacrificing
performances. Commonly used program transformations include constant prop-
agation [82], partial evaluation [36, 79], slicing [152], reverse engineering [154],
compilation [127], code obfuscation [35] and software watermarking [32]. In-
vestigating the effects of program transformations on program semantics, i.e.,
studying the corresponding semantic transformations, is a necessary step in
order to prove meaning preservation of the syntactic transformations. In this
section we recall the recent result of Cousot and Cousot [44], where the authors
formally define the relation between syntactic and semantic program transfor-
mations in terms of abstract interpretation. In particular the authors provide
a language-independent methodology for systematically deriving syntactic pro-
gram transformations as approximations of the semantic ones (for which is easier
to prove meaning preservation).

In the following, syntactic arguments are between double square brackets
[[...]] while semantic/mathematical arguments are between round brackets (...).
Given the set P of all possible programs, let S[[P]] ∈ D denote the semantics of
program P ∈ P. The semantic domain D is a poset 〈D,⊑〉, where the partial
order ⊑ denotes relative precision, i.e., Q ⊑ S means that semantics S contains
less information than semantics Q. The semantic ordering ⊑ induces an order P

on the domain P of programs, where P P Q
def
= (S[[P]] ⊑ S[[Q]]). Thus, 〈P/

≖
,P〉

is a poset, and P/
≖

denotes the classes of syntactically equivalent programs,
where P ≖ Q

def
= (S[[P]] = S[[Q]]).

According to Cousot and Cousot [44], given a program P ∈ P, a syntac-
tic program transformation t returns the transformed program t[[P]] ∈ P. The
effects of t on program semantics define the corresponding semantic transforma-
tion t that takes the semantics S[[P]] of program P , and returns the semantics
S[[t[[P]]]] of the transformed program. A program transformation t is correct if it
is meaning preserving with respect to some observational abstraction αO, namely

2.3 Syntactic and Semantic Program Transformations 37

if ∀P ∈ P : αO(S[[P]]) = αO(S[[t[[P]]]]). Considering programs as abstractions of
their semantics leads to the following Galois insertion:

〈D,⊑〉 →−→←−pS 〈P/
≖
,P〉 (2.3)

where p[S] is the simplest program whose semantics upper approximates S ∈
D. Observe that (2.3) is a Galois insertion thanks to the fact that programs
are considered up to syntactic equivalence. In fact, given a program P ∈ P,p(S[[P]]) ≖ P but potentially p(S[[P]]) may be different from P because of dead
code elimination. Thus p(S[[P]]) and P are syntactically equivalent since they
differ only for (potential) dead code that is not present in the semantics.

αO(S[[P]]) = αO(t(S[[P]])) = αO(S[[t[[P]]]])

t
t

P pp S S

t[[P]] Q p(t(S[[P]]))

S[[P]] t(S[[P]]) ⊑ S[[t[[P]]]]

Fig. 2.11. Syntactic-Semantic Program Transformations

The scheme in Fig. 2.11 shows that each semantic transformation induces a
syntactic transformation and viceversa:

t(S[[P]])
def
= S[[t[[p(S[[P]])]]]] t[[P]]

def
= p(t(S[[P]]))

In particular, the above equation on the right expresses the fact that a syntac-
tic transformation can be seen as an abstraction of the corresponding seman-
tic transformation. In the following we show how this formalization provides a
systematic methodology for designing syntactic transformations from semantic
ones. Observe that, when the semantic transformation t relies on undecidable
results, any effective algorithm t is an approximation of the ideal transforma-
tion p ◦ t ◦ S. This means that, in general, p(t(S[[P]])) P t[[P]]. Considering the
Galois insertion (2.3) this constraint corresponds to the correctness condition
t(S[[P]]) ⊑ S[[t[[P]]]].

According to Cousot and Cousot [44], in general, program transformation
corresponds to a loss of information on program semantics, this approximation
is formalized by the following Galois connection:

〈D,⊑〉 −→←−
t

γt
〈D,⊑〉 (2.4)

Composing Galois connections (2.3) and (2.4) we obtain the Galois connection:

38 2 Basic Notions

〈P/
≖
,P〉 −→←−tγt 〈P/

≖
,P〉

Let us elucidate the steps that lead to the systematic design of t def
= p◦ t◦S from

the semantic transformation t:

Step 1 p(t(S[[P]])) = p(t(lfpF [[P]])), considering as usual program semantics
expressed in least fix point form as S[[P]] = lfpF [[P]];

Step 2 p(t(lfpF [[P]])) = p(lfpF̂ [[P]]), where F̂
def
= t ◦ F ◦ γt follows from the

fixpoint upper approximation theorem considering the abstraction t of (2.4),
i.e., t(lfpF [[P]]) = lfp(t ◦ F ◦ γt)[[P]] (resp. ⊑ for approximations);

Step 3 p(lfpF̂ [[P]]) = lfpF[[P]], where F def
= p ◦ F̂ ◦ S follows from the fixpoint

upper approximation theorem considering the abstraction p of (2.3), i.e.,p(lfpF̂ [[P]]) = lfp(p ◦ F ◦ S)[[P]](resp. ⊑ for approximations);

Step 4 t[[P]]
def
= lfpF[[P]] (resp. P for approximations).

Given the fixpoint formalization lfpF[[P]] of the syntactic transformation, it is
possible to design an iterative algorithm on posets satisfying ACC.

Algorithmic Transformations

Let us say that a semantic transformation t : D → D is algorithmic, denoted
t ∈ A, if it is induced by a syntactic transformation t, i.e., t = S ◦ t ◦ p, namely
if there exists an algorithm whose effects on program semantics are exactly the
ones of transformation t.

Definition 2.30. A semantic transformation t : D → D is algorithmic if there
exists an algorithm t : P→ P such that: t = S ◦ t ◦ p.
It is interesting to observe that the abstract domain P is F-complete for every
concrete (semantic) transformation t ∈ A. This means that for every algorithmic
function t it holds that t ◦ S = S ◦ t.
Lemma 2.31. Considering the Galois insertion 〈D,⊑〉 →−→←−pS 〈P/

≖
,P〉 we have

that the abstract domain P is F-complete for every t ∈ A.

proof: Given t ∈ A, we have to show that S◦p◦ t◦S◦p = t◦S◦p. Let X ∈ D:

S[[p(t(S[[p(X)]]))]] = S[[p(S[[t[[p(S[[p(X)]])]]]])]] [t = S ◦ t ◦ p, t is algorithmic]
= S[[t[[p(S[[p(X)]])]]]] [p ◦ S = id]
= t(S[[p(X)]]) [S ◦ t ◦ p = t]

�

2.3 Syntactic and Semantic Program Transformations 39

In particular, observe that F-completeness means that t◦S = S◦t, namely that
there is no loss of precision between the semantic and syntactic transformation
when we compare them on the concrete domain D of program semantics. This
also implies that t = p ◦ t ◦ S. Thus, when considering algorithmic semantic
transformations, the schema in Fig. 2.11 commutes. In this work we focus on
code obfuscation, and we consider semantic obfuscators to be algorithmic trans-
formations, since code obfuscation is, in general, an automatic program trans-
formation. Thus, there exists an algorithm that transforms programs according
to the semantic obfuscating transformation. As we will see in Chapter 5 the
above methodology provides a systematic way for deriving a possible algorithm.

Programming Language

In the following we introduce the simple imperative language considered in [44],
which syntax is reported in Table 2.1.

Syntactic Categories: Syntax:

n ∈ Z (integers) E ::= n | X | E1 − E2

X ∈ X (variable names)
L ∈ L (labels)
E ∈ E (integer expressions)
B ∈ B (Boolean expressions) B ::= true | false |

E1 < E2 | ¬B1 | B1 ∨ B2

A ∈ A (actions) A ::= X := E | X :=? | B
C ∈ C (commands) C ::= L : A→ L′

P ∈ P (programs) P ::= ℘(C)

Table 2.1. Syntax of the programming language

Given a set S, we use S⊥ to denote the set S ∪ {⊥}, where ⊥ denotes an
undefined value1. Let D be the semantic domain of variables values. A command
at label L has the form L : A→ L′, where A is an action and L′ the label of the
command to be executed next. The stop command is L : stop ≖ L : skip→ ⊥,
and a skip command is L : skip→ L′ ≖ L : true→ L′. Let var[[A]] denote the
set of variables occurring in action A:

lab[[L : A→ L′]]
def
= L lab[[P]]

def
=

⋃
C∈P lab[[C]]

var[[L : A→ L′]]
def
= var[[A]] var[[P]]

def
=

⋃
C∈P var[[C]]

suc[[L : A→ L′]]
def
= L′ act[[L : A→ L′]]

def
= A

The above basic functions are useful in defining the semantics of the considered
programming language, which is described in Table 2.2.

1 We abuse notation and use ⊥ to denote undefined values of different types, since the type
of an undefined value is usually clear from the context.

40 2 Basic Notions

Value Domains

B⊥ = {true , false,⊥} (truth values)
n ∈ Z (integers)
D⊥ (variable values)
ρ ∈ E = X→ D⊥ (environments)
Σ = C× E (program states)

Arithmetic Expressions E : E× E→ D⊥

E[[n]]ρ = n
E[[X]]ρ = ρ(X)
E[[E1 − E2]]ρ = E[[E1]]ρ−E[[E2]]ρ

Boolean Expressions B : B× E→ B⊥
B[[true]]ρ = true
B[[false]]ρ = false
B[[E1 < E2]]ρ = E[[E1]]ρ < E[[E2]]ρ
B[[¬B]]ρ = ¬B[[B]]ρ
B[[B1 ∨B2]]ρ = B[[B1]]ρ ∨B[[B2]]ρ

Program Actions A : A× E→ ℘(E)

A[[true]]ρ = {ρ}
A[[X := E]]ρ = {ρ[X := E[[E]]]}
A[[X :=?]]ρ =

˘

ρ′
˛

˛∃z ∈ Z : ρ′ = ρ[X := z]
¯

A[[B]]ρ =
˘

ρ′
˛

˛ B[[B]]ρ′ = true ∧ ρ′ = ρ
¯

Table 2.2. Semantics of the programming language

An environment ρ ∈ E is a map from variables in dom(ρ) ⊆ X to values in D⊥,
therefore ρ(X) represents the value of variable X. Given V ⊆ X let ρ|V denote
the restriction of environment ρ to the domain dom(ρ)∩V , while ρrV denotes
the restriction of environment ρ to domain dom(ρ) r V . Let ρ[X := n] be the
environment ρ where value n is assigned to variable X. Let E[[P]] denote the
set of environments of program P , namely of those environments whose domain
is given by the set of program variables, i.e., var[[P]]. A program state is a pair
〈ρ,C〉, where C is the next command that has to be executed in environment ρ.
Let Σ

def
= E×C denote the set of all possible states, in particularΣ[[P]]

def
= E[[P]]×C

denotes the set of states of program P . The transition relation C : Σ → ℘(Σ)
between states specifies, as usual, the set of states that are reachable from a
given state:

C(〈ρ,C〉)
def
=

{
〈ρ′, C ′〉

∣∣ρ′ ∈ A[[act(C)]]ρ, suc[[C]] = lab[[C ′]]
}

A state σ is a final/blocking state when C(σ) = ∅, let T[[P]] denote the set of fi-
nal/blocking states of program P , in particular T[[P]] =

{
〈ρ,C〉

∣∣ suc[[C]] ∈ L[[P]]
}

where L[[P]] ⊆ lab[[P]]. The transition relation can be specified with respect to a
program P , C[[P]] : Σ[[P]]→ ℘(Σ[[P]]):

C[[P]](〈ρ,C〉)
def
=

{
〈ρ′, C ′〉 ∈ C(〈ρ,C〉)

∣∣ρ, ρ′ ∈ E[[P]] ∧ C ′ ∈ P
}

2.3 Syntactic and Semantic Program Transformations 41

Recall that a finite maximal execution trace σ ∈ Sn[[P]] of program P is a finite
sequence σ0...σn−1 ∈ Σ+ of states of length n, i.e., |σ| = n, such that each
state σi with i ∈ [1, n − 1] is a possible successor of the previous state σi−1,
i.e., σi ∈ C(σi−1), and the last state σi−1 is a blocking state. The maximal
finite trace semantics S+[[P]] of program P is given by the union of all finite
maximal traces of length n > 0, namely S+[[P]]

def
=

⋃
n>0 Sn[[P]]. Observe that

S+[[P]] can be expressed as the least fixpoint of the monotone function F+[[P]] :
℘(Σ+[[P]])→ ℘(Σ+[[P]]) defined as follows:

F+[[P]](X)
def
= T[[P]] ∪

{
σiσjσ

∣∣σj ∈ C[[P]](σi), σjσ ∈ X
}

An infinite execution trace σ ∈ Sω[[P]] of a program P is an infinite sequence
σ0...σi... ∈ Σ

ω of length |σ| = ω, such that each state σi+1 is a successor of the
previous state, i.e., σi+1 ∈ C(σi). Sω[[P]] can be computed as the gfp⊆Fω[[P]],
where function Fω[[P]] : ℘(Σω[[P]])→ ℘(Σω[[P]]) is defined as:

Fω[[P]](X)
def
=

{
σiσjσ

∣∣σj ∈ C[[P]](σi), σjσ ∈ X
}

As usual, the maximal trace semantics S∞[[P]] ∈ ℘(Σ∞) of program P is given
by the union of its finite and infinite traces, namely S∞[[P]]

def
= S+[[P]] ∪ Sω[[P]].

3

Code Obfuscation

In this chapter we introduce the notion of code obfuscation together with the
main applications of this technique. In particular, Section 3.1 presents code
obfuscation as a promising defense technique against attacks to the intellec-
tual property of software. We provide an overview of the existing technical ap-
proaches to software protection, highlighting the advantages of code obfuscation
with respect to the other proposed techniques. Next, we introduce the notions
of potency, resilience, cost and stealth as parameters for measuring the quality
of an obfuscating transformation, followed by an overview of obfuscating tech-
niques, classified according to the taxonomy proposed by Collberg et al. [34].
Then, we report some of the most significant theoretical results on code obfusca-
tion, and we observe how some of these results discourage code obfuscation while
others prove its potential. If on the one hand code obfuscation is a promising
defense technique, on the other hand it is often used by malware writers, i.e.,
hackers, to foil malware detectors. Thus, researchers are working on the design
of powerful obfuscating transformations and powerful deobfuscation techniques
in order to improve both software protection and malware detection. Section 3.2
focuses on the detection of obfuscated malware. We describe the different ty-
pologies of malicious programs, classified according to their malicious goal and
infection routine. Next, we provide an overview of the techniques used to detect
malicious behaviours, with particular attention to signature-based detection al-
gorithms, and we describe how code obfuscation may help malware writers in
avoiding detection. Then, we report some of the major theoretical limitations of
malware detection. To conclude, we present some more sophisticated techniques
for malware detection, such as the ones based on formal methods (e.g., model
checking, program slicing and data mining).

44 3 Code Obfuscation

3.1 Software Protection

Software protection against malicious host attacks is a key concern in computer
industry. Software piracy, malicious reverse engineering and software tampering
are the major types of attacks that Bob can use to gain an economic edge over
Alice [33]. Assume that Bob has legally purchased an application from Alice.
Once Bob has physical access to the application, he can make illegal copies of it
and then sell them to ingenuous clients. This attack is known as software piracy
and refers to the illegal reproduction and distribution of proprietary programs.
By decompiling and (malicious) reverse engineering Alice’s application Bob can
extract proprietary algorithms and data structures and incorporate them into his
own application. In this way Bob does not recover the entire application, which
clearly violates the law [133], but he can still significantly reduce cost and time
needed to develop his own software. Assume that Alice’s application provides a
service for which the client has to pay a certain amount of electronic money. In
this case Bob can try to tamper with the application in order, for example, to
change the amount of money he has to pay or the money destination.

There are legal measures and technical approaches to protect software against
these attacks. Legal measures include copyright, patent and license. Copyright
laws protect the form in which an idea is expressed but not the idea itself. Thus,
software copyright protects a program but not the algorithms and methods
within the program. While software copyright protects the code against literal
copying, software patent defends also the underlying ideas and the features of
the software. Another possibility for the producer to defend his software is to
stipulate a contract, called software license, with the client. A software license is
typically a complex document that establishes the usage rights that are granted
to the client as well as the client limitations. For example, a software license
might define a limit on the maximal number of concurrent users of the software,
or it might bind the usage of the software to a specific individual. The producer
can revoke the license every time that the client violates the contract.

Obtaining patent protection for software is usually expensive and it may be
hard for Alice to enforce the law against a larger and more powerful competitor.
Moreover, in general, legal protection in one country cannot be extended to other
nations. In fact, the Berne Convention (1886) establishes the national treatment
of copyright of other countries. This means that a nation, for example France,
has to treat each work copyrighted in a different country, for example Italy, as
if it was protected by the local copyright law, the french one in the considered
example. Thus, a more attractive alternative for Alice is to use technical methods
to protect her software. Some early attempts to technical software protection
are described in [21,64,138].

Software watermarking is a defense technique used to prevent software
piracy (e.g., [32, 51, 115]). The idea is for Alice to discourage illegal copying

3.1 Software Protection 45

by embedding a signature, i.e., a copyright notice, into her software. When an
illegal copy is made, Alice can prove her ownership by extracting her signature
from the code. The signature has to be hidden inside the code in such a way
that it is difficult for Bob to detect and then remove it. In order to identify
the copyright violator, as well as the illegal copies, Alice could insert a different
signature, usually called fingerprint, in each copy of the application she dis-
tributes. In this way the particular signature that Alice extracts from an illegal
copy indicates also the guilty client (Bob).

Alice can protect her application against malicious tampering by using
tamper-proofing code, namely code that is able to detect if Bob has tampered
with some sensitive information of the application (e.g., if Bob has changed the
amount of electronic money he has to pay to get the service from Alice), and in
this case makes the program fail or sends an alert message to Alice [7,8,18,19].

Since any attack to the intellectual property of software starts with a reverse
engineering phase, the first defense consists in blocking (or at least delaying)
this process. Existing forms of technical software protection to prevent malicious
reverse engineering include:

• Hardware Device: A typical hardware-based method for software protection
is the dongle. A dongle is a small hardware device that plugs into the serial
or USB port on a computer to ensure that only authorized users can copy
or use specific software applications. When a software protected by a don-
gle runs it checks the dongle for authentication as it is loaded, if the dongle
is not present the software refuses to run (or runs in a restricted mode).
Dongles are generally used to protect expensive applications, while their em-
ployment in the mainstream software market usually meets resistance from
users. Moreover, dongles do not provide a complete solution to the malicious
host problem. In fact, there are flaws in the existing hardware devices that a
malicious user can exploit in order to bypass protection [65]. For example, a
malicious user could exploit the weaknesses in the communication protocol
between the dongle and the protected software in order to gain complete
access to the application even when the dongle is not present.

• Server-side execution: Alice sells her services rather than her application. The
user connects to Alice’s site and runs the program remotely paying a small
amount of electronic money every time. In this way, even if Bob purchases
the services from Alice, he never has physical access to the application and
he cannot reverse engineer it. The obvious disadvantage of this technique is
performance degradation due to network communication, limited bandwidth
and latency, and to the load on the server when many clients try to access
it during a short period of time. When only some parts of the application
are regarded as proprietary by Alice it is not necessary to protect the entire
application. Thus, the application can be broken into a private part, which

46 3 Code Obfuscation

executes remotely, and a public part, which runs locally on the user’s site.
Partial server side execution may limit performance degradation.

• Encryption: Alice gives to Bob an encrypted version of her application. Un-
less decryption takes place in hardware, it will be possible for Bob to interpret
and decrypt compiled code. Hence, this technique works only if the decryp-
tion/execution process takes place in hardware. Hardware decryption systems
have been described in [72]. The idea is to have a co-processor (cryptochip)
that decrypts instructions before execution. In this way the decrypted code
is never accessible to Bob, and the degree of security depends on the scheme
used to encrypt the code. In general, different platforms need distinct circuits
to interface with the cryptochip. Therefore this approach is unsuitable when
the application has to run on many different platforms.

• Obfuscation: Alice obfuscates the program before distributing it. Code ob-
fuscation consists in syntactically transforming a program in such a way that
the obfuscated program becomes more difficult to understand, i.e., to re-
verse engineer, while maintaining its functional behaviour. Thus, the idea of
code obfuscation is to make a program so difficult to understand that reverse
engineering it becomes uneconomical in terms of resources and time. How-
ever, code obfuscation cannot fully protect an application against a malicious
reverse engineering attack. In fact, given enough time, effort and determina-
tion, a competent programmer will always be able to reverse engineer any
application. Software watermarking techniques usually perform some sort of
code obfuscation in order to protect the inserted signature form Bob. Thus,
code obfuscation is often used to enforce software watermarking.

Defenses based on hardware devices and encryption have the drawback of re-
quiring special hardware, while server side execution suffers from network over-
head. Thus, code obfuscation seems to be more appropriate when dealing with
mobile programs. This is one of the reason way, in recent years, code obfus-
cation has attracted researchers interest in preventing malicious reverse en-
gineering, leading to the design of different obfuscating transformations (e.g.,
[29,31,33,35,100,123,148]).

The reverse engineering process intends to recover the original source code
from the machine code. It typically begins with a disassembly phase, which
translates machine code to assembly code, then followed by a number of decom-
pilation steps, that try to recover source (or high level) code from assembly code
(see Fig 3.1). Thus, in order to complicate reverse engineering, we can either con-
fuse the disassembly or the decompilation phase. Decompilation mainly consists
of performing a static analysis of the assembly code, including data-flow, control-
flow and type analysis. Therefore, a program transformation that obstructs such
static analyses acts as an obfuscating technique. Most of the existing obfuscat-

3.1 Software Protection 47

Engineering
control flow graph

syntax tree

source code

assembly code

machine code

disassembly

decompilation

Compilation

intermediate
code gen. and
control flow
analysis

parsing

final code gen.

assembly

Reverse

Fig. 3.1. Compilation and Reverse Engineering [100]

ing transformations focus on the decompilation phase (e.g. [31,34,35,123,148]),
while less attention has been paid to obstruct the disassembly process. However,
recently, some work has been done in the direction of obfuscating executable
code in order to thwart well-known static disassembly techniques, such as lin-
ear sweep and recursive traversal [100]. Obstructing correct disassembly can be
achieved also by changing repeatedly the program code while it executes [103].

3.1.1 Obfuscating Transformations and their Evaluation

An obfuscator is a program that transforms programs in such a way that the
transformed (obfuscated) code is functionally equivalent to the original one but
more difficult to understand. This means that the observable behaviour, i.e., the
behaviour as experienced by the user, of the two programs must be identical.
In the following we recall the general definition of obfuscating transformations
introduced by Collberg et al. [31,34,35].

Definition Let t : P→ P be a program transformation from a source program
P into a target program P ′. t : P→ P is an obfuscating transformation, if:

– the transformation t is potent and
– P and P ′ have the same observable behaviour, i.e., if P fails to terminate

or it terminates with an error condition then P ′ may or may not terminate,
otherwise P ′ must terminate and produce the same output as P .

A program transformation is potent if the transformed (obfuscated) program is
more complex to understand than the original one. It is clear that the above

48 3 Code Obfuscation

definition of code obfuscation relies on the notion of potency of a transformation,
and therefore on a fixed metric for measuring program complexity, which is
a quite hard problem [69, 109]. In the literature there are a lot of different
metrics for program complexity, that can be used according to the current need.
For example, the complexity of a program can be measured by: the length of
the program (the number of instructions and arguments) [69], the nesting level
(the number of nested conditions) [70], the data flow (the number of references
to local variables) [124], or the data structure complexity (the complexity of
the data structures declared in the program) [77]. Given a metric for program
complexity it is possible to measure the potency of a transformation, namely
how much more difficult is the transformed program to understand than the
original one. It is clear that, in order to design a good obfuscator, the potency
of the transformation has to be maximized.

While the potency of an obfuscating transformation measures how much ob-
scurity has been added to a program, the resilience of a transformation measures
how difficult it is to break for an automatic deobfuscator. Resilience takes into
account both the amount of time required to construct a deobfuscator and the
execution time and space actually required by the deobfuscator. Some highly
resilient obfuscating transformations are one-way transformations, in the sense
that they can never be undone. This because one-way transformations usually
remove information (e.g., formatting removal, scramble variable names) from
the program. In general, other obfuscations have different degrees of resilience,
depending on how difficult it is to identify and remove the useless information
that has been added by the obfuscation. A good obfuscator tries to maximize
its resilience.

Another important factor to take into account when designing an obfuscating
transformation is the execution time/space penalty added to program execution
by the obfuscation. The cost of an obfuscating transformation measures the
computational overhead added to the obfuscated program with respect to the
original one. Some trivial obfuscations (e.g., scrambling identifiers) incur no run-
time cost, while most of the commonly used obfuscating transformations cause
a varying amount of overhead. It is clear that, in practice, there would be a
threshold identifying the limit between the acceptable/unacceptable amount of
penalty caused by obfuscating transformations. In fact, there is often a trade-
off between the level of obscurity that can be added to a program and the
transformation cost.

Another useful measure is the stealth of a transformation. An obfuscating
transformation is stealthy if it does not “stand out” from the rest of the pro-
gram, namely if the obfuscated code resembles the original code as much as
possible. It is clear that stealth is a context-sensitive notion, meaning that what
is stealthy in one program may not be stealthy in another one. If the obfuscating
transformation introduces code widely different from the original code, it is easy

3.1 Software Protection 49

for a reverse engineer to detect and remove the obfuscation. For this reason, a
good obfuscator has to insert stealthy code.

Obfuscating transformations are usually evaluated and compared with re-
spect to their potency, resilience, cost and stealth. The problem with these
quality metrics is that they are difficult to measure precisely. For example, po-
tency, resilience and stealth of an obfuscating transformation often present some
kind of statistical properties and their measure clearly depends on the personal
skills of the programmer that is trying to break the transformation.

3.1.2 A Taxonomy of Obfuscating Transformations

Obfuscating transformations can be classified according to the kind of informa-
tion they target [34]. In the following we briefly present the main classes of this
taxonomy together with some examples.

Layout obfuscators Layout obfuscating transformations act on code informa-
tion that is unnecessary to its execution (used by the Java obfuscator Crema
[146]). These obfuscations are typically trivial and reduce the amount of infor-
mation available to a human reader. Layout transformations include the removal
of comments and the change of identifiers. For example, by replacing identifiers
of methods and variables with meaningless identifiers, any information on the
functionality of a method or on the role of a variable is removed. Scrambling
identifier names is a one-way transformation that adds no penalty during exe-
cution.

Data obfuscators Data obfuscators operate on program data structures and
they can be further classified according to the kind of operation they per-
form on data. Storage and encoding transformations affect how data is stored
in memory and the methods used to interpret stored data [31]. An exam-
ple of encoding transformation consists in replacing an integer variable i by
i′ = 8× i + 3 and then modifying the instructions involving variable i in order
to preserve program functionality (e.g., int i = 1; while (i < 1000)... becomes
int i = 11; while (i < 8003)...). In this case there is a trade-off between re-
silience and potency on one hand, and cost on the other hand. For example, the
encoding proposed above, i′ = 8 × i + 3 adds little extra execution time but it
can be deobfuscated using common compiler analysis techniques. Aggregation
obfuscations alter how data are grouped together, making it more difficult for a
reverse engineer to restore the program’s data structure. These transformations
can split, fold or merge arrays in order to complicate the access to arrays, for
example by transforming a two-dimensional array in a one-dimensional array
and viceversa. These transformations have an high potency since they introduce
structures where there was originally none, or they remove structures from the

50 3 Code Obfuscation

original program [34,157]. Ordering transformations change how data is ordered.
For example, they can reorder arrays using a function f(i) to determine the po-
sition of the i-th element of the array, while the i-th element is usually stored
in the i-th position of the array. These transformations have low potency while
their resilience is one-way [157].

Control code obfuscators Control obfuscations attempt to confuse the pro-
gram control flow. These transformations can affect either the aggregation, the
ordering or the computations of the program control flow. Aggregation trans-
formations change the way in which program statements are grouped together,
by splitting and merging fragments of code. For example, it is possible to inline
procedures, that is, replacing a procedure call with the statements of the called
procedures itself. A very useful companion transformation to inlining is outlin-
ing, which aggregates code that does not belong together, for example turning
a sequence of statements into a procedure. Another class of control aggregation
obfuscations are loop transformations, such as loop unrolling which replicates
the body of the loop one or more times. These transformations have a low re-
silience when applied in isolation, while their resilience grows significantly when
these transformations are combined together. A program is easier to understand
if logically related items are also physically close in the source text. Following
this observation, ordering transformations attempt to randomize, when possi-
ble, the placement of any item in the source text (e.g., reordering of independent
statements). For example, in certain cases, it is possible to reorder loops by run-
ning them backwards (loop reversal). These transformations have usually low
potency but their resilience is high. Computation transformations insert new
(redundant or dead) code in order to hide the real control flow behind state-
ments that are irrelevant. For example it has been observed that there is a strong
correlation between the perceived complexity of a piece of code and the numbers
of predicates it contains. Thus, these control transformations often rely on the
existence of opaque predicates, that is, predicates whose value is known a priori
to the obfuscation, but it is difficult for the deobfuscator to deduce. By insert-
ing these opaque predicates, it is possible to break up the original control flow
of a program. In this case the resilience (resp. stealthy) of the transformation
depends on the resilience (resp. stealthy) of the opaque predicate, namely on
how difficult it is to detect the inserted opaque predicate (resp. on how different
the inserted opaque predicate is form the rest of the code).

Opaque Predicates For transformations that alter the program control flow,
a certain amount of computational overhead would be unavoidable. Opaque
predicates are often used to design control code obfuscating transformations that
are cheap and resilient to attacks from deobfuscators. Control flow obfuscation
by mean of opaque predicates was introduced by Collberg et al. [35]. An opaque

3.1 Software Protection 51

predicate is a predicate whose constant value is known at obfuscation time,
but it is hard for a deobfuscator to deduce this value from automated program
analysis. Fig. 3.2 illustrates the different types of opaque predicates, where solid
lines indicate paths that may sometimes be taken and dashed lines paths that
will never be taken. Typically P T denotes a true opaque predicate, namely a

P ?PT
T F

PF
T F T F

Fig. 3.2. Opaque Predicates

predicate that always evaluates to true, PF a false opaque predicate, that is a
predicate that always evaluates to false, and P ? an unknown opaque predicate,
namely a predicate that sometimes evaluates to true and sometimes evaluates
to false. Consider, for example, the insertion of a branch instruction controlled
by a true opaque predicate P T . In this case the true path starts with the next
action of the original program, while the false path leads to termination or
buggy code. This confuses the attacker who is not aware of the always true
value of the opaque predicate and has to consider both paths. It is clear that
this transformation does not affect program functionality since at run time P T is
always evaluated true and therefore the true path is the only one to be executed.
While the insertion of false opaque predicates is analogous to one of true opaque
predicates, the case of unknown opaque predicates is slightly different. When a
branch instruction is controlled by an unknown opaque predicate P ? both the
false and true path have to be equivalent to the sequence of original program
actions. In fact P ? may evaluate either true or false and in both cases program
functionality has to be preserved.

In order to deobfuscate a program an attacker usually employs various static
and dynamic analysis techniques. Thus, it seems natural to construct opaque
predicates on problems that are hard to handle by such analyses. For exam-
ple, Collberg et al. [35] show how to construct opaque predicates based on the
difficulty of alias analysis [75, 130]. Their idea is to add to the obfuscated pro-
gram code that constructs a complex dynamic structure and that maintains
a set of pointers into this structure. These pointers can be updated but they
have to preserve certain invariant (e.g., two pointers never have to refer to the
same location). Hence, it is possible to design opaque predicates that need a
precise alias analysis of the dynamic structure to be broken. Another possibil-
ity is to design opaque predicates based on the difficulty of analyzing parallel

52 3 Code Obfuscation

programs with respect to sequential ones. In this case a global data structure
is created and occasionally updated by concurrently executing sequences of in-
structions (threads when dealing with Java) [35]. Once again, it is possible to
design opaque constructs based on such dynamic structure.

More recently Palsberg et al. [126] have introduced the notion of dynamic
opaque predicate as a possible improvement over static opaque predicates pre-
sented above. The idea is to define a family of correlated predicates which eval-
uate to the same value in any single program run, but this value might vary
over different program runs. This notion of dynamic opaque predicate has then
been extended to temporary unstable or distributed opaque predicates in a dis-
tributed environment [108]. The value of a temporary unstable opaque predicate
may change in different program points during the same run of the program.
The idea is that the opaque predicate value depends on predetermined embed-
ded message communication patterns between different processes that maintain
the opaque predicate. Two are the main advantages of using temporary unstable
opaque predicates: re-usability and resilience against static analysis attacks and
dynamic monitoring (see [108] for details).

In [15] it has been proposed a general notion of opacity, where a property
over program executions is said to be opaque if it is not possible to deduce
it for an observer. The authors show how different security notions, including
non-interference and anonymity, can be guaranteed by the opacity of certain
properties on program executions. Moreover, the authors observe that certify
the opacity of a certain property is in general undecidable and they propose a
technique for approximating the original notion of opacity in order to make it
decidable. Other similar/further works on this general theory for opacity exists
(e.g., [16,90]).

It is interesting to observe that opaque predicates find interesting applica-
tions not only in control code obfuscation techniques, but also in data obfusca-
tion techniques [31], software watermarking [116] and tamper proofing [126].

In general, software protection through code obfuscation is obtained by com-
bining many different obfuscating transformations. Which transformations is
better to apply to a certain application and the order in which transformations
should be applied are two main concerns when constructing an obfuscating tool.
These problems have been addressed in [29] where the authors propose a possible
solution.

3.1.3 Positive and Negative Theoretical Results

Many researchers recognise that one major drawback of existing code obfus-
cating techniques is the lack of a rigorous theoretical background allowing one
to study and compare different obfuscating transformations. In fact, a formal

3.1 Software Protection 53

definition of obfuscating transformations together with a precise model for the
attackers performing the deobfuscation process are necessary in order to provide
formal proofs of the effectiveness of different obfuscating techniques with respect
to attackers. The relative scarcity of theoretical papers on code obfuscation sug-
gests that this is still an open research area. Thus, it is not surprising if in the
existing literature it is possible to find inconsistencies in definitions, models and
conclusions. In the following we briefly recall some of the most significant exist-
ing theoretical results on code obfuscation.

Wang et al. observe that any intelligent tampering attack requires knowledge
of the program semantics, usually obtained by static analysis. Thus, they pro-
vide a code obfuscation technique based on control flow flattering and variable
aliasing that drastically reduces the precision of static analysis [147, 148]. The
basic idea of Wang et al. is to make the analysis of the program control flow
dependent on the analysis of the program data flow, and then to use aliasing
to complicate data flow analysis. In particular, the proposed obfuscation trans-
forms the original control flow of the program into a flattened one where each
basic block can be the successor/predecessor of any other basic block. The ac-
tual program control flow is determined dynamically by a dispatcher. At the
end of each basic block the dispatcher variable is changed through complicated
pointer manipulations, making control flow analysis depend on complex data
flow analysis. The authors provide a proof of the resilience of their obfuscation
technique, and such proof relies on the difficulty of determining precise indirect
branch target addresses of dispatchers in presence of aliased pointers.

However, this approach is restricted to the case of intra-procedural analyses.
A software obfuscation technique, related to the one of Wang et al. and based
on obstructing inter-procedural analysis and on the difficulty of alias analysis
is proposed in [123], together with a theoretical proof of its effectiveness. An-
other promising theoretical result considers an obfuscation technique based on
the insertion of hard combinatorial problems with known solution into the pro-
gram using semantic preserving transformations. Chow et al. [22] claim that this
obfuscating transformation makes the deobfuscation process pspace-complete.

Another novel and formal approach to code obfuscation is the one of
Drape [53]. Drape observes that it is difficult to provide proofs of the fact
that a given obfuscation preserves program behaviour. In this work, the au-
thor provides a formal framework for reasoning and proving the preservation of
the observational behaviour of some data obfuscation techniques. In particular,
Drape proposes to obfuscate abstract data-types and to view obfuscation as a
data refinement. The data-type operations used to obfuscate are modeled as
functional programs making it more easy to construct the corresponding proofs.
The proposed framework has been applied to some data-types as for example
lists, sets, trees and matrices [53,54].

54 3 Code Obfuscation

These results suggest the possibility of a significant increase in the difficulty
of reverse engineering through code obfuscation.

In contrast, a well known negative theoretical result on code obfuscation is
given by Barak et al. [11], who show that code obfuscation is impossible. This
result seems to prevent code obfuscation at all. However, this result is stated
and proved in the context of a rather specific model of code obfuscation. Barak
et al. [11] define an obfuscator as a program transformer O satisfying the fol-
lowing conditions: (1) O(P) is functionally equivalent to P , (2) the slowdown of
O(P) with respect to P is polynomial both in time and space, and (3) anything
that one can compute from O(P) can also be computed from the observation
of the input-output behavior of P . Hence, this formalizes an “ideal” obfuscator,
where the original and obfuscated program have identical behaviours (1,2) and
where the obfuscated program is unintelligible to an adversary (3). In practi-
cal contexts these constraints can be relaxed. In particular, in [33–35, 123, 148]
the authors consider a number of obfuscating transformations that make the
obfuscated program significantly slower or larger than the unobfuscated one.
These proposals even allow the obfuscated program to have different side-effects
than the original one, or not to terminate when the original program terminates
with an error condition. The only requirement they make is that the observable
behaviour — namely the behaviour observed by a generic user — of the two
programs should be identical. Besides, many researchers are interested in trans-
formations that raise the difficulty of reverse engineering a program, even if they
do not make it impossible as request by point (3) of the Barak’s definition. In
fact, an obfuscating transformation that requires a very expensive analysis, in
terms of resources and time, to be undone, protects the intellectual property of
proprietary software by making reverse engineering of the obfuscated programs
uneconomical [73]. Moreover, the “ideal” obfuscator of Barak et al. has to be
able to protect every program. In fact the impossibility of code obfuscation is
proved by providing a contrived class of functions that are not obfuscatable. It
would be interesting to understand to which portion of programs of practical
interest this negative result can be applied.

Relaxing the constraints of Barak’s definition, it is reasonable and of practi-
cal interest to study the possibility of obfuscating, i.e., making more difficult to
understand, significant programs. Moreover, some of the authors of the impossi-
bility result have later achieved some positive results on code obfuscation [102],
that, together with the works of Canetti and Wee [17,151], show, under certain
assumptions, how to obfuscate classes of functions of practical interest. On the
other hand, another negative theoretical result, related but even stronger than
the impossibility result, has been proved in [63]. This result enforces the no-
tion of obfuscation of Barak et al. and it is therefore susceptible to the same
limitations.

3.2 Malware Detection 55

3.1.4 Code Deobfuscation

In order to evaluate the resilience of obfuscating transformations, we have to
consider the techniques generally used by a reverse engineer, i.e., the deobfusca-
tion tools available. Deobfuscation techniques are usually based either on static
or on dynamic analysis. While static program analysis is performed without ex-
ecuting the program, dynamic analysis takes place at run time. Common static
analysis techniques include detection of dead code and uninitialized variables,
program slicing [152], alias analysis [92], partial evaluation [36,79], and data flow
analysis [71]. Dynamic analysis is performed by testing the program on sample
input data, since it is infeasible to test all possible program control paths due
to combinatorial explosion. Static analysis is conservative, meaning that the
properties deduced by static deobfuscating techniques are weaker than the ones
that may actually be true (i.e., this corresponds to an over-approximation). This
guarantees soundness, although the inferred properties may be so weak to be
useless. On the other hand, a dynamic analysis precisely observes only a subset
of all possible execution paths of a program (i.e., this corresponds to an under-
approximation). Recent work on combining static and dynamic program analysis
seems to provide a set of heuristics for disclosing some significant obfuscating
techniques [144].

There are few preliminary works on deobfuscation and reverse engineering
complexity. It has been shown that data disassembly and decompilation is un-
decidable in the case of binary code [100]. On the other hand, Appel proved
that, under specific and restrictive conditions, deobfuscation is an NP-easy prob-
lem [4].

As observed earlier code obfuscation cannot fully protect an application
against a malicious reverse engineering attack. In fact, given enough time, ef-
fort and determination, a competent programmer will always be able to reverse
engineer any application. Thus, the power of code obfuscation relies in the pos-
sibility of delaying the release of confidential information for a sufficiently long
time [73]. Once again, the aim of code obfuscation is to confuse the program in
such a way that reverse engineering it becomes uneconomical.

3.2 Malware Detection

A malware is a program with a malicious intent that has the potential to harm,
without the user informed consent, the machine on which it executes or the
network over which it communicates. The growing size and complexity of mod-
ern information systems, together with the growing connectivity of computers
through the Internet have promoted the widespread propagation of malicious
code [110]. The term payload refers to the action that a malicious program is
designed to perform on the infected machine. Malware are usually classified

56 3 Code Obfuscation

according to their propagation method and their payload into the following cat-
egories [110].

• Viruses: A virus is a self-propagating program that attaches itself to host
programs and propagates when an infected program executes. A virus typi-
cally consists of an infection procedure, that searches for a new program to
infect, and of an injure procedure, that performs the virus payload (usually
when a certain condition is satisfied). Some viruses are designed to dam-
age the machines by corrupting programs, deleting files, or reformatting the
hard disk. Other viruses, usually called benign viruses, simply replicate them-
selves. However, also benign viruses compromise the machines, typically by
occupying memory space used and needed by legitimate programs.

• Worms: A malicious program that uses a network to send copies of itself to
other systems is usually called a computer worm. Unlike viruses, worms do
not need an host program to carry them around but rather propagate across
a network. A typical example of this class of malicious programs are email
worms that arrive as email, where the message body or attachment contains
the worm code, and spread through email messages. In general, worms do
not contain a specific payload but they are only designed to spread. However,
the growth in network traffic and other unintended effects are usually causes
of major disruption.

• Trojan horses: As viruses, Trojan horses hide their malicious intent inside
host programs that may look useful, or at least harmless, to an unsuspecting
user. Trojan horses can be either corrupted legitimate programs that execute
malicious code when they run, or standalone programs that masquerade as
something else in order to obtain the user unaware complicity needed to
accomplish their goals. In fact, Trojan horses are characterized by their de-
pendency on actions from the victims, who have at least to run the malicious
code. In order to tempt the user to install such malicious programs, Trojan
horses usually look like something innocuous or desirable (as in the myth).

• Back-doors: A back-door is a computer program designed to bypass local
security policies in order to allow external entities to have remote control
over a machine or a network. Back-doors can either be standalone programs
that are able to avoid casual inspection, or corrupted versions of legitimate
programs.

• Spyware: The term spyware usually refers to malicious programs designed to
monitor users’ actions in order to collect private information and send them
to an external entity over the Internet. Spyware, for example, try to intercept
passwords or credit cards numbers. More generally, a spyware is any program
that subverts users’ operations for the benefit of a third party. Observe that
there are many innocuous spyware that observe and collect information for
benign purposes, for example for advertisement.

3.2 Malware Detection 57

Very harmful attacks can be constructed by combining malicious programs of
different classes. Consider for example a worm with a payload that installs a
new back-door. Every time the worm replicates and infects new machines it
installs a back-door. This provides an easy an fast way to gain remote access to
a growing number of hosts (the infected ones). Despite their differences, every
malicious program exploits some system or network security vulnerability in
order to infect and damage new victims.

3.2.1 Detection Techniques

If, on one hand, the malware detection problem, also known as intrusion de-
tection problem, has attracted researchers attention as an interesting and chal-
lenging problem (e.g. [23,24,111,140]), on the other hand malware writers, i.e.,
hackers, have become more and more clever. As malware detectors improve, be-
ing able to identify the latest and more sophisticated malware, the hackers invent
new methods for evading detection. This co-evolution has lead to the design of
very sophisticated malware and detection algorithms [119]. Intrusion detection
is concerned with the identification of activities that have been generated with
the intention of compromise data or machines [3]. In particular, malware de-
tectors analyze a program (or data) in order to identify activities that may be
indicative of a malicious attack. When this happens the malware detector alerts
the administrator who will handle the situation. Let us briefly present two ma-
jor approaches to malware detection, known as anomaly detection and misuse
detection.

Anomaly detection

This approach is also known as profile-based intrusion detection or statistical
intrusion detection. It assumes that malicious code will cause behaviours dif-
ferent from the ones normally observed in a system. In fact, anomaly detec-
tion is based on the definition of “normality” and classifies as malicious any
activity that deviates from it [111]. It observes the “normal” activities of the
user and then creates behaviour profiles that represent the threshold that di-
vides normal from abnormal behaviours. Such profiles can be modeled using
statistical-based [87, 96], rule-based [145] and immunology-based methods [58].
It is clear that false negatives, i.e., classification of illicit activity as benign, and
false positives, i.e., classification of legitimate activity as malicious, arise due to
the imprecision of the definition of normal behaviour. In fact, classifying what
is normal is a difficult task and involves technical factors as well as some sort of
knowledge from expert users.

Disadvantages of anomaly detection: One of the main drawback of anomaly
detection is that abnormal behaviours are not always a sign of malware infection.

58 3 Code Obfuscation

This may lead to false alarms, i.e., false positives, that report intrusion even if it
has not occurred [2,97]. In fact, systems often exhibit legitimate but previously
unseen behaviours, which leads anomaly detection techniques to produce a high
degree of false alarms. Another problem is that a clever attacker could induce
the anomaly detection system to accept anomalous, i.e., malicious, behaviours
as normal ones by corrupting the system during the training phase [56]. More-
over, in general, modeling normal behaviors is a complicate and computationally
complex task [2, 10].

Advantages of anomaly detection: Anomaly detection has the advantage that
no specific knowledge of malicious code is required in order to detect infection.
Thus, it may potentially discover attacks that have not been seen before [88].
In fact, any activity that differs from the normal behaviour is considered for
further analysis despite what has been previously classified as malicious.

Misuse detection

This detection system is also known as signature-based detection or pattern-based
detection. Misuse detection assumes that attacks can be described through pat-
terns, and every time an occurrence of those patterns is found it is classified as a
potential intrusion [9,111,140]. These systems monitor attacks in order to iden-
tify signatures that contain information distinctive to a specific attack. In fact,
signatures are usually sequences of instructions or events characterizing a known
malicious behaviour [89,136]. Sometimes signatures can express the distribution
of particular actions in a program, in this case we speak of frequency-based sig-
natures. Thus, a signature is a pattern that captures the essence of an attack
and that can be used to identify the attack when it occurs [122]. It is clear that
this technique relies on a list of signatures, traditionally known as signature
databases [114]. Hence, a key point of this approach is the generation of signa-
tures that correctly represent the essence of a malicious behaviour [111]. If the
signatures are too specific, misuse detection may not recognise slight variations
of an attack, while signatures that are too flexible may lead to a great amount
of false alarms.

Disadvantages of misuse detection: The main disadvantage of signature-based
detection is the fact that this systems are not able to detect “new” attacks,
namely attacks for which a signature has not been produced. Signature database
needs to be frequently updated in order to deal with novel kinds of attacks.
Generating signatures is a time consuming and error prone task and requires
a high level of expertise [10, 111], and researchers have lately concentrated on
automatic signature generation techniques (e.g. [14,83,99,120,121,153]).

Advantages of misuse detection: The reason for the widespread deployment
of signature-based detection systems is their low false positive rate and ease of
use. In fact, misuse detection techniques do not consume as much resources as

3.2 Malware Detection 59

anomaly detection systems.

The fact that misuse detection and anomaly detection have advantages that
complement each other, has lead to the development of detection system that
combine the two approaches. These hybrid systems [131, 136] rely on attack
patterns for signature-based detection and, at the same time, they implement
learning and profile algorithms to identify invalid actions [2, 78].

However, misuse detection and anomaly detection have their own limitations
with no clear solutions up to know [111]. Hence, current research on intrusion
detection focuses on ad-hoc techniques for different applications. This approach
turns out to be impractical due to the advancement of Internet and the con-
sequent growth in the application scenarios for intrusion detection. Thus, we
do agree with McHugh, who claims that “further significant progress for intru-
sion detection will depend on the development of an underlying theoretical basis
for it” [111]. Recently attempts to develop such theoretical basis can be found
in [98].

To conclude we mention another common technique for intrusion detection
which is known as specification-based detection. These techniques monitor pro-
grams execution and claim the presence of a malware (or intrusion) when they
detect deviations from programs original behaviours [85,86]. Thus, they rely on
program specifications that describe the intended behaviour of (uninfected) pro-
grams. Specification-based detection systems are similar to anomaly detection
in that they also detect attacks as deviations from a norm. The main difference
being that they are based on manually developed specifications that capture
legitimate systems’ behaviours, and not on machine learning techniques. One of
the main drawback of these techniques is the high cost of the development of
detailed specification, for which an high level of expertise is often needed. This
technique, as well as anomaly detection, has the potential of detecting previ-
ously unseen attacks.

In this thesis we are particularly interested in investigating and improving
signature-based detection techniques (see Chapter 6). For this reason, in the fol-
lowing, we describe the major countermeasures that hackers have implemented
to avoid signature-based detection.

3.2.2 Metamorphic Malware

In order to deal with advanced detection systems malware writers recur to bet-
ter hiding techniques. This co-evolution of defense and attacks techniques has
lead to the development of polymorphic and metamorphic malware.

60 3 Code Obfuscation

Polymorphic malware: Polymorphic malware change their syntactic repre-
sentation, usually by encrypting the malicious payload and decrypting it during
execution. In particular, they use different encryption methods (often randomly
generated) to encrypt the constant part of the malicious code every time they
infect a new machine [118, 141]. Such malware avoid detection until the means
of decryption has been discovered (sometimes inefficiencies in the randomness of
the polymorphic engine may provide an easy solution). Another possibility for
dealing with polymorphic malware consists in executing the possibly infected
program on a virtual computer, where the malware cannot cause damage, and
look at the original malware body produced at run time by the decryption rou-
tine. In fact, once decrypted, all generated polymorphic malware look alike, and
standard signature-based detection schemes can be used.

Metamorphic malware: Metamorphic malware employ a more powerful tech-
nique to avoid detection. The idea is that each successive generation of a malware
modifies the syntax while leaving the semantics unchanged. As observed in the
previous section, code obfuscation is a program transformation that changes the
way in which a program is written but not its semantics. Thus, it is not surprising
that attackers have resorted to program obfuscation for evading malware detec-
tion. Of course, attackers have the choice of creating new malware from scratch,
but that does not appear to be a favored tactic [139]. Program obfuscation trans-
forms a program, either manually or automatically, by inserting new code or
modifying existing code in order to make understanding and detection harder,
at the same time preserving malicious behaviour. It is clear that obfuscating
transformations can easily defeat signature-based detection mechanisms. For ex-
ample, if a signature describes a certain sequence of instructions [140], then those
instructions can be reordered or replaced with equivalent instructions [155,156].
Such obfuscations are especially applicable on CISC architectures, such as the
Intel IA-32 [76], where the instruction set is rich and many instructions have
overlapping semantics. Moreover, if a signature describes a certain distribution
of instructions in the program, insertion of junk code [80, 141, 156] can defeat
frequency-based signatures. In order to deal with metamorphic malware, misuse
detection should keep an updated database of signatures of all possible malware
variations. This is not an easy task, since, in principle, there is an unlimited
number of possible mutations.

In the following we consider a fragment of the Chernobyl/CIH virus, designed
to infect Windows 95/98/NT executables files [132], together with one of its
metamorphic (obfuscated) version. This example is taken from [23]. We report
both the binary and the assembly code of the virus, where (∗) denotes the
instructions added by the transformation.

3.2 Malware Detection 61

Original code

E8 00000000 call 0h

5B pop ebx

8D 4B 42 lead ecx, [ebx + 42h]

51 push ecx

50 push eax

50 push eax

0F01 4C 24 FE sidt [esp - 02h]

5B pop ebx

83 C3 1C add ebx, 1Ch

FA cli

8B 2B mov ebp, [ebx]

Obfuscated code

E8 00000000 call 0h
5B pop ebx

8D 4B 42 lead ecx, [ebx + 42h]

90 nop (∗)
51 push ecx

50 push eax

50 push eax

90 nop (∗)
0F01 4C 24 FE sidt [esp - 02h]

5B pop ebx

83 C3 1C add ebx, 1Ch

90 nop (∗)
FA cli

8B 2B mov ebp, [ebx]

Table 3.1. Original and obfuscated code from Chernobyl/CIH

The following table reports the two different signatures needed by misuse detec-
tion schemes to deal with the different versions of the virus.

Signature for the original code

E800 0000 005B 8D4B 4251 5050
0F01 4C24 FE5B 83C3 1CFA 8B2B

Signature for the obfuscated code

E800 0000 005B 8D4B 4290 5150
5090 0F01 4C24 FE5B 83C3 1C90
FA8B 2B

Table 3.2. Signatures

As observed in [150] the metamorphic malware phenomena is not confined to a
particular programming language. In fact, in every Turing-complete program-
ming language there is some redundancy, meaning that the mapping from syntax
to semantics is many-to-one. This redundancy is at the basis of metamorphic
malware, that can evade detection by generating syntactic variants at run time.

There is strong evidence that commercial malware detectors are susceptible
to common obfuscation techniques used by malware writers. For example, it
has been proved that malware detectors cannot handle obfuscated versions of
worms [24], and there are a numerous obfuscating techniques designed to avoid
detection (e.g., [55, 81, 129, 140]). Thus, an important requirement of a robust
malware detection technique is to handle obfuscating transformations.

62 3 Code Obfuscation

3.2.3 Theoretical Limitations

An introduction to theoretical computer virology can be found in the early work
of Cohen [26]. In particular, Cohen proposes a formal definition of computer
virus based on the Turing’s model of computation, and proves that precise virus
detection is undecidable [27], namely that there is no algorithm that can reliably
detect all viruses. Cohen shows also that the detection of evolutions of viruses
from normal viruses is undecidable [28], namely that metamorphic malware
detection is undecidable. These results have been obtained following a reasoning
similar to the one used to prove the undecidability of the Halting Problem [143].
A related undecidability result is the one of Chess and White [20], who prove
the existence of a virus type that cannot be detected. Adleman [1] is another
researcher who has applied formal computability theory to viruses and viruses
detection, showing that the problem is quite intractable.

Despite these results, proving that, in general, viruses detection is impossible,
it is possible to develop ad-hoc detection schemes that work for specific viruses
(malware).

The (simpler) problem of detecting a mutation of a known finite-length virus
has been recently considered. It turns out that the problem of reliably identifying
a bounded-length mutating virus is NP-complete [137].

With the advent of polymorphic and metamorphic malware, the malware
detection community has begun to face these theoretical limits and to develop
detection systems based on formal methods of program analysis.

3.2.4 Formal Methods Approaches

In this section we give a brief presentation of some of the existing approaches
to malware detection based on formal methods. We do agree with Lakhoita and
Singh, who state that “formal methods for analysing programs for compilers and
verifiers when applied to anti-virus technologies are likely to produce good results
for the current generation of malicious code” [91].

Program Semantics: Christodorescu and Jha [25] observe that the main defi-
ciency of misuse detection is its purely syntactic nature, that ignores the meaning
of instructions, namely their semantics. Following this observation, they propose
an approach to malware detection that considers the malware semantics, namely
the malware behaviour, rather than its syntax. Malicious behaviour is described
through a template, namely a generalization of the malicious code that expresses
the malicious intent while eliminating implementation details. The idea is that
a template does not distinguish between irrelevant variants of the same malware
obtained through obfuscation processes. For example, a template uses symbolic
variable/constants to handle variable and register renaming, and it is related to

3.2 Malware Detection 63

the malware control flow graph in order to deal with code reordering. Then, they
propose an algorithm that verifies if a program presents the template behaviour,
using some unification process between program variables/constants and mal-
ware symbolic variables/constants. This detection approach is able to handle a
limited set of obfuscations commonly used by malware writers.

Static Analysis: Bergeron et al. propose a malware detection scheme based on
the detection of suspicious system call sequences [12]. In particular, they consider
a reduction (subgraph) of the program control flow graph, which contains only
the nodes representing certain system calls. Next they check if such subgraph
presents known malicious sequences of system calls.

Christodorescu and Jha [23] describe a malware detection system based on
language containment and unification. The malicious code and the possibly in-
fected program are modeled as automatons (using unresolved symbols and place-
holders for registers to deal with some sorts of obfuscations). In this setting, a
program presents a malicious behaviour if the intersection between the language
of the malware automaton and the one of the program automaton is not empty.

Model Checking : Singh and Lakhotia [135] specify malicious behaviours
through a formula in linear temporal logic (LTL), and then use the model
checker SPIN to check if this property is satisfied by the control flow graph
of a suspicious program.

Kinder et al. [84] introduce a new temporal logic CTPL (Computation Tree
Predicate Logic), which is an extension of the branching time temporal logic
CTL, that takes into account register renaming, allowing a succinct and nat-
ural presentation of malicious code patterns. They develop a model checking
algorithm for CTPL that, checking if a program satisfies a malware property
expressed by a CTPL formula, verifies if the program is infected by the consid-
ered malicious behaviour.

Model checking techniques have recently been used also in worm quarantine
applications [13]. Worm quarantine techniques seek to dynamically isolate the
infected population from the population of uninfected systems, in order to fight
malware infection.

Program Slicing : Lo et al. [101] develop a programmable static analysis tool,
called MCF (Malicious Code Filter), that uses program slicing and flow anal-
ysis to detect malicious code. Their approach relies on tell-tale signs, namely
on program properties that characterize the maliciousness of a program. MCF
slices the program with respect to these tell-tale signs in order to get a smaller
program segment that might perform malicious actions. These segments are fur-
ther analyzed in order to determine the existence of a malicious behaviour.

64 3 Code Obfuscation

Data Mining : Data mining techniques try to discover new knowledge in large
data collections. In particular, data mining identifies hidden patterns and trends
that a human would not be able to discover efficiently on large databases, em-
ploying, for example, machine learning and statistical analysis methods. Lee et
al. [93–95] have studied ways to apply data mining techniques to intrusion de-
tection. The basic idea is to use data mining techniques to identify patterns of
relevant system features, describing program and user behaviour, in order to
recognise both anomalies and known malicious behaviours.

4

Code Obfuscation as Semantic Transformation

o

b

f

u

s

c

a

t

i

o

n

Alice Bob

Attacker

Rev.Eng.

Piracy

Tamper

The Malicious Host Perspective

Following a standard definition, an obfuscator is a potent program transfor-
mation that preserves the observational behaviour of programs, where potent
means that the obfuscated program is more difficult to understand, i.e., more
complex, than the original one [35]. If on one side obfuscating transformations
aim at confusing some information, on the other side they must preserve pro-
gram behaviour (i.e., program semantics) to some extent. Even if obfuscating
techniques are semantic preserving transformations, the lack of a complete for-
mal setting where these transformations can be studied prevents any possibility
of comparing them with respect to their ability to obfuscate properties of pro-
gram behaviour (i.e., semantic properties). One of the main problem here is
to fix a metrics for program complexity. We have seen that, usually, syntactic
(textual) measures are considered, such as code length, nesting levels, fan-in-out

66 4 Code Obfuscation as Semantic Transformation

complexity, branching, etc. [34]. Semantics-based measures are instead less com-
mon, even thought they may provide a deeper insight into the true potency of
code obfuscation. In order to understand program complexity from a semantic
point of view, we need a formal model for attackers, i.e., for code deobfuscation
techniques. Reverse engineering usually begins with a static program analysis
of the program. Recently, it has been shown that efficient deobfuscation tech-
niques can be obtained by combining static and dynamic analysis [144]. It is well
known that static analysis can be completely and fully specified as an abstract
interpretation, i.e., as an approximation, of concrete program semantics [41],
while dynamic analysis can be seen as a possibly non decidable approximation
of the concrete semantics. Thus, when dealing with static and dynamic attackers
syntactic measures of program complexity can be misleading. More significant
measures have to be derived from semantics and this, as far as we know, is an
open problem.

In this chapter we face this problem by providing a theoretical framework,
based on program semantics and abstract interpretation, where formalizing,
studying and relating existing code obfuscation transformations with respect to
their potency and resilience to attacks. As noticed above, code obfuscation aims
at obstructing static or dynamic analysis which can both be expressed as ap-
proximations of concrete program semantics. In this sense, code obfuscation can
be seen as a way to prevent that some information about program behaviour is
disclosed by an abstract interpretation of its semantics. This observation natu-
rally leads us to consider abstract interpretations of concrete program semantics
as a formal model for attackers, and obfuscations as semantic transformations.
In Section 2.3 we have presented the recent result of Cousot and Cousot, who
formalize the relation between syntactic and semantic transformations in the
abstract interpretation field, where programs are seen as abstractions of their
semantics [44]. This result allows us to relate, in the abstract interpretation
framework, each syntactic transformation (code obfuscation) to its semantic
counterpart and vice versa. In this setting, the lattice of abstract interpretations
provides the right framework to compare attackers by comparing abstractions.
This leads us to introduce a semantics-based definition of potency of obfuscating
transformations.

Requiring, as usual, obfuscating transformations to preserve input-output
(denotational) semantics of programs, seems to be an unreasonable restriction:
Semantics at different level of abstractions can be related by abstract interpreta-
tion in a hierarchy of semantics [40]. Thus, in general, a program transformationt which preserves a given semantics in the hierarchy, acts as an obfuscator with
respect to the properties that are not preserved by t. The idea is that a program
transformation t is potent if there exists a semantic property, i.e., a semantic
abstraction, that is not preserved by t. In this setting, every program transfor-
mation can be characterized in terms of the most concrete property it preserves

4.1 Standard Definition of Code Obfuscation 67

on the concrete semantics. This mapping of code transformations to the lat-
tice of abstract interpretations allows us to measure and compare the potency
of different obfuscating transformations. The idea is that, the more abstract is
the most concrete property preserved by a transformation the more potent the
transformation is, namely the bigger is the amount of obscurity added by the
transformation. In order to characterize the obfuscating behaviour of each pro-
gram transformation t, we provide a systematic methodology for deriving the
most concrete property that is preserved by a given t. This leads to a semantics-
based definition of code obfuscation, introduced in Section 4.2, where a program
transformation is a Q-obfuscator if: (1) Q is the most concrete property pre-
served by the transformation, and (2) there is a not empty set of properties
that are not preserved, i.e., obfuscated, by the transformation characterized in
terms of Q. We show that this definition of obfuscation is a generalization of
the standard notion of code obfuscation (see Theorem 4.5). This is witnessed by
the fact that, in principle, following our definition, any program transformation
may potentially act as a code obfuscation. As an example of our claim, in Sec-
tion 4.4, we study the obfuscating behaviour of the well known transformation
performing constant propagation. The results presented in this chapter has been
published in [48].

4.1 Standard Definition of Code Obfuscation

As observed earlier, code obfuscation is a potent program transformation that
preserves the observational behaviour of programs. More formally, code obfus-
cation has been defined as follows.

Definition 4.1. [31, 34, 35] A program transformation t : P → P is an obfus-
cator if:

1. transformation t is potent and
2. P and t[[P]] have the same observational behavior, i.e., if P fails to terminate

or it terminates with an error condition then t[[P]] may or may not terminate;
otherwise t[[P]] must terminate and produce the same output as P .

Point 2 of the above definition requires the original and obfuscated program to
behave equivalently in case of termination, namely on the maximal finite traces,
while no constraints are specified for infinite traces, i.e., in the case of non termi-
nation or error. This means that in order to classify a program transformationt as an obfuscation, we have to analyze the behaviour of the corresponding
semantic transformation t = S ◦ t ◦ p only on finite traces terminating with a
final/blocking state. Thus, we can focus only on finite traces, considering the do-
main Σ+ of maximal finite trace semantics instead of the more concrete domain

68 4 Code Obfuscation as Semantic Transformation

Σ∞. In the following, a semantic transformation t is called a (semantic) obfus-
cator in the sense of Definition 4.1, if t is induced by a syntactic transformationt that is an obfuscator according to the above definition. This is because, as ob-
served earlier, semantic obfuscations, being the semantic counterpart of code ob-
fuscation, are algorithmic transformations. Recall that the maximal finite trace
semantics, also known as angelic semantics, computed on Σ+ can be formalized
as an abstraction of the maximal trace semantics computed on Σ∞ [40]. In par-
ticular the angelic semantics is obtained by approximating sets of possibly finite
or infinite traces with the set of finite traces only, i.e., α+ : ℘(Σ∞) → ℘(Σ+)
is defined as α+(X)

def
= X ∩ Σ+ = X+, while γ+ : ℘(Σ+) → ℘(Σ∞) is given by

γ+(Y)
def
= Y ∪Σω. Thus, we have the adjunction shown in Fig. 4.1.

α+

t

t+ ℘(Σ+)

℘(Σ+ ∪ Σω)℘(Σ+ ∪ Σω)

℘(Σ+)

γ+ γ+
α+

Fig. 4.1. t+ = α+ ◦ t ◦ γ+

The following result shows that the preservation of the observational behaviour
(point 2 of Definition 4.1) can be equivalently verified on t : ℘(Σ∞) → ℘(Σ∞)
or on its best correct approximation t+ = α+ ◦ t ◦ γ+ : ℘(Σ+)→ ℘(Σ+).

Proposition 4.2. The semantic transformation t : ℘(Σ∞)→ ℘(Σ∞) preserves
the observational behaviour if and only if t+ : ℘(Σ+) → ℘(Σ+) does, where
t+

def
= α+ ◦ t ◦ γ+.

proof: Observe that [t(S∞[[P]]) ∩ Σ+ = t+(S+[[P]])] since t+ behaves as t on
finite traces:

t preserves the observational behaviour

⇔ ∀σ ∈ S∞[[P]]: σ ∈ Σ+, ∃η ∈ t(S∞[[P]]): η ∈ Σ+, σ0 = η0, σf = ηf

⇔ ∀σ ∈ S∞[[P]] ∩Σ+, ∃η ∈ t(S∞[[P]]) ∩Σ+: σ0 = η0, σf = ηf

⇔ ∀σ ∈ S+[[P]], ∃η ∈ t(S∞[[P]]) ∩Σ+: σ0 = η0, σf = ηf

[t(S∞[[P]]) ∩Σ+ = t(S+[[P]]) = t+(S+[[P]])]

⇔ ∀σ ∈ S+[[P]], ∃η ∈ t+(S+[[P]]): σ0 = η0, σf = ηf

⇔ t+ preserves the observational behaviour

�

4.2 Semantics-based Definition of Code Obfuscation 69

From now on, t refers to a semantic transformation of sets of finite traces,
namely t : ℘(Σ+)→ ℘(Σ+). Recall that in [44] it has been observed that, given
a finite trace semantics, i.e., a set of finite traces, it is always possible to derive a
program transformation by collecting all the commands along such traces. This
is formalized by function p+ : ℘(Σ+) → ℘(C) that maps set of traces into sets
of commands according to the following definition:p+(X)

def
=

{
C

∣∣∃σ ∈ X : ∃i ∈ [0, |σ|[: ∃ρ ∈ E : σi = 〈C, ρ〉
}

From now on we consider the following specification of the Galois connec-
tion (2.3) defining the relation between programs and their semantics, where
the concretization map is given by the semantic function S+ and the abstrac-
tion map by p+:

〈℘(Σ+),⊆〉 →−→←−p+

S
+

〈P/
≖
,⊆〉 (4.1)

Fig. 4.2 summarizes the observations done so far on code obfuscation and spec-
ifies the relation between syntactic and semantic obfuscating transformations,
where t ◦ S+ = S+ ◦ t.

S+

t
t

P

t(S+[[P]]) = S+[[t[[P]]]]S
+[[P]]

S
+p+

t[[P]]p+

Fig. 4.2. Semantic and syntactic obfuscation

4.2 Semantics-based Definition of Code Obfuscation

As noticed above, one major drawback of existing code obfuscation techniques is
the weakness of their theoretical basis, that makes it difficult to formally study
and certify their effectiveness. Our idea is to face this problem by providing a
theoretical framework, based on program semantics and abstract interpretation,
where formalizing, studying and relating code obfuscating transformations with
respect to their potency and resilience to attacks.

If on one side obfuscating transformations attempt to mask the program be-
havior in order to confuse the attacker, on the other side they must preserve
the observational behaviour of programs. Preservation of the observational be-
haviour is guaranteed by the preservation of the denotational semantics DenSem,

70 4 Code Obfuscation as Semantic Transformation

i.e., by the preservation of the input-output behavior of program executions. Re-
call that program semantics formalizes program behaviour for every possible in-
put. The set of all program traces, i.e., the maximal trace semantics, expressing
the evolution of program states during every possible computation, is a possible
formalization of program behaviour, namely a possible program semantics. In
the literature there exists many different program semantics. The most common
ones include the big-step, termination and non-termination, Plotkin’s natural,
Smyth’s demonic, Hoare’s angelic relational and corresponding denotational, Di-
jkstra’s predicate transformer weakest-precondition and weakest-liberal precon-
dition and Hoare’s partial and total axiomatic semantics. In [40] Cousot defines
a hierarchy of semantics, where the above semantics are all derived by successive
abstractions from the maximal trace semantics – also called concrete semantics
is the following. In this framework uco(℘(Σ∞)) represents the lattice of abstract
semantics, namely each closure in uco(℘(Σ∞)) expresses an abstraction of max-
imal trace semantics. Consider for example the (natural) denotational semantics
DenSem that abstracts away the history of the computation by observing the
input/output relation of finite traces and the input of diverging computations
only. It is clear that DenSem can be formalized as an abstract interpretation of
the maximal trace semantics, in fact DenSem(X) is equal to:

{
σ ∈ Σ+

∣∣∃δ ∈ X+. σ0 = δ0 ∧ σf = δf
}
∪

{
σ ∈ Σω

∣∣∃δ ∈ Xω.σ0 = δ0
}

where X+ def
= X ∩Σ+ and Xω def

= X ∩Σω. In this context, considering that only
the input/output denotational semantics is preserved as in Definition 4.1 is a
restriction on the possible preserved semantics of a program transformation.
Our idea is to relax this constraint by providing a definition of code obfuscation
which is parametric on the semantic properties to preserve.

We have seen that one of the characterizing features of obfuscating transfor-
mation is the fact that they are potent. Thus, in order to give a semantics-based
definition of code obfuscation, we need to introduce a definition of program
transformation potency based on semantics S+.

Definition 4.3. A program transformation t : P→ P is potent if there exists a
semantic property ϕ ∈ uco(℘(Σ+)) and a program P ∈ P such that: ϕ(S+[[P]]) 6=
ϕ(S+[[t[[P]]]]).

The idea is that a program transformation t is potent when there exists a se-
mantic property ϕ ∈ uco(℘(Σ+)) that is not preserved by t, namely when there
exists a property ϕ obfuscated by t. Given a program transformation t, each
semantic property ϕ ∈ uco(℘(Σ+)) can be classified either as a preserved or as
a masked property with respect to t. Thus, in order to distinguish between the
properties that are preserved and the ones that are hidden by a transformationt, it is useful to define the most concrete property δt ∈ uco(℘(Σ+)) preserved

4.2 Semantics-based Definition of Code Obfuscation 71

by a given transformation t on all programs. Let {ϕi}i∈H be the set of all prop-
erties preserved by t, i.e., ∀i ∈ H : ∀P ∈ P : ϕi(S

+[[P]]) = ϕi(S
+[[t[[P]]]]), then

⊓i∈Hϕi(S
+[[P]]) = ∩i∈Hϕi(S

+[[P]]) = ∩i∈Hϕi(S
+[[t[[P]]]]) = ⊓i∈Hϕi(S

+[[t[[P]]]]).
Thus, given a program transformation t, there exists an unique most concrete
preserved property δt. Moreover, property δt can be specified as the least com-
mon abstraction between the properties preserved by transformation t on pro-
grams:

δt def
= ⊓

{
ϕ ∈ uco(℘(Σ+))

∣∣∀P ∈ P : ϕ(S+[[P]]) = ϕ(S+[[t[[P]]]])
}

or equivalently:

δt def
= ⊓

{
ϕ ∈ uco(℘(Σ+))

∣∣∀P ∈ P : ϕ(S+[[P]]) = ϕ(t(S+[[P]]))
}

since we are considering algorithmic transformations where S+ ◦ t = t ◦ S+ and
therefore ϕ is preserved by t if and only if it is preserved by t. Given the most
concrete property δt preserved by transformation t, we can classify each semantic
property ϕ ∈ uco(℘(Σ+)) either as obfuscated or preserved with respect to t. It
is clear that for every ϕ ∈ uco(℘(Σ+)) such that δt ⊑ ϕ, property ϕ is preserved
by transformation t. Moreover, ϕ ⊖ (δt ⊔ ϕ) precisely expresses the aspects of
property ϕ ∈ uco(℘(Σ+)) that are obfuscated by transformation t. In fact,
the least common abstraction δt ⊔ ϕ represents what the two properties have
in common, then by “subtracting” this common part from ϕ we obtain what
transformation t hides of property ϕ. Consequently, we say that a property ϕ is
obfuscated by a transformation t when ϕ⊖(δt⊔ϕ) 6= ⊤, namely when something
of the property ϕ has been lost during the transformation t. In fact, if property
ϕ is preserved we have δt ⊑ ϕ and therefore ϕ ⊖ (δt ⊔ ϕ) = ⊤. Following this
observation, we formalize the set of properties that are masked by a program
transformation as follows:

Oδt =
{
ϕ ∈ uco(℘(Σ+))

∣∣ϕ⊖ (δt ⊔ ϕ) 6= ⊤
}

The collection Oδt precisely identifies the set of properties that are not preserved
by transformation t. In fact, ϕ ⊖ (δt ⊔ ϕ) = ⊤ if and only if ϕ = δt ⊔ ϕ if and
only if δt ⊑ ϕ if and only if ϕ is preserved by t. Thus, a program transformationt : P → P can be seen as an obfuscating transformation that preserves all the
properties ϕ such that δt ⊑ ϕ and obfuscates all the properties in Oδt . Hence,
the obfuscating behaviour of a transformation t can be characterized in terms of
the most concrete property it preserves. These observations lead to the following
definition of code obfuscation.

Definition 4.4. t : P→ P is a δ-obfuscator if δ = δt and Oδ 6= ∅.

It is possible to show how our semantics-based definition of code obfuscation
provides a generalization of the standard notion of obfuscator by Collberg et al.

72 4 Code Obfuscation as Semantic Transformation

reported in Definition 4.1. In fact, given the familyO of program transformations
that are classified as obfuscators following Collberg’s definition, it turns out thatO corresponds to the set of δ-obfuscators where δ is at least the denotational
semantics.

Theorem 4.5. O =
{
δ-obfuscators

∣∣δ ⊑ DenSem
}
.

proof: We have to show that O = {t | δt ⊑ DenSem, Oδt 6= ∅}. The condition
Oδt 6= ∅ requires transformation t to be potent, and it is therefore equivalent to
point 1 of Definition 4.1. Thus, we have to show that the program transforma-
tions that preserve at least the DenSem of programs are the ones that preserve
the observational behaviour, namely that satisfy point 2 of Collberg’s definition.t ∈ { t ∣∣ δt ⊑ DenSem

}
⇔ ∀P ∈ P : δt(S+[[P]]) = δt(t(S+[[P]]))

⇔ ∀σ ∈ S+[[P]], ∃η ∈ t(S+[[P]]): σ0 = η0, σf = ηf

⇔ t preserves the observational behaviour

[from Prop 4.2]

⇔ t preserves the observational behaviour

�

The formalization of the notion of code obfuscation introduced by Definition 4.4
allows us to consider every program transformation as a potential code obfus-
cator, where the potency of the transformation is expressed in terms of the
most precise preserved property. Moreover, it generalizes the standard defini-
tion of code obfuscation, where obfuscating transformations are not forced to
be DenSem-preserving but they can also be more invasive as far as the preserved
property maintains enough information with respect to the current need. For
example, let us consider an application P that is responsible of keeping updated
the total amount tot of the bank account of each client, and an application
Q that sends a warning to the bad clients every time their total amount tot
corresponds to a negative value. Assume that we are interested in protecting
application P through code obfuscation. It is clear that, in order to ensure the
proper execution of application Q, the obfuscated version of application P has
to preserve (at least) the sign of variable tot . This means that, we can allow
obfuscations that loose the observational behaviour of application P but not
the sign of variable tot . In this setting, a program transformation that replaces
the value of variable tot with its double 2tot is an obfuscation following our
definition, while it is not an obfuscation following Collberg’s definition.

Moreover, it is clear that our notion of code obfuscation provides a more pre-
cise characterization of the obfuscating behaviour of a program transformation t
even when t satisfies the Collberg’s definition. In fact, while the standard notion
of obfuscation only distinguish between transformations that preserve DenSem

4.2 Semantics-based Definition of Code Obfuscation 73

and the ones that do not preserve DenSem, our definition of code obfuscation
relies on a much finer classification that distinguishes between every possible
abstractions of trace semantics.

4.2.1 Constructive characterization of δt
As argued above, the most concrete property δt, preserved by program trans-
formation t, specifies the obfuscating behaviour of t by defining the borderline
between masked and preserved properties. Thus, in order to view any transfor-
mation t as a potential obfuscation, we need a constructive methodology for
deriving the most concrete property preserved by t. We have already observed
that obfuscating transformations are algorithmic transformations and therefore
S+ ◦ t = t ◦S+. This means that for every property ϕ ∈ uco(℘(Σ+)), and every
program P ∈ P we have that ϕ(S+[[t[[P]]]]) = ϕ(t(S+[[P]])). This means that a
property ϕ is preserved by program transformation t if and only if it is preserved
by its semantic counterpart t = S+ ◦ t ◦ p. Thus, when dealing with preserved
properties we can equivalently refer to the syntactic or to the semantic trans-
formation. In this section we consider the semantic transformation since we find
it more convenient.

Given a program P ∈ P and a semantic transformation t : ℘(Σ+)→ ℘(Σ+),
we can define a domain transformer KP,t : uco(℘(Σ+)) → uco(℘(Σ+)) that,
given an abstract domain µ ∈ uco(℘(Σ+)), returns the most concrete domain
that abstracts µ and that is preserved by transformation t on program P . For-
mally:

KP,t
def
= λµ. ⊓

{
ϕ ∈ uco(℘(Σ+))

∣∣µ ⊑ ϕ ∧ ϕ(S+[[P]]) = ϕ(t(S+[[P]]))
}

Intuitively KP,t looses the minimal amount of information with respect to a
given abstract domain in order to obtain a property preserved by t on P . Con-
sequently, KP,t(id) is the most concrete property preserved by transformation
t on program P . By definition KP,t(id) is a closure operator and it is therefore
uniquely determined by the set of its fixpoints. In the following we characterize
the elements of such closure in terms of a predicate on sets of traces.

Let us define PresP,t(X) as a predicate over set of traces parametrized on
a program P and a semantic transformation t : ℘(Σ+) → ℘(Σ+) that, given a
subset of program traces X ⊆ S+[[P]], evaluates to true if and only if the set X
is closed under transformation t, namely:

PresP,t(X) = true ⇔ ∀Y ⊆ S+[[P]] : Y ⊆ X ⇒ t(Y) ⊆ X

Hence, the predicate PresP,t(X) characterizes the set of traces X ∈ ℘(Σ+) that
are preserved by transformation t on program P . The following result shows
how the collection of sets of traces X ∈ ℘(Σ+) satisfying PresP,t characterizes
a semantic property preserved by transformation t on program P .

74 4 Code Obfuscation as Semantic Transformation

Lemma 4.6. Given a semantic transformation t : ℘(Σ+) → ℘(Σ+) and a pro-
gram P ∈ P, the set ϕP,t(℘(Σ+)) = {X ∈ ℘(Σ+) | PresP,t(X)} is a closure,
namely ϕP,t ∈ uco(℘(Σ+)). Moreover, property ϕP,t is preserved by t on P .

proof: Let us show that {X ∈ ℘(Σ+) | PresP,t(X)} is a Moore family. It is clear
that ∀X ⊆ Σ+: t(X) ⊆ Σ+, therefore Σ+ is the top element and belongs to
ϕP,t(℘(Σ+)). Moreover, {X ∈ ℘(Σ+) | PresP,t(X)} is closed under glb, namely
given {Xi}i∈I such that ∀i ∈ I : PresP,t(Xi) = true, then Pres(∩i∈IXi) = true.
In fact Y ⊆ ∩i∈IXi means that ∀i ∈ I : Y ⊆ Xi, therefore by hypothesis
∀i ∈ I : t(Y) ⊆ Xi, meaning that t(Y) ⊆ ∩i∈IXi. Therefore, there exists a
closure operator, denoted ϕP,t ∈ uco(℘(Σ+)), such that ϕP,t(℘(Σ+)) = {X ∈
℘(Σ+) | PresP,t(X)}. Let us show that ϕP,t is preserved by t on P , namely that
ϕP,t(S

+[[P]]) = ϕP,t(t(S
+[[P]])). Assume that ϕP,t(S

+[[P]]) 6= ϕP,t(t(S
+[[P]])),

this means that there exist X ∈ ϕP,t such that S+[[P]] ⊆ X while t(S+[[P]]) 6⊆ X ,
which is impossible since X ∈ ϕP,t and therefore PresP,t(X) holds.

�

Moreover, it is possible to show that the property ϕP,t(℘(Σ+)) = {X ∈
℘(Σ+) | PresP,t(X)} induced by predicate PresP,t is the most concrete property
preserved by transformation t on program P .

Theorem 4.7. KP,t(id)(℘(Σ+)) =
{
X ∈ ℘(Σ+)

∣∣PresP,t(X)
}
.

proof: Let us show that KP,t(id) = ϕP,t. By definition KP,t(id) is the most
concrete preserved property, while from Lemma 4.6 ϕP,t is a preserved prop-
erty, therefore KP,t(id) ⊑ ϕP,t. We have to show that ϕP,t ⊑ KP,t(id),
namely KP,t(id)(℘(Σ+)) ⊆ ϕP,t(℘(Σ+)). Let us assume that there exists an
element X ∈ KP,t(id)(℘(Σ+)) such that X 6∈ ϕP,t(℘(Σ+)). This means that
PresP,t(X) = false, namely that there exists Y ⊆ S+[[P]] such that Y ⊆ X while
t(Y) 6⊆ X , which implies X 6∈ KP,t(id)(℘(Σ+)), leading to a contradiction.

�

It follows that KP,t(id)(℘(Σ+)) = {X ∈ ℘(Σ+) | PresP,t(X)} is the most con-
crete property preserved by the transformation t on program P . Hence, the most
concrete property preserved by t on all programs, is given by the least upper
bound between the most concrete properties preserved on each program P ∈ P
by t, i.e.,

⊔
P∈PKP,t(id). More precisely the following holds.

Theorem 4.8. Let t : P→ P, then δt =
⊔

P∈PKP,S+◦t◦p(id).
proof: Let us first show that

⊔
P∈PKP,t(id) is the most concrete property pre-

served by transformation t on all programs. (1)
⊔

P∈PKP,t(id) is preserved:
observe that given a program Q ∈ P then KQ,t(id) ⊑

⊔
P∈PKP,t(id), by

hypothesis KQ,t(id) is preserved by t on program Q, therefore ∀Q ∈ P :⊔
P∈PKP,t(id)(S+[[Q]]) =

⊔
P∈PKP,t(id)(t(S+[[Q]])). (2)

⊔
P∈PKP,t(id) is the

4.2 Semantics-based Definition of Code Obfuscation 75

most concrete property preserved by t. Consider η ∈ uco(℘(Σ+)) such that
∀P ∈ P : η(S+[[P]]) = η(t(S+[[P]])), then

⊔
P∈PKP,t(id) ⊑ η iff ∀P ∈ P :

KP,t(id) ⊑ η which is true since KP,t(id) is the most concrete property pre-
served by t on P . To conclude recall that t is an algorithmic transformation,
therefore we can write t = S+ ◦ t ◦ p.

�

Example 4.9. Let us consider the semantic transformation t : ℘(Σ+) → ℘(Σ+)
that given a set of traces S ∈ ℘(Σ+), returns t(S) = {t(σ) | σ ∈ S}, where t(σ) =
t(σ0, . . . , σf) = σf . Thus, given a program trace σ transformation t returns its
final state σf . Therefore, t(S+[[P]]) collects the final states of the execution of
program P on every possible input. Given a program P , the set of traces that
satisfy predicate PresP,t corresponds to the set of traces that have the same final
state. Formally for each final state σf of the execution of program P we define
the set of traces ending with σf as Xσf = {µ ∈ S+[[P]] | µf = σf}. It is clear that
for each Xσf we have that PresP,t(Xσf) holds, in fact ∀Y ⊆ S+[[P]]: Y ⊆ Xσf ⇒
t(Y) ⊆ Xσf . Following Theorem 4.7 we have that FinalP = {Xσf | ∃σ ∈ S+[[P]] :
σ = σ0 . . . σf} is the most concrete property preserved by t on program P . This
means that the most concrete property preserved by t on all programs is given
by the least upper bound over all programs of the abstract domains FinalP , i.e.,⊔

P∈P FinalP , which is the closure that has as fixpoints the set of finite traces
in Σ+ that have the same final state.

�

4.2.2 Comparing Transformations

The semantics-based definition of obfuscation, that characterizes the obfuscat-
ing behaviour of a program transformation t in terms of the most concrete
preserved property δt, allows us to compare obfuscating transformations with
respect to their potency, namely according to the most concrete preserved prop-
erty. In other words, it allows us to formalize a partial order relation between
obfuscating transformations with respect to the sets of properties hidden by
the transformations. On one hand, it is natural to think that a transforma-
tion is more potent than another one if it obfuscates larger amount of semantic
properties. On the other hand, it may be interesting to compare the potency
of different obfuscating transformations with respect to a particular property
φ ∈ uco(℘(Σ+)). In this second case, the idea is that a transformation t′ is
more potent than a transformation t with respect to φ if t′ obfuscates property
φ more than what t does. This means that t′ is more efficient than t in hiding
property φ of program semantics.

Definition 4.10. Given two program transformations t, t′ : P → P and a se-
mantic property φ ∈ uco(℘(Σ+)) such that φ ∈ Oδt ∩Oδt′ , we have that:

76 4 Code Obfuscation as Semantic Transformation

– t′ is more potent than t, denoted by t≪ t′, if Oδt ⊆ Oδt′
– t′ is more potent than t with respect to φ, denoted t≪φ t′, if φ⊖ (δt′ ⊔ φ) ⊑

φ⊖ (δt ⊔ φ)

From the structure of the lattice of abstract interpretations uco(℘(Σ+)) it is
possible to give an alternative characterization of the set Oδt of properties ob-
fuscated by a program transformation t. This leads to the observation of some
basic properties that relate transformations and preserved properties to the set
of masked properties.

Proposition 4.11. Given two properties δ, µ ∈ uco(℘(Σ+)), we have that:

(1)Oδ = {µ ∈ uco(℘(Σ+)) | µ /∈↑ δ}
(2)If µ ⊏ δ then Oµ ⊆ Oδ, namely the transformation that preserves δ is more

potent than the one that preserves µ
(3)Oδ⊔µ = Oδ ∪Oµ

proof:

(1)Recall that, given a lattice C and a domain D such that C ⊑ D, then
C ⊖D = ⊤ ⇔ C = D [67]. Thus: µ⊖ (δ ⊔ µ) 6= ⊤ ⇔ δ ⊔ µ 6= µ ⇔ µ 6∈↑ δ.
Therefore, the set {µ ∈ uco(℘(Σ+)) | µ⊖ (δ ⊔ µ) 6= ⊤} is equivalent to the
set {µ ∈ uco(℘(Σ+)) | µ 6∈↑ δ}.

(2)We have to prove that ∀φ ∈ Oµ then φ ∈ Oδ. By definition a property φ
belongs to Oµ iff φ ∈↑ µ = {ϕ | µ ⊑ ϕ}. By hypothesis µ ⊑ δ, therefore if
δ ⊑ ϕ then µ ⊑ ϕ, therefore ↑ δ ⊆↑ µ. This means that if φ 6∈↑ µ then φ 6∈↑ δ,
namely if φ ∈ Oµ then φ ∈ Oδ.

(3)We need to show that φ 6∈↑ δ ∧ φ 6∈↑ µ ⇔ φ 6∈↑ (δ ⊔ µ). This is
equivalent to φ ∈↑ δ ∧ φ ∈↑ µ ⇔ φ ∈↑ (δ ⊔ µ), which is true since
δ ⊑ φ ∧ µ ⊑ φ ⇔ δ ⊔ µ ⊑ φ.

�

4.3 Modeling Attackers

In the malicious reverse engineering setting an attacker is a malicious observer
of the program behavior, whose task is to understand the inner workings of pro-
prietary software systems in order to reuse the software for unlawful purposes
or to make unauthorized modifications. The goal of code obfuscation is to make
a program so difficult for an attacker to understand that reverse engineering it
becomes uneconomical. Our semantics-based notion of code obfuscation given in
Definition 4.4 characterizes an obfuscating transformation t in terms of the most
concrete property it preserves. Hence, a δ-obfuscator t : P→ P is characterized
by the most concrete property δ precisely observable on program semantics after

4.4 Case study: Constant Propagation 77

transformation t. The idea is that what transformation t preserves is exactly
what an attacker can still observe after obfuscation. Different attackers may be
interested in different aspects of program behaviour, and they can be classi-
fied with respect to the precision of their observation. Thus, what an attacker
deduces from the observation of an obfuscated program depends both on the
property of interest of the attacker and on the particular obfuscation used.

Given the semantics-based definition of code obfuscation it comes natural
to model attackers as abstract domains ϕ ∈ uco(℘(Σ+)). The idea is that an
abstract domain expressing a certain property of program behaviours formally
models the attacker interested in that property. The complete lattice of abstract
domains 〈uco(℘(Σ+)),⊑〉 provides here the right framework where to compare
attackers with respect to their degree of abstraction and obfuscators with respect
to their potency. On one hand the more concrete an attacker is, the bigger is the
amount of information it needs to perform its intended damage on a program. On
the other hand given a δ-obfuscator the more abstract δ is, the bigger is the po-
tency of the obfuscating transformation. Our semantics-based approach, where
code obfuscators are characterized by the most concrete preserved property and
attackers are modeled as abstract domains, makes it possible to formally define
the borderline between harmless and effective attackers with respect to a given
obfuscation (i.e., preserved and obfuscated properties). Thus, we can say that
a program transformation t is a δt-obfuscator, which is able to defeat all the
attackers modeled by a property ϕ ∈ uco(℘(Σ+)) such that ϕ ∈ Oδt .
4.4 Case study: Constant Propagation

Constant propagation is a well-known program transformation that, knowing
the variable values that are constant on all possible executions of a program,
propagates these constant values as far forward through the program as possible.
As discussed above, every program transformation can be viewed as a potential
obfuscation by investigating the effects that such a transformation has on pro-
gram semantics. In the following we are going to illustrate this idea clarifying
the obfuscating behaviour of constant propagation.

Semantic aspects of Constant Propagation.

Let as recall how an efficient algorithm for constant propagation can be derived
as an approximation of the corresponding semantic transformation [44].

Action Specialization

The residual R[[D]]ρ of an arithmetic or boolean expression D ∈ E ∪ B in an
environment ρ is the expression resulting from specializing D in such an environ-
ment (see Table 4.1). When expression D can be fully evaluated in environment

78 4 Code Obfuscation as Semantic Transformation

Arithmetic Expressions R ∈ E× E→ E
R[[n]]ρ

def
= n

R[[X]]ρ
def
= if X ∈ dom(ρ) then ρ(X) else X

R[[E1 −E2]]ρ
def
= let Er1 = R[[E1]]ρ and Er2 = R[[E2]]ρ in

if Er1 = ℧ or Er2 = ℧ then ℧

else if Er1 = n1 and Er2 = n2 then n = n1 − n2

else Er1 − E
r
2

Boolean Expressions R ∈ B× E→ B
R[[E1 < E2]]ρ

def
= let Er1 = R[[E1]]ρ and Er2 = R[[E2]]ρ in

if Er1 = ℧ or Er2 = ℧ then ℧

else if Er1 = n1 and Er2 = n2 and b = n1 < n2 then b
else Er1 < Er2

R[[B1 ∨B2]]ρ
def
= let Br1 = R[[B1]]ρ and Br2 = R[[B2]]ρ in

if Br1 = ℧ or Br2 = ℧ then ℧

else if Br1 = true or Br2 = true then true
else if Br1 = false then Br2
else if Br2 = false then Br1
else Br1 ∨B

r
2

R[[¬B]]ρ
def
= let Br = R[[B]]ρ in

if Br = ℧ then ℧

else if Br = true then false
else if Br = false then true
else ¬Br

R[[true]]ρ
def
= true

R[[false]]ρ
def
= false

Table 4.1. Expression Specialization [44]

ρ, i.e., var[[D]] ⊆ dom(ρ), we say that expression D is static in the environ-
ment ρ, denoted static[[D]]ρ. When D is not static it is dynamic. It is clear that
static[[D]]ρ means that the specialization of expression D in environment ρ leads
to a static value, i.e., a constant, R[[D]]ρ ∈ D℧∪B℧. Recall that the correctness
of expression specialization follows from the fact that given two environments
ρ and ρ′ such that dom(ρ) ⊆ dom(ρ′) and ∀x ∈ dom(ρ) : ρ(X) = ρ′(X), then
A[[R[[D]]ρ]]ρ′ = A[[D]]ρ′ and A[[R[[D]]ρ]]ρ′ = A[[R[[D]]ρ]](ρ′ r dom(ρ)). The spe-
cialization of action A in environment ρ, denoted as R[[A]]ρ, produces both a
residual action and a residual environment as defined in Table 4.2.

Let αc
O be the observational abstraction that has to be preserved by constant

propagation in order to ensure the correctness of the transformation. In [44]
abstraction αc

O : ℘(Σ+)→ ℘(E+) is defined as follows:

αc
O(X)

def
=

{
αc
O(σ)

∣∣σ ∈ X
}

αc
O(σ)

def
= λi.αc

O(σi) αc
O(〈ρ,C〉)

def
= ρ

4.4 Case study: Constant Propagation 79

Actions R ∈ A× E→ E×A
R[[B]]ρ

def
= 〈ρ,R[[B]]ρ〉

R[[X :=?]]ρ
def
= 〈ρ \X,X :=?〉

R[[X := E]]ρ
def
= if static[[E]]ρ then 〈ρ[X := R[[E]]ρ], skip〉

else 〈ρ \X,X := R[[E]]ρ〉

Table 4.2. Action Specialization [44]

Thus, function αc
O abstracts from the particular commands that produce a cer-

tain environment evolution keeping only the environment trace.
Given a set of traces X ∈ ℘(Σ+), let X c denote the result of a preliminary

static analysis detecting constants. Formally X c is a sound approximation of
αc(X) where:

αc(X) = λL.λX.
⊔̇ {

ρ(X)
∣∣∃σ ∈ X : ∃C ∈ C : ∃i : σi = 〈ρ,C〉, lab[[C]] = L

}

where
⊔̇

is the pointwise extension of the least upper bound
⊔

in the complete
lattice Dc def

= D℧ ∪ {⊤,⊥}, where ∀x ∈ Dc : ⊥ ⊑ x ⊑ x ⊑ ⊤. This means that,
given a program P and a label L ∈ lab[[P]], αc(S+[[P]])(L) is an environment
mapping (denoted ρc

L for short when the set of traces is clear from the context)
that, given a variable X ∈ var[[P]], returns the value of X if X is constant at
program point L, ⊤ otherwise. Thus a variable X of program P has a constant
value at program point L when αc(S+[[P]])(L)(X) 6= ⊤, i.e., ρc

L(X) 6= ⊤. The
semantic transformation tc : ℘(Σ+)×αc(℘(Σ+))→ ℘(Σ+) performing constant
propagation is constructively defined as follows:

tc[X ,X c]
def
=

{
tc[σ,X c]

∣∣σ ∈ X
}

tc[σ,X c]
def
= λi.tc[σi,X

c] tc[〈ρ,C〉,X c(lab[[C]])]
def
= 〈ρ, tc[C, ρc

lab[[C]]]〉

where command specialization is defined as:

tc[L : A→ L′, ρc
L]

def
= L : tc[A, ρc

L]→ L′

tc[A, ρc
L] = let 〈ρr, Ar〉

def
= R[[A]]ρ|{X∈X|ρcL(X)∈D℧} in Ar

The correctness of tc follows from the fact that the transformed traces are valid
traces, i.e., σ ∈ Σ+ ⇒ tc[σ,X c] ∈ Σ+, and that αc

O is preserved by tc since the
transformation leaves the environments unchanged [44].

Example 4.12. Let us consider the program in Table 4.3 and its execution trace
σ = σ1σ2σ3σ4.... Let us represent the state environment of this program as a
tuple (va, vb, vc, vd, ve) of values corresponding to the variables a, b, c, d, e, and
let us assume that condition B holds true in state σ2. Then the states of trace
σ are given by:

80 4 Code Obfuscation as Semantic Transformation

a:= 1; b:=2; c:=3; d:=3; e:=0;

while B do

b:=2*a; d:=d+1; e:=e-a;

a:=b-a; c:=e+d;

endw

L1 : a:= 1; b:=2; c:=3; d:=3; e:=0; → L2

L2 : B → L3

L2 : ¬B → L5

L3 : b:=2*a; d:=d+1; e:=e-a; → L4

L4 : a:=b-a; c:=e+d; → L2

L5 : stop →6 l

Table 4.3. A simple program from [38]

– σ1 = 〈(⊥,⊥,⊥,⊥,⊥), L1 : a:= 1; b:=2; c:=3; d:=3; e:=0;→ L2〉
– σ2 = 〈(1, 2, 3, 3, 0), L2 : B → L3〉
– σ3 = 〈(1, 2, 3, 3, 0), L3 : b:=2*a; d:=d+1; e:=e-a;→ L4〉
– σ4 = 〈(1, 2, 3, 4,−1), L4 : a:=b-a; c:=e+d;→ L2〉
– σ5 =

In this case the preliminary static analysis X c observes that variables a and b
are actually constants at labels L2, L3 and L4. Therefore, following the above
definitions, the transformed trace tc[σ,X c] is given by the following sequence of
transformed states:

– tc[σ1,X
c(L1)] = σ1

– tc[σ2,X
c(L2)] = σ2

– tc[σ3,X
c(L3)] = 〈(1, 2, 3, 3, 0), L3 : skip; d:=d+1; e:=e-a;→ L4〉

– tc[σ4,X
c(L4)] = 〈(1, 2, 3, 4,−1), L4 : skip; c:=e+d;→ L2〉

– tc[σ5,X
c(L) =

We can observe that transformation tc, knowing that variables a and b are con-
stants, modifies the states σ3 and σ4 where assignments to a and b are replaced
with skip actions.

�

Following the steps elucidated at the end of Section 2.3 it is possible to derive
a constant propagation algorithm tc = p ◦ tc ◦ S+. We omit here such details
because they are not significant for our reasoning.

Obfuscating Behaviour of Constant Propagation.

In order to understand the obfuscating behaviour of constant propagation we
need to consider the most concrete property δtc preserved by the previously de-
fined transformation tc. Following the characterization proposed by Theorem 4.8
we can formalize δtc as follows:

4.4 Case study: Constant Propagation 81

δtc =
⊔

P∈P{
X ∈ ℘(Σ+)

∣∣PresP,tc(X)
}

Where, given a set of traces X ∈ ℘(Σ+):

PresP,tc(X) = true ⇔

∀Y ⊆ S+[[P]] : Y ⊆ X ⇒ ∀Sc[[P]] ⊒ αc(S+[[P]]) : tc[Y,Sc[[P]]] ⊆ X

This means that a set of traces X is a fixpoint of closure δtc if it contains the
specialization of its traces according to any sound constant analysis. Namely for
each trace σ in X it holds that: {η = tc[σ,Sc[[P]]] | αc(S+[[P]]) ⊑ Sc[[P]]} ⊆ X .

Let ϕc
O = γc

O ◦α
c
O be the closure operator corresponding to the observational

abstraction αc
O, where γc

O is the concretization map induced by abstraction
αc
O. It is clear that, since the observational abstraction αc

O is preserved by tc,
then ϕc

O ∈ uco(℘(Σ+)) is preserved by transformation tc. This means that, by
definition of δtc , we have δtc ⊑ ϕc

O and therefore ϕc
O ⊖ (ϕc

O ⊔ δtc) = ⊤, which,
from a code obfuscation point of view, means that the attacker modeled by
property ϕc

O is not obfuscated by constant propagation transformation.
On the other hand, let us consider property θ = γθ ◦ αθ ∈ uco(℘(Σ+)),

observing the successions of environments and types of actions, namely:

αθ(X)
def
=

{
αθ(σ)

∣∣σ ∈ X
}

αθ(σ)
def
= λi.αθ(σi)

αθ(〈ρ,C〉)
def
= (ρ, type [[act[[C]]]])

where type maps actions into the following set of action types {assign, skip, test}.
It is clear that this property is not preserved by tc, since, in general type [[A]] 6=
type [[R[[A]]ρ]] (see Example 4.13). This means that property θ is obfuscated by
constant propagation, namely θ ∈ Oδtc , i.e., θ ⊖ (θ ⊔ δtc) 6= ⊤. By definition it
follows that Oδtc 6= ∅ and therefore tc is a δtc -obfuscator according to Defini-
tion 4.4.

Example 4.13. As observed above, θ is not preserved by tc, namely it could
happen that: θ(S[[P]]) 6= θ(tc[S+[[P]],Sc[[P]]]). Once again let us consider the
program in Table 4.3. In particular, we focus on the states that are modified by
the transformation tc, namely on:

– σ3 = 〈(1, 2, 3, 3, 0), L3 : b:=2*a; d:=d+1; e:=e-a;→ L4〉
– σ4 = 〈(1, 2, 3, 4,−1), L4 : a:=b-a; c:=e+d;→ L2〉

recall that their transformed versions are respectively given by:

– tc[σ3,X
c(L3)] = 〈(1, 2, 3, 3, 0), L3 : skip; d:=d+1; e:=e-a;→ L4〉

– tc[σ4,X
c(L4)] = 〈(1, 2, 3, 4,−1), L4 : skip; c:=e+d;→ L2〉

In this case, property θ on the original states observes:

82 4 Code Obfuscation as Semantic Transformation

– θ(σ3) = 〈(1, 2, 3, 3, 0), L3 , L4, assign , assign , assign〉
– θ(σ4) = 〈(1, 2, 3, 4,−1), L4 , L2, assign , assign〉

while on the transformed states observes:

– θ(tc[σ3,X
c(L3)]) = 〈(1, 2, 3, 3, 0), L3 , L4, skip, assign , assign〉

– θ(tc[σ4,X
c(L4)]) = 〈(1, 2, 3, 4,−1), L4 , L2, skip, assign〉

showing that the property θ is not preserved.

�

Moreover, we can show that what transformation tc hides of property θ is the
type of actions. In fact, consider the closure η ∈ uco(℘(Σ+)) which observes the
type of actions:

η = λX .

{
σ

∣∣∣∣
σ′ ∈ X and ∀i. σi = 〈ρi, Ci〉, σ

′
i = 〈ρ′i, C

′
i〉

type(Ci) = type(C ′
i)

}

Theorem 4.14. θ ⊖ (θ ⊔ δtc) = η.

proof: Let us prove that θ ⊔ δtc = ϕc
O. By definition of δtc it follows that

δtc ⊑ ϕ
c
O. Let us show that θ ⊑ ϕc

O, namely that θ(℘(Σ+)) ⊆ ϕc
O(℘(Σ+)).

θ(X) =

{
σ

∣∣∣∣
σ′ ∈ X and ∀i. σi = 〈ρi, Ci〉, σ

′
i = 〈ρi, C

′
i〉

type(Ci) = type(C ′
i)

}

ϕc
O(X) =

{
σ

∣∣σ′ ∈ X and ∀i. σi = 〈ρi, Ci〉, σ
′
i = 〈ρi, C

′
i〉

}

Thus ∀X ∈ ℘(Σ+) : θ(X) ⊆ ϕc(X) and therefore θ ⊑ ϕc
O. Moreover ϕc

O is the
most concrete property that θ and δtc have in common. In fact it is clear that
θ = ϕc

O ⊓ η, and since the type of actions, i.e., η, is not preserved by tc we have
that θ and δtc share only the observation of the environments. Hence, we have
that θ⊖ (θ ⊔ δtc) = θ⊖ϕc

O = (ϕc
O ⊓ η)⊖ϕ

c
O = η. Where the last equation holds

since η is the most abstract domain which reduced product with ϕc
O returns θ.

�

This means that constant propagation acts as an obfuscating transformation
that defeats, for example, the attacker modeled by the abstract domain θ, while
it is harmless with respect to the attacker modeled by property ϕc

O.

4.5 Discussion

In this chapter we have introduced a generalized notion of code obfuscation,
where a program transformation can be seen as an obfuscation even if it does

4.5 Discussion 83

not preserve the observational behaviour of programs, i.e., their denotational
semantics. In fact, following our definition, any program transformation can be
seen as a potential obfuscator. The point here is that a transformation behaves
as an obfuscator if there exists an attacker, i.e., a semantic property, that the
transformation obstructs. For example, in order to defeat an attacker that is
interested in something weaker than the input-output behaviour of a program,
namely in something that can be deduced by program denotational semantics,
we need an obfuscator that preserves less than denotational semantics, namely
an obfuscator that masks something of the input-output behaviour of a program.

In the proposed framework, obfuscating transformations and attackers are
both characterized by abstract domains. It is clear that being able to tune the
most concrete property that a transformation preserves would allow us to modify
the class of attackers that the transformation defeats. An interesting research
task considers the possibility of using a systematic methodology for deriving
program transformations in order to design obfuscating algorithms that are able
to mask a desired property, namely to defeat a given attacker. Given an abstract
domain modeling the most powerful attacker in a certain scenario, the idea is
to derive the “simplest” transformation that protects a given class of programs
against such an attacker.

If on the one hand, the generality of our definition as been proved by study-
ing the obfuscating behaviour of constant propagation, on the other hand, the
semantics-based definition turns out to be very useful in understanding the be-
haviour and potency of commonly used obfuscating transformations. This is
shown in Chapter 5, where we consider the widely used obfuscation perform-
ing opaque predicate insertion. In particular, the semantic understanding of
opaque predicate insertion, together with the idea of modeling attackers as ab-
stract domains, allows us to characterize the ability of an attacker to reverse
opaque predicate insertion as a completeness problem in the abstract interpre-
tation sense. In Chapter 5 we will discuss how this result may lead to significant
improvements in the performance of opaque predicate detection algorithms.

Recall that malware writers (i.e., hackers) often use code obfuscation tech-
niques to prevent detection. This means that, when hackers use a δ-obfuscator,
they obtain different malware versions that are semantically equivalent up to
abstraction δ. Following this observation, in Chapter 6 we develop a theoreti-
cal framework for malware detectors based on program semantics and abstract
interpretation, where program infection is specified as a matching relation be-
tween the (abstract) semantics of the malware and the (abstract) semantics of
the program.

5

Control Code Obfuscation

o

b

f

u

s

c

a

t

i

o

n

Alice Bob

Attacker

Rev.Eng.

Piracy

Tamper

The Malicious Host Perspective

In this chapter, we focus our attention on the semantic understanding of an
interesting and widely used class of obfuscating transformations known as con-
trol code transformations. In particular, we consider control code obfuscation by
opaque predicate insertion which adds fake conditional branches that may con-
fuse the control flow of the original program. The idea is that an attacker that
is not aware of the always constant value of an opaque predicate has to consider
both branches (even if one is never executed at run time). In Section 5.1.1 we
define the semantic transformation that formalizes the effects of opaque predi-
cate insertion on program trace semantics, and then, in Section 5.1.2, we derive
the corresponding obfuscating algorithm following the methodology proposed
by Cousot and Cousot in [44]. The programming language considered in this
chapter is the one described in Section 2.3. In Section 5.1.3 we observe that,

86 5 Control Code Obfuscation

in the case of opaque predicate insertion, the obfuscating transformation has
minor effects on concrete program semantics. In fact, every time that the con-
crete semantics evaluates an opaque predicate this returns a constant value,
meaning that the execution always follows the same branch. Something differ-
ent happens if we consider the abstract semantics computed by an attacker on
the abstract domain modeling it as discussed in Section 5.1.4. As observed in
Section 4.3, attackers are modeled as abstract domains, where the abstraction
encodes the level of precision of the attacker in observing program behaviour. It
turns out that an attacker is able to break opaque predicate insertion only if its
abstraction is precise enough to detect the inserted opaque predicates. In Sec-
tion 5.2 we briefly present some standard opaque predicate detection algorithms
and their major drawbacks. Then, in Section 5.3 we consider a particular class
of commonly used numerical opaque predicates for which the degree of preci-
sion needed to disclose opaqueness can be formalized as a completeness problem
in the abstract interpretation field. In fact, in this case, the standard notion
of complete domain precisely captures the amount of information needed by an
attacker to disclose an opaque predicate. Based on this theoretical result, in Sec-
tion 5.3.2, we propose a methodology, based on program semantics and abstract
interpretation, to detect and then eliminate opaque predicates. Experimental
evaluations show the efficiency of this detection algorithm. It is clear that the
proposed abstract approach can be extended to other classes of opaque predi-
cates. As an example, in Section 5.3.3 we consider another family of numerical
opaque predicates characterized by a common structure, and also in this case
the problem of opaque predicate detection can be reduced to a completeness
problem of the abstract domain modeling the attacker. To conclude, we present
some interesting research tasks that we plan to address in the future. The results
presented in this chapter have been published in [47,49].

5.1 Control Code Obfuscation

With control code obfuscators we refer to obfuscating techniques that act by
masking the control flow behaviour of the original program. These transforma-
tions are often based on the insertion of opaque predicates. Following a standard
definition, a predicate is opaque if its value is known a priori to the obfuscation,
but this value is difficult for a deobfuscator to deduce [35]. In this chapter we
refer to two major types of opaque predicates presented in Section 3.1.2: true
opaque predicates P T that always evaluate to true and false opaque predicates
PF that always evaluate to false. Given such constructs, it is possible to design
transformations that break up the flow of control of programs by adding branch
instructions controlled by opaque predicates and inserting dead or buggy code
in the never executed path. In the following we focus on the insertion of true

5.1 Control Code Obfuscation 87

opaque predicates, but analogous results can be obtained for false opaque predi-
cates as well. In particular, when inserting a branch instruction controlled by an
opaque predicate P T , the true path starts with the next action of the original
program, while the false path leads to termination or buggy code. This confuses
the attacker who is not aware of the always true value of the opaque predicate,
and he/she has to consider both paths. It is clear that this transformation does
not heavily affect program semantics, since at run time the opaque predicate is
always evaluated true and the true path is the only one to be executed. In fact,
opaque predicate insertion aims at confusing the program control flow and this
may not have major effects on program trace semantics (recall that control flow
is an abstraction of trace semantics).

In the following we define the semantic transformation tOP : ℘(Σ+)→ ℘(Σ+)
that mimics the effects of opaque predicate insertion on program trace semantics.
In particular, tOP transforms the semantics of the original program by simply
adding opaque tests, which clearly modifies the structure of traces. Following the
methodology proposed in [44] and elucidated in Section 2.3, we derive from tOP

the corresponding syntactic transformation p+ ◦ tOP ◦S+. The so obtained syn-
tactic transformation is then extended to tOP that performs opaque predicate
insertion. In fact, the syntactic transformation tOP inserts true opaque predi-
cates (as p+◦tOP ◦S+) together with their potential false paths (added manually
to p+ ◦ tOP ◦S+). Next, we study the obfuscating behaviour of opaque predicate
insertion with respect to attackers modeled, as usual, by abstract domains.

5.1.1 Semantic Opaque Predicate Insertion

Let I : P→ ℘(L) be the result of a preliminary static analysis that given a pro-
gram returns the subset of its labels, i.e., program points, where it is possible
to insert opaque predicates. Usually the preliminary static analysis consists of a
combination of liveness analysis and static analyses. On the one hand, liveness
analysis is typically used to ensure that no dependencies are broken by the in-
serted predicate and that the obfuscated program is functionally equivalent to
the original one. On the other hand, static analyses, such as constant propaga-
tion, may be used to check whether opaque predicates have definite values true
or false, namely if the predicate can be trivially broken. Given a program P ,
we assume to know the set I[[P]] ⊆ lab[[P]] of labels that the preliminary static
analysis has classified as candidate for opaque predicate insertion.

Given a set OP of true opaque predicates, let X ∈ ℘(Σ+) be a set of traces,K ∈ ℘(L) be a set of labels, P T ∈ OP be a true opaque predicate and L̃ be an
unused memory location, i.e., L̃ 6∈ lab[[p+(X)]]. The semantic opaque predicate
insertion transformation tOP : ℘(Σ+)× ℘(L)→ ℘(Σ+) is defined as follows:

tOP [X ,K]
def
=

{
tOP [σ,K]

∣∣σ ∈ X
}

88 5 Control Code Obfuscation

tOP [〈ρ, L : A→ L′〉σ,K]
def
=

{
〈ρ, L : A→ L′〉 tOP [σ,K] if L 6∈ K
〈ρ, L : P T → L̃〉〈ρ, L̃ : A→ L′〉 tOP [σ,K] if L ∈ K

By definition, transformation tOP changes each trace of X independently and
state by state. In particular, let L be a candidate label for opaque predicate
insertion, and let 〈ρ, L : A→ L′〉 be the (original) program state which command
is labelled by L. Transformation tOP inserts the opaque predicate P T at the
candidate label L with co-label L̃, obtaining the transformed state 〈ρ, L : P T →
L̃〉. To preserve program functionality, action A has to be the first action of the
true branch of the opaque predicate P T . This is guaranteed by inserting the
new state 〈ρ, L̃ : A→ L′〉. Thus, transformation tOP preforms opaque predicate
insertion by replacing state 〈ρ, L : A → L′〉 with the two states 〈ρ, L : P T →
L̃〉〈ρ, L̃ : A → L′〉. It is clear that program environment remains unchanged
since test actions, such as opaque predicates, don’t affect the values of variables
(at least in our model). Fig. 5.1 shows how program traces are modified by
opaque predicate insertion. It is clear that the semantic transformation tOP ,

�� �� ��

1 2 3 4 5

1 2 3 4 5P T

tOP [σ, I[[P]]]

σ I[[P]] = {2, 4, 5}

P T
P T

Fig. 5.1. Semantic opaque predicate insertion

that transforms traces by inserting opaque predicates from OP in the allowed
program points (∈ K), transforms finite traces into finite traces.

Lemma 5.1. Given σ ∈ Σ+ and K ∈ ℘(L), then tOP [σ,K] ∈ Σ+.

proof: Given σ ∈ Σ+, let |σ| = n and ∀i : 0 ≤ i ≤ n let σi = 〈ρi, Li : Ai →
Li+1〉. Observe that ∀i ∈ [1, n−1] the transformation of the subtrace σi−1σiσi+1

of σ is still a trace, namely σ′i−1t
OP [σiσi+1,K] ∈ Σ+. Two are the cases that

we have to consider. (1) If Li 6∈ K, then we have that σ′i−1t
OP [σiσi+1,K] =

σ′i−1σiσ
′
i+1, and σi ∈ C(σ′i−1) and σ′i+1 ∈ C(σi) follows form σ ∈ Σ+. (2) On

the other hand, if Li ∈ O we have that:

σ′i−1t
OP [σiσi+1,K] = σ′i−1〈ρi, Li : P T → L̃i〉〈ρi, L̃i : Ai → Li+1〉σ

′
i+1

= σ′i−1σ
a
i σ

b
iσ

′
i+1

where σa
i = 〈ρi, Li : P T → L̃i〉 and σb

i = 〈ρi, L̃i : Ai → Li+1〉. The test action
given by the opaque predicate does not change the state environment and it

5.1 Control Code Obfuscation 89

is clear that σa
i ∈ C(σ′i−1), σ

b
i ∈ C(σa

i) and σ′i+1 ∈ C(σb
i). This holds also for

the initial and final state, in fact if L0 ∈ K then σ1 ∈ C(〈ρ0, ˜L0 : A0 → L1〉)
and if Ln ∈ K then 〈ρn, Ln : P T → L̃n〉 ∈ C(σn−1). This proves that given
η = tOP [σ,K] then ∀i: ηi ∈ C(ηi−1). Moreover if |K| = h then |η| = n + h = k,
thus η ∈ Σ+.

�

5.1.2 Syntactic Opaque Predicate Insertion

Given the semantic transformation tOP it is possible, following the procedure elu-
cidated in Section 2.3, to derive the syntactic transformation performing opaque
predicate insertion. In particular, transformation p+ ◦ tOP ◦S+ simply inserts in
a program commands whose actions are true predicates from OP . Such syntac-
tic transformations can be easily extended to perform code obfuscation based
on opaque predicate insertion (denoted as tOP in the following), by inserting in
the transformed program also the dead code following the false branch of P T .
In fact, following the definition of p+, these instructions cannot be present inp+ ◦ tOP ◦ S+, since the commands of the never executed false path are not
present in the transformed program semantics.

Following the methodology proposed by Cousot and Cousot [44], we sys-
tematically derive the algorithm performing opaque predicate insertion from its
semantic counterpart tOP .

Step 1: When considering program semantics in fixpoint form, the syntactic
transformation p+(tOP [S+[[P]],I[[P]]]), reduces to p+(tOP [lfpF+[[P]],I[[P]]]).

Step 2: Let us compute the transformation tOP of program semantics S+[[P]]
expressed in fixpoint form lfpF+[[P]], in order to establish the local commutation
property necessary for fixpoint transfer:

tOP [F+[[P]](X),I[[P]]] = tOP [T[[P]] ∪ {ss′σ | s′ ∈ C[[P]](s), s′σ ∈ X},I[[P]]] =

tOP [T[[P]],I[[P]]] ∪ tOP [{ss′σ | s′ ∈ C[[P]](s), s′σ ∈ X},I[[P]]]

Let us consider the two terms of the above union separately. For the first term
we have:

tOP [T[[P]],I[[P]]] = {tOP [σ,I[[P]]] | σ ∈ T[[P]]} =

{tOP [〈ρ, L : A→ L′〉,I[[P]]] | L : A→ L′ ∈ P, ρ ∈ E[[P]], L′ ∈ L[[P]]} =

{〈ρ, L : A→ L′〉 | L : A→ L′ ∈ P, ρ ∈ E[[P]], L′ ∈ L[[P]], L 6∈ I[[P]]} ∪

90 5 Control Code Obfuscation

{〈ρ, L : P T → L̃〉〈ρ, L̃ : A→ L′〉|L : A→ L′ ∈ P, ρ ∈ E[[P]], L′ ∈ L[[P]],

L ∈ I[[P]], L̃ ∈ New}

Considering the second term, we have that:

tOP [{ss′σ | s′ ∈ C[[P]](s), s′σ ∈ X},I[[P]]] =

{tOP [ss′σ,I[[P]]] | s′ ∈ C[[P]](s), s′σ ∈ X}

assuming s = 〈ρ, L : A→ L′〉, s′ = 〈ρ′, C ′〉, we obtain:

{〈ρ, L : A→ L′〉tOP [〈ρ′, C ′〉σ,I[[P]]] | lab[[C ′]] = L′, ρ′ ∈ A[[A]]ρ,

L : A→ L′ ∈ P, ρ ∈ E[[P]], 〈ρ′, C ′〉σ ∈ X , L 6∈ I[[P]]} ∪

{〈ρ, L : P T → L̃〉〈ρ, L̃ : A→ L′〉tOP [〈ρ′, C ′〉σ,I[[P]]] | lab[[C ′]] = L′,

ρ′ ∈ A[[A]]ρ, L : A→ L′ ∈ P, ρ ∈ E[[P]], 〈ρ′, C ′〉σ ∈ X , L ∈ I[[P]], L̃ ∈ New}

that, given σ′ = 〈ρ′, C ′〉σ, reduces to:

{〈ρ, L : A→ L′〉tOP [σ′,I[[P]]] | lab[σ′] = L′, env[σ′] ∈ A[[A]]ρ, L : A→ L′ ∈ P,

ρ ∈ E[[P]], σ′ ∈ X , L 6∈ I[[P]]} ∪

{〈ρ, L : P T → L̃〉〈ρ, L̃ : A→ L′〉tOP [σ′,I[[P]]] | lab[σ′] = L′, env[σ′] ∈ A[[A]]ρ,

L : A→ L′ ∈ P, ρ ∈ E[[P]], σ′ ∈ X , L ∈ I[[P]], L̃ ∈ New}

then, assuming σ = tOP [σ′,I[[P]]], we obtain:

{〈ρ, L : A→ L′〉σ | lab[σ] = L′, env[σ] ∈ A[[A]]ρ, L : A→ L′ ∈ P,

ρ ∈ E[[P]], σ ∈ tOP [X ,I[[P]]], L 6∈ I[[P]]} ∪

{〈ρ, L : P T → L̃〉〈ρ, L̃ : A→ L′〉σ | lab[σ] = L′, env[σ] ∈ A[[A]]ρ,

L : A→ L′ ∈ P, ρ ∈ E[[P]], σ ∈ tOP [X ,I[[P]]], L ∈ I[[P]], L̃ ∈ New}

where given a trace σ: env[σ] = env[σ0] and env[〈ρ,C〉] = ρ, while lab[σ] = lab[σ0]
and lab[〈ρ,C〉] = lab[[C]]. By defining FOP [[P]](tOP [X ,I[[P]]]) as given by the
union of the elements obtained by the above computation, we have:

FOP [[P]](tOP [X ,I[[P]]])
def
=

5.1 Control Code Obfuscation 91

{〈ρ, L : A→ L′〉 | L : A→ L′ ∈ P, ρ ∈ E[[P]], L′ ∈ L[[P]], L 6∈ I[[P]]} ∪

{〈ρ, L : P T → L̃〉〈ρ, L̃ : A→ L′〉 | L : A→ L′ ∈ P, ρ ∈ E[[P]],

L′ ∈ L[[P]], L ∈ I[[P]], L̃ ∈ New} ∪

{〈ρ, L : A→ L′〉σ | lab[σ] = L′, env[σ] ∈ A[[A]]ρ, L : A→ L′ ∈ P,

ρ ∈ E[[P]], σ ∈ tOP [X ,I[[P]]], L 6∈ I[[P]]} ∪

{〈ρ, L : P T → L̃〉〈ρ, L̃ : A→ L′〉σ | lab[σ] = L′, env[σ] ∈ A[[A]]ρ,

L : A→ L′ ∈ P, ρ ∈ E[[P]], σ ∈ tOP [X ,I[[P]]], L ∈ I[[P]], L̃ ∈ New}

Thus, tOP ◦ F+ = FOP ◦ tOP , and applying the fixpoint transfer theorem we
have that tOP [lfpF+[[P]],I[[P]]] can be expressed as lfpFOP [[P]].

Step 3: Let us compute the abstraction p+ of FOP [[P]] in order to verify the
commutation property necessary for fixpoint transfer:p+(FOP [tOP [X ,I[[P]]]]) =

{{L : A→ L′} | L : A→ L′ ∈ P,L′ ∈ L[[P]]L 6∈ I[[P]]} ∪

{{L : P T → L̃; L̃ : A→ L′} | L : A→ L′ ∈ P,L′ ∈ L[[P]],

L ∈ I[[P]], L̃ ∈ New} ∪

{{L : A→ L′} ∪ p+(tOP [X ,I[[P]]]) | L : A→ L′ ∈ P,L 6∈ I[[P]],

∃C ∈ p+(tOP [X ,I[[P]]]) : lab[[C]] = L′} ∪

{{L : P T → L̃; L̃ : A→ L′} ∪ p+(tOP [X ,I[[P]]]) | L : A→ L′ ∈ P,

L ∈ I[[P]], L̃ ∈ New ,∃C ∈ p+(tOP [X ,I[[P]]]) : lab[[C]] = L′}

Step 4: Defining FOP [[P]](p+(tOP [X ,I[[P]]])) as given by the union above, we
have that p+ ◦ FOP [[P]] = FOP [[P]] ◦ p+, and therefore p+(lfpFOP [[P]]) =
lfpFOP [[P]]. From the definition of FOP it is possible to derive an extended iter-
ative algorithm that inserts opaque predicates.

Let us denote with B ∈ ℘(C) a set of commands composing a possible false
path of a true opaque predicate (never executed at run time), and with lab[[B]]
the label of the starting point of the execution of B. Let B range over a given
collection of programs B ⊆ ℘(C), and let New ⊆ L be a set of “new” program
labels. The algorithm Opaque considers each command L : A → L′ of the
original program, if L is a candidate label for opaque predicate insertion, i.e.,
if L ∈ I[[P]], the commands L : P T → L̃, L̃ : A → L′ and L : ¬P T → lab[[B]],

92 5 Control Code Obfuscation

Opaque(P, I[[P]],New , OP,B)
Q = ∅

T =
˘

C ∈ P
˛

˛ suc[[C]] ∈ L[[P]]
¯

while there exists an unmarked command L : A→ L′ in T do
mark L : A→ L′

if L ∈ I[[P]]

then take L̃ ∈ New

New = New r L̃

let P T ∈ OP
(∗) let B ∈ B

Q = Q ∪ {L : P T → L̃; L̃ : A→ L′}
(∗) Q = Q ∪ {L : ¬P T → lab[[B]]}

else Q = Q ∪ {L : A→ L′}
T = T ∪

˘

C ∈ P
˛

˛∃C′ ∈ T : suc[[C]] = lab[[C′]]
¯

Fig. 5.2. Opaque predicate insertion algorithm

encoding opaque predicate insertion, are added to set Q (initially empty), oth-
erwise the original command L : A→ L′ is added to Q. In particular, command
L : ¬P T → lab[[B]] encodes the false branch of the true opaque predicate and
inserts a fake branch connecting the original program control flow to the flow
of the never executed code starting at label lab[[B]]. In the end, the set Q corre-
sponds to the obfuscated program. It is clear that |New | ≥ |I[[P]]|. Observe that
the lines marked with (∗), encoding the insertion of commands forming the false
path of the true opaque predicate, have been added manually to p+ ◦ tOP ◦ S+.
This happens because the false path of a true opaque predicate is never exe-
cuted and therefore its commands are not present in the transformed program
semantics. In fact, the insertion of an opaque predicate inserts “dead code” in
the program (i.e., code that is never executed) and, by definition, the abstrac-
tion p+ cannot return such dead code.

≖ p+(tOP [S+[[P]],I[[P]]])P

tOP

tOP
S

+[[P]]

p+
S

+
S

+ p+

= S+[[tOP [[P,I[[P]]]]]]

tOP [[P,I[[P]]]]

tOP [S+[[P]],I[[P]]]

Fig. 5.3. Semantic and Syntactic opaque predicate insertion

Let us denote with tOP [[P,I[[P]]]] the extended syntactic transformation corre-
sponding to algorithm Opaque reported in Fig. 5.2, and let us report in Fig. 5.3
a schema representing the present situation. Observe that if, on the one hand,p+(tOP [S+[[P]],I[[P]]]) ≖ tOP [[P,I[[P]]]] since they have the same trace seman-

5.1 Control Code Obfuscation 93

tics, on the other hand p+(tOP [S+[[P]],I[[P]]]) ⊂ tOP [[P,I[[P]]]], since the term
on the right contains also the commands of the false paths of the inserted true
opaque predicates.

5.1.3 Obfuscating behaviour of opaque predicate insertion

In order to study the obfuscating behaviour of opaque predicate insertion we
need to define the most concrete property preserved by such transformations.
Following Theorem 4.8 we have that the most concrete property preserved by
opaque predicate insertion can be characterized as follows:

δtOP =
⊔

P∈P{
X ∈ ℘(Σ+)

∣∣PresP,tOP (X)
}

Where, given X ∈ ℘(Σ+), predicate PresP,tOP (X) = true if and only if:

∀Y ⊆ S+[[P]] : Y ⊆ X ⇒
⋃{

K ∈ ℘(Σ+)
∣∣K = tOP [Y,I[[P]]]

}
⊆ X

Meaning that a set of traces X is “preserved” by opaque predicate insertion
if it contains all the traces that can be obtained from traces in X by insert-
ing opaque predicates from OP at program points indicated by I[[P]]. As ex-
pected, the attacker that observes the concrete semantics of program behaviour
is obfuscated by opaque predicate insertion, since S+[[P]] 6= S+[[tOP [[P,I[[P]]]]]],
while the attacker observing the denotational semantics of programs is insen-
sitive to opaque predicate insertion, since δtOP ⊑ DenSem and DenSem[[P]] =
DenSem[[tOP [[P,I]]]].

In general, S+[[P]] 6= S+[[tOP [[P,I[[P]]]]]], namely S+[[P]] 6= tOP [S+[[P]],I[[P]]].
In particular, the transformed semantics contains all the traces of the original
semantics with some extra states denoting opaque predicate execution as de-
scribed in Fig. 5.1. It is clear that there is no significant information hidden by
this obfuscation to attackers knowing the concrete program semantics. In fact,
by the observation of the concrete semantics, an attacker can easily derive the
set of inserted opaque predicates and deobfuscate the program.

Observe that, knowing the set OP of inserted opaque predicates, we can
define the trace transformation dOP : ℘(Σ+)→ ℘(Σ+) that recovers the original
program semantics from opaque predicate insertion.

dOP (X)
def
=

{
dOP (σ)

∣∣σ ∈ X
}

dOP (σ)
def
= ǫ dOP (σ)

dOP (〈ρ,C〉〈ρ′, C ′〉η)
def
=

{
〈ρ,C〉 dOP (〈ρ′, C ′〉η) if act[[C]] 6∈ OP

dOP (〈ρ, lab[[C]] : act[[C ′]]→ suc[[C ′]]〉η) if act[[C]] ∈ OP

94 5 Control Code Obfuscation

It is not surprising that transformation dOP , given the set of inserted opaque
predicates, is able to restore the original program semantics.

Theorem 5.2. S+[[P]] = dOP (S+[[P]]) = dOP (tOP [S+[[P]],I[[P]]]).

proof: Let us assume, as usual, that program P has not been previously ob-
fuscated by opaque predicate insertion. Following the definition of dOP we have
that dOP (S+[[P]]) = S+[[P]], since for each trace σ ∈ S+[[P]] : ∀i : act[[Ci]] 6∈ OP .
On the other hand dOP (tOP [S+[[P]],I[[P]]]) = {dOP (η) | η ∈ tOP [S+[[P]],I[[P]]]}.
Thus, given η ∈ tOP [S+[[P]],I[[P]]], there exists σ ∈ S+[[P]] such that η =
tOP [σ,I[[P]]]. In order to conclude the proof we show that dOP (η) = σ,
namely that dOP (tOP [σ,I[[P]]]) = σ. In general σ = µ1σiµ

2σjµ
3...µl, where

σi = 〈ρi, Ci〉 are such that lab[[Ci]] ∈ I[[P]], while µi are the portions (even
empty) of trace of σ that are unchanged by opaque predicate insertion, that is
∀〈ρ,C〉 ∈ µi : lab[[C]] 6∈ I[[P]]. By hypothesis η is obtained from σ by opaque pred-
icate insertion, therefore η has the following structure: η = µ1ηa

i η
b
iµ

2ηa
j η

b
iµ

3...µl,

where |η| = |σ| + |I[[P]] ∩ {lab[[C]] | 〈ρ,C〉 ∈ σ}| and ηa
i η

b
i = 〈ρi, Li : P T →

L̃i〉〈ρi, L̃i : Ai → Li+1〉. Hence, following the definition of dOP we have:

dOP (η) = dOP (µ1ηa
i η

b
iµ

2ηa
j η

i
iµ

3...µl)

= µ1dOP (ηa
i η

b
iµ

2ηa
j η

b
iµ

3...µl)

= µ1σidOP (µ2ηa
j η

b
iµ

3...µl)

= µ1σiµ
2dOP (ηa

j η
b
iµ

3...µl)

= ...

= µ1σiµ
2σiµ

3...µl = σ

We have that dOP (tOP [S+[[P]],I[[P]]]) = dOP ({tOP [σ,I[[P]]] | σ ∈ S+[[P]]}) =
{dOP (tOP [σ,I[[P]]]) | σ ∈ S+[[P]]} = {σ | σ ∈ S+[[P]]} = S+[[P]], which concludes
the proof.

�

Observe that, by computing transformation dOP on the obfuscated program
semantics S+[[tOP [[P,I[[P]]]]]], and then deriving the corresponding program
through p+, we obtain exactly the original program P , as shown in Fig. 5.4.
This means that, knowing the set OP an attacker can eliminate the inserted
opaque predicates, namely p+ ◦ dOP ◦ S

+ acts as a deobfuscation technique.

Example 5.3. Let us consider the trace semantics S+[[P]] of program P and a
trace σ ∈ S+[[P]]. Let σ = 〈ρ0, C0〉〈ρ1, C1〉〈ρ2, C2〉〈ρ3, C3〉〈ρ4, C4〉, with com-
mands Ci = Li : Ai → Li+1. Let I[[P]] = {L1, L3} be the candidate labels for
opaque predicate insertion. The transformed trace is given by:

5.1 Control Code Obfuscation 95

S+[[P]]

Pp+

tOP
dOP

tOP [[P,I[[P]]]]

S
+

tOP [S+[[P]],I[[P]]] = S
+[[tOP [[P,I[[P]]]]]]

Fig. 5.4. p+ ◦ dOP ◦ S+ is a deobfuscation technique

tOP [σ,I[[P]]] = 〈ρ0, C0〉〈ρ1, L1 : P T → L̃1〉〈ρ1, L̃1 : A1 → L2〉〈ρ2, C2〉

〈ρ3, L3 : P T → L̃3〉〈ρ3, L̃3 : A3 → L4〉〈ρ4, C4〉

It is easy to show that dOP (tOP [σ,I[[P]]]) = σ, in fact:

dOP (tOP [σ,I[[P]]]) = dOP (〈ρ0, C0〉〈ρ1, L1 : P T → L̃1〉〈ρ1, L̃1 : A1 → L2〉〈ρ2, C2〉

〈ρ3, L3 : P T → L̃3〉〈ρ3, L̃3 : A3 → L4〉〈ρ4, C4〉)

= 〈ρ0, C0〉〈ρ1, C1〉〈ρ2, C2〉〈ρ3, C3〉〈ρ4, C4〉

= σ

�

Transformation dOP is clearly additive and can therefore be viewed as an
abstraction function. It is interesting to observe that, considering the concretiza-
tion γOP induced by such abstraction, the property γOP ◦ dOP corresponds to
the most concrete property preserved by tOP . In fact, knowing OP , the closure
γOP ◦ dOP observes traces up to opaque predicate insertion, which corresponds
to the observation done by δtOP . In particular, given an obfuscated set of traces
X , the deobfuscation dOP (X) = Y eliminates the opaque predicates from traces
in X , and the concretization γOP (Y) returns the set of all traces that can be
obtained from traces in Y by opaque predicate insertion. This means that re-
quiring X to be a fixpoint of γOP ◦ dOP , i.e., γOP (dOP (X)) = X , is equivalent
to require that X satisfies PresP,tOP (X).

Theorem 5.4. γOP ◦ dOP ∈ uco(℘(Σ+)) and γOP ◦ dOP = δtOP .

proof: Function dOP is clearly additive, and γOP ◦ dOP ∈ uco(℘(Σ+)).
From Theorem 5.2 it follows that γOP ◦ dOP is preserved by tOP , namely
γOP (dOP (S+[[P]])) = γOP (dOP (tOP [S+[[P]],I[[P]]])), let us show that it coincides
with δtOP . To do this we have to prove that, given X ∈ ℘(Σ+): X = γOP ◦dOP (X)
iff for every program P ∈ P : PresP,tOP (X) = true.
(⇒) By definition γOP (dOP (X)) = {σ | dOP (σ) ⊆ dOP (X)} = {σ | ∃δ ∈ X :
dOP (σ) = dOP (δ)}. We have to prove that ∀Y ⊆ S+[[P]] : Y ⊆ γOP (dOP (X)) the
following inclusion holds

⋃
{K ∈ ℘(Σ+) | K = tOP [Y,I[[P]]]} ⊆ γOP (dOP (X)).

Let Y ⊆ γOP (dOP (X)), then Y ⊆ {σ | ∃δ ∈ X : dOP (σ) = dOP (δ)}. This

96 5 Control Code Obfuscation

means that ∀σ ∈ Y : ∃δ ∈ X : dOP (σ) = dOP (δ). Following the definition of
tOP we have tOP [Y,I[[P]]] = {tOP [σ,I[[P]]] | σ ∈ Y}. Observe that ∀σ ∈ Y :
tOP [σ,I[[P]]] ∈ γOP (dOP (σ)), since we have shown that dOP (tOP [σ,I[[P]]]) = σ.
This means that ∀σ ∈ Y : tOP [σ,I[[P]]] ∈ γOP (dOP (σ)) = γOP (dOP (δ)) ⊆
γOP (dOP (X)). Therefore ∀σ ∈ Y : tOP [σ,I[[P]]] ∈ γOP (dOP (X)), meaning that
tOP [Y,I[[P]]] ⊆ γOP (dOP (X)). The above proof does not depend on the partic-
ular program P ∈ P considered, meaning that it holds for every program. This
means that for any program P ∈ P we have that PresP,tOP (X) = true.
(⇐) Assume that for all P ∈ P: PresP,tOP (X) = true:

⇒ ∀P ∈ P : ∀Y ⊆ S+[[P]] : Y ⊆ X ⇒
⋃{

K ∈ ℘(Σ+)
∣∣K = tOP [Y,I[[P]]]

}
⊆ X

⇒ ∀P ∈ P : ∀Y ⊆ S+[[P]] : Y ⊆ X ⇒
⋃{

K ∈ ℘(Σ+)
∣∣K =

{
tOP [σ,I[[P]]]

∣∣σ ∈ Y
} }
⊆ X

⇒ ∀P ∈ P : ∀σ ∈ X :
⋃ {

η
∣∣η = tOP [σ,I[[P]]]

}
⊆ X

⇒ X =
{
δ
∣∣∃σ ∈ X : dOP (σ) = dOP (δ)

}

⇒ X = γOP (dOP (X))

This means that δtOP =
⊔

P∈P{X | PresP,tOP (X)} = {γOP (dOP (X)) | X ∈
℘(Σ+)} = γOP (dOP (℘(Σ+))).

�

5.1.4 Detecting Opaque Predicates

It is clear that the efficiency of transformation dOP in eliminating opaque predi-
cates is based on the knowledge of the set OP . In fact, in the case of opaque pred-
icate insertion, the problem of deobfuscating a program reduces to the ability
of detecting opaque predicates. A predicate is opaque if it behaves in the same
way in every execution context. Thus, understanding the presence of opaque
predicates in a program, means identifying those predicates that evaluate in
the same way during every program execution. Given an obfuscated programtOP [[P,I[[P]]]] the set OP of inserted opaque predicates can be characterized by
the following definition:

OP
def
=

B

∣∣∣∣∣∣∣

∃C ∈ tOP [[P,I[[P]]]] : act[[C]] = B

∀σ ∈ S+[[tOP [[P,I[[P]]]]]]

∀〈ρ,C〉 ∈ σ : (act[[C]] = B)⇒ (B[[B]]ρ = true)

(5.1)

5.1 Control Code Obfuscation 97

This means that having access to the concrete semantics S+[[tOP [[P,I[[P]]]]]] of
the obfuscated program, which implies a precise evaluation B[[B]]ρ of any test
action B at any program point, ensures that the resulting set OP contains all
the true inserted opaque predicates. Hence, if an attacker observes the concrete
execution of an obfuscated program, it can deduce all the necessary information
in order to remove opaqueness. In fact, opaque predicate insertion is an obfus-
cating transformation designed to confuse the control flow of a program. Since
program control flow is an abstraction of program trace semantics, it is not sur-
prising that obfuscating the control flow may not cause confusion at the trace
semantic level. This is the reason why, in order to better understand the obfus-
cating behaviour of opaque predicate insertion, we have to consider abstractions
of program trace semantics.

In Section 4.3 we have argued how attackers can be modeled as abstract
interpretations of the concrete domain of computation of the trace semantics
of programs. Thus, it is interesting to investigate the obfuscating behaviour of
opaque predicate insertion when attackers have access only to the abstract se-
mantics computed on their abstract domains. Let Sϕ denote the abstract seman-
tics computed by attacker ϕ. In particular, if the concrete semantic is given by
S+[[P]] = lfpF+[[P]], then the abstract semantics is defined as Sϕ[[P]]

def
= lfpFϕ[[P]],

where Fϕ is the best correct approximation of the concrete function F+ on
the abstract domain ϕ. We denote with Ê the set of abstract environments
ρ̂ : X → ϕ(D⊥) that associate abstract values to program variables, with
σ̂i = 〈ρ̂i, C〉 an abstract state, and with σ̂ an abstract trace. Moreover, let
ϕ(℘(Σ+)) = ℘(Σ̂+) be the powerset of abstract traces. It is clear that, in this
setting, the most powerful attacker is the one that has access to the most pre-
cise description of program behaviour, namely the one that is precise enough to
compute the (concrete) program trace semantics S+[[P]].

In general, the set OPϕ of opaque predicates that an attacker modeled by
an abstraction ϕ is able to identify can be characterized as follows:

OPϕ def
=

B

∣∣∣∣∣∣∣

∃C ∈ tOP [[P,I[[P]]]] : act[[C]] = B

∀σ̂ ∈ Sϕ[[tOP [[P,I[[P]]]]]]

∀〈ρ̂, C〉 ∈ σ̂ : (act[[C]] = B)⇒ (Bϕ[[B]]ρ̂ = true)

(5.2)

Where Bϕ denotes the abstract evaluation of boolean expressions. It is clear
that, in general, the set of predicates classified as opaque observing the abstract
semantics Sϕ is different from the set of predicates classified as opaque observ-
ing program trace semantics S+, namely OPϕ 6= OP . There are two causes
of imprecision, both due to the loss of information implicit in the abstraction
process:

– On the one hand, it may happen that ϕ is not powerful enough to recog-
nize the constantly true value of some opaque predicates, namely there may

98 5 Control Code Obfuscation

exist an opaque predicate P T such that P T ∈ OP while P T 6∈ OPϕ (see
Section 5.3.1 for an example).

– On the other hand, an attacker may classify a predicate as opaque while it
is not, namely there may exist a predicate Pr such that Pr ∈ OPϕ while
Pr 6∈ OP (see Section 5.3.3 for an example).

The deobfuscation process that an attacker ϕ can perform is expressed by the
function dOPϕ : ℘(Σ̂+)→ ℘(Σ̂+), operating on abstract traces and on set OPϕ

of opaque predicates.

dOPϕ(X̂)
def
=

{
dOPϕ(σ̂)

∣∣ σ̂ ∈ X̂
}

dOPϕ(σ̂)
def
= ǫ dOPϕ(σ̂)

dOPϕ(〈ρ̂, C〉〈ρ̂
′, C ′〉η̂)

def
=

{
〈ρ̂, C〉 dOPϕ(〈ρ̂

′, C ′〉η̂) if act[[C]] 6∈ OPϕ

dOPϕ(〈ρ̂, lab[[C]] : act[[C ′]]→ suc[[C ′]]〉η̂) if act[[C]] ∈ OPϕ

In general, OP 6= OPϕ and Sϕ[[P]] 6= dOP (Sϕ[[P]]) 6= dOPϕ(S
ϕ[[tOP [[P,I[[P]]]]]]),

meaning that attacker ϕ is not able to reverse obfuscation tOP . When at-
tacker ϕ is not able to disclose the inserted opaque predicates, namely when
Sϕ[[P]] 6= Sϕ[[tOP [[P,I[[P]]]]]], we say that attacker ϕ is defeated by the obfusca-
tion (otherwise stated, that the obfuscation is potent with respect to attacker
ϕ). This leads to the following definition of transformation potency.

Definition 5.5. A transformation t : P→ P is potent with respect to attacker
ϕ ∈ uco(℘(Σ+)) if there exists P ∈ P such that Sϕ[[P]] 6= Sϕ[[tOP [[P,I[[P]]]]]].

It is clear that the above definition of transformation potency is based on
the abstract semantics computed by the attacker and not on the abstrac-
tion of the concrete semantics as given in Definition 4.3 (where a transfor-
mation t is potent if there exists an abstraction ϕ ∈ uco(℘(Σ+)) such that
ϕ(S+[[P]]) 6= ϕ(S+[[t[[P]]]])). The two proposed definitions of transformation po-
tency are deeply different and orthogonal. In fact, the results obtained in Chap-
ter 4 referring to Definition 4.3, cannot be projected using Definition 5.5 of
potency. However, the two definitions are both useful in understanding the ob-
fuscating behaviour of program transformations. On the one hand, Definition 4.3
can be successfully applied to those obfuscation that have sensitive effects on
the concrete program semantics, namely those transformations that cannot be
recovered by simply observing the concrete semantics of the obfuscated program
(e.g., array merging, variable renaming, substitution of equivalent sequences of
instructions, etc.). On the other hand, Definition 5.5 captures the obfuscat-
ing behaviour of program transformations that cause minor effects on program
trace semantics and that can be recovered by observing the concrete program

5.2 Opaque Predicates Detection Techniques 99

semantics (e.g., opaque predicate insertion, code transportation, semantic nop
insertion, etc.).

Fig. 5.5 shows how opaque predicate insertion leaves trace semantics S+

almost unchanged, while it may significantly modify abstract semantics Sϕ. In
fact, the scheme on the left shows how, considering program trace semantics, it
is possible to recover the semantics of the original program. On the other hand,
the scheme on the right shows how opaque predicate insertion may prevent
attackers from recovering the abstract semantics of the original program.

S
+[[P]] = dOP (S+[[tOP [[P]]]])

P tOP [[P]] P tOP [[P]]

S
ϕ dOPϕSϕ

Sϕ[[P]] 6= dOPϕ(Sϕ[[tOP [[P]]]])

S
+ dOPS

+

Fig. 5.5. Trace semantics S+ and abstract semantics Sϕ

We are interested in the study of opaque predicate insertion and of the abil-
ity of attackers to recover the original program. In particular, it would be in-
teresting to provide a formal characterization of the family of attackers that
are able to disclose a given set of opaque predicates. Thus, given a set OP of
opaque predicates, we want to characterize the class of attackers ϕ such that
dOPϕ(S

ϕ[[tOP [[P,I[[P]]]]]]) = dOPϕ(S
ϕ[[P]]) = Sϕ[[P]]. Observe that this equal-

ity holds only when attacker ϕ precisely identifies the set of inserted opaque
predicates, namely when OP = OPϕ. When this happens we have that the
obfuscation is harmless with respect to attacker ϕ, namely that the insertion
of opaque predicates from OP is not powerful in contrasting attacker ϕ. The
approach to opaque predicate detection, based on the semantic understanding
of code obfuscation and on the abstract domain-based model of attackers, is
further investigated in Section 5.3.

5.2 Opaque Predicates Detection Techniques

In this section, we analyze two different approaches to opaque predicates detec-
tion. The first one is based on purely dynamic information, while the second
one is based on hybrid static/dynamic information [104]. Experimental eval-
uations on a limited set of inputs show that a dynamic attack removes any
opaque predicate, but it has the drawback of classifying many predicates as
opaque, while they are not. Thus, dynamic attacks do not provide a trustful
solution. Randomized algorithm may be used to eliminate opaque predicates,

100 5 Control Code Obfuscation

in this case the probability of precisely detecting an opaque predicate can be
increased by augmenting the number of tries [74]. However randomized algo-
rithms do not give an always trustful solution, but an answer that has a high
probability of being precise. On the other hand, experimental evaluations on
hybrid static/dynamic attacks show that breaking a single opaque predicate is
rather time consuming, and may become infeasible. Next, in Section 5.3, we in-
troduce a novel methodology, based on formal program semantics and semantic
approximation by abstract interpretation, to detect and then eliminate opaque
predicates. Experimental evaluations show the efficiency of this new method of
attack.

5.2.1 Dynamic Attack

Dynamic attackers execute programs with several (but of course not all) differ-
ent inputs and observe the paths followed after each conditional jump. A dy-
namic attacker classifies a conditional jump as controlled by a false/true opaque
predicate if, during these executions, the false/true path is always taken. There-
fore, a dynamic attacker detects all the executed opaque predicates, but, due
to the limited set of inputs considered, it may classify a predicate as opaque
while it is not, called a false positive. Let us measure the false positive rate of
a dynamic attacker. We execute the SPECint2000 benchmarks (without adding
opaque predicates) with the reference inputs, and then we observe the evaluation
of conditional jumps at run time. We use Diota1 [106] to identify conditional
jumps that always follow the true path, the false path or take both of them.

Table 5.1. Execution after conditional jumps

1 Diota: a dynamic instrumentation tool which keeps a running program unaltered at its
original location and generate instrumented code on the fly somewhere else.

5.2 Opaque Predicates Detection Techniques 101

The benchmarks are listed in Table 5.1. For each benchmark, the percentage
of regular conditional jumps that look like false/true opaque predicates are an-
notated in the first/second column, while the percentage of regular conditional
jumps that evaluates in both ways is reported in the third column. Benchmarks
do not contain opaque predicates, so that the opaque predicates detected by
dynamic attack are all false positives. This experimental evaluations show that
a dynamic attacker has an average of false positive rate of 39% and 22%, respec-
tively for false and true opaque predicates. Thus, in average, more than 50% of
regular opaque predicates are miss-classified as opaque by dynamic detection
techniques. A dynamic attacker may improve these results by using some sort
of knowledge of program functionality, in order to generate different inputs that
are likely to execute different program paths. However, this preliminary analy-
sis of program functionality may be time consuming. Another possibility, is to
generate dynamic test data to improve the condition/decision coverage (CDC)2.
For complex programs, the CDC is at most 58% [112], so 42% of all conditions
will be seen as opaque predicates or dead code by the attacker which is of course
incorrect. This leads us to conclude that, in general, dynamic attacks are too
imprecise.

5.2.2 Brute Force Attack

In this section we consider an hybrid static/dynamic brute force attack acting on
assembly basic blocks3, where the instructions of the opaque predicate are stat-
ically identified (static phase) and are then executed on all possible inputs (dy-
namic phase). Let us consider the numerical opaque predicate ∀x ∈ Z : 2|(x2+x),
that verifies that for every integer value x, x2 +x is always an even number. Ob-
serve that the implementation of this opaque predicate decomposes the function
x2 + x into elementary functions such as square x2 and addition x + y. Ob-
serve that, once an opaque predicate is inserted in a program, it is possible to
further protect the code using transformations meant to mask the opaque pred-
icate itself. For example, hiding constant values by use of address composition
or using bit-level operations to hide arithmetic manipulations are obfuscating
transformations that mask the inserted opaque predicates. The deobfuscation of
these additional transformations and opaque predicate detection are problems
that can be studied independently. In the following, we assume that potential
additional transformations have already been handled. Moreover, we make the
assumption that the instructions (that is, elementary functions) corresponding

2 Condition/decision coverage measures the percentage of conditional jumps that are executed
true at least once and false at least once.

3 A basic block is a sequence of instructions with a single entry point, single exit point, and
no internal branches.

102 5 Control Code Obfuscation

to an opaque predicate are always grouped together, i.e., there are no program
instructions between them.

The static phase aims at identifying the instructions corresponding to an
opaque predicate. Thus, for each conditional jump j the attacker considers the
instruction i immediately preceding j. The dynamic phase then checks whether i
and j give rise to an opaque predicate by executing instructions i and j on every
possible input. If this is the case the predicate is classified as opaque. Otherwise,
the analysis proceeds upward by considering the next instruction preceding i,
until an opaque predicate is found or the instructions in the basic block termi-
nate. In this latter case, the predicate is not opaque. The computational effort,
measured as number of steps, of this attack is n2 ∗ (2w)r, where n is the number
of instructions encoding the opaque predicate, r is the number of registers and
w is the width of the registers used by the opaque predicate. Consider for ex-
ample the above true opaque predicate compiled for a 32-bit architecture. The
predicate is executed with all possible 232 inputs. This compiled code is then
executed under the control of GDB, a well known open-source debugger4, with
all 232 inputs. In particular, 2|(x2 + x) can be written in five x86 instructions,
so that for this architecture the computational effort to break this opaque pred-
icate will be 52 ∗ 264. This is because, during the hybrid attack, two variables
are needed as input for the addition, so that there are at most 2 registers taken
as input during the attack, i.e., r=2, and the width of these registers is 32 bits,
i.e., w = 32.

It is interesting to measure the time needed by this attack to detect an opaque
predicate. As an example, we consider the opaque predicate ∀x ∈ Z : 2|(x + x)
and measure the time needed to detect it. In assembly, this opaque predicate in
a 16-bit environment consists of three instructions. The execution under control
of GDB of these three assembly instructions with all 216 inputs takes 8.83
seconds on a 1.6 GHz Pentium M processor with 1 GB of main memory running
RedHat Fedora Core 3. In this experimental evaluation, the static phase has
been performed by hand, meaning that the starting instruction of the opaque
predicate was given. This leads us to conclude that the hybrid static/dynamic
approach is precise although it is noticeably time consuming.

5.3 Breaking Opaque Predicates by Abstract Interpretation

In this section we focus our attention on two particular classes of numerical
opaque predicates, and we provide a formal characterization of the family of at-
tackers able to disclose such predicates. The considered numerical predicates
are applied in some major software protection techniques as code obfusca-
tion [34], software watermarking [116], tamper-proofing [126] and secure mobile

4 http://www.gnu.org/software/gdb/

5.3 Breaking Opaque Predicates by Abstract Interpretation 103

agents [107]. Moreover, this class of opaque predicates is used in recent imple-
mentations such as Plto [134] — a binary rewriting system that transforms a
binary program preserving the functionality — Loco [105] — a tool for binary
obfuscating and deobfuscating transformations — and Sandmark [30] — a tool
for software watermarking, tamper proofing and code obfuscation of Java pro-
grams (see Table 5.2 for some commonly used opaque predicates). Obviously, the
above-mentioned tools are not restricted to the insertion of numerical opaque
predicates (for example Sandmark allows the insertion of predicates based on
the difficulty of alias analysis). These classes turn out to be particularly inter-
esting since the ability of an attacker to disclose such predicates can be formu-
lated as a completeness problem in the abstract interpretation field, as shown
in Section 5.3.1 and Section 5.3.3. In Section 5.3.2 we report some experimental
results showing the improvements in performance of opaque predicate detection
algorithms, when the detection methodology takes into account the theoretical
results obtained in the Section 5.3.1. This gives an idea of the potential benefits
that may come from the proposed formal framework for code obfuscation.

∀x, y ∈ Z : 7y2 − 1 6= x
∀x ∈ Z : 3 | x3 − x
∀x ∈ Z : 2 | x ∨ 8 | (x2 − 1)
∀x ∈ N : 14 | 3 · 74x−2 + 5 · 42x−1 − 5

∀x ∈ Z :
P2x−1

i=1,2mod(i,2) 6=0 i = x

Table 5.2. Commonly used opaque predicates

5.3.1 Breaking Opaque Predicates n|f(x)

Let us consider numerical true opaque predicates of the form:

∀x ∈ Z : n|f(x)

These predicates are based on a function f : Z → Z that always returns a
value that is a multiple of n ∈ N. This class of opaque predicates is used in
major obfuscating tools such as Sandmark [30] and Loco [105], and in the
software watermarking algorithm by Arboit [6], recently implemented by Myles
and Collberg [116].

In order to precisely detect that predicate n|f(x) is opaque one needs to
check the concrete test, denoted as CTf and defined as follows:

CTf def
= ∀x ∈ Z : f(x) ∈ nZ

where nZ denotes the set of integers that are multiples of n ∈ N. Observe
that, the set of predicates satisfying the concrete test coincides with the set

104 5 Control Code Obfuscation

OP of predicates characterized by (5.1). Our goal is to devise an abstract
interpretation-based method which allows us to perform the test of opaqueness
for f on a suitable abstract domain. As observed in Section 2.2, abstraction can
be equivalently encoded as a closure operator ϕ ∈ uco(℘(Z)), or as an abstract
domain A ∼= ϕ(℘(Z)). In this section we prefer the abstract domain representa-
tion A ∈ uco(℘(Z)), and we denote with αA : ℘(Z)→ A and γA : A→ ℘(Z) the
corresponding abstraction and concretization functions. In particular, we are in-
terested in abstract domains which are able to represent precisely the property
of being a multiple of n, i.e., abstract domains A ∈ uco(℘(Z)) such that there
exists some an ∈ A such that γA(an) = nZ. Let f ♯ : A → A be an abstract
function that approximates f on A. Then, the abstract test on A is defined as
follows:

ATf♯

A

def
= ∀x ∈ Z : f ♯(αA({x})) ≤A an

Observe that, the set of predicates satisfying the abstract test on A, corresponds
to the set OPϕ (also denoted OPA) of predicates characterized by (5.2). It is
clear that the precision of the abstract test strongly depends on the considered
abstract domain. In particular, we have that an abstract test is sound when the
satisfaction of the abstract test implies the satisfaction of the concrete one, and
complete when the converse holds.

Definition 5.6. Given an opaque predicate ∀x ∈ Z : n|f(x) and an abstract
domain A ∈ uco(℘(Z)), we say that:

– ATf♯

A is sound when ATf♯

A ⇒CTf

– and ATf♯

A is complete when CTf⇒ATf♯

A

When the abstract test ATf♯

A is both sound and complete we say that the at-
tack 〈A, f ♯〉 (or simply A when f ♯ is clear from the context) breaks the opaque
predicate ∀x ∈ Z : n|f(x). The following result shows that when the abstract
function f ♯ is a sound (resp. B-complete) approximation of f on singletons, then

the corresponding abstract test ATf♯

A is sound (resp. complete).

Theorem 5.7. Consider an attacker A ∈ uco(℘(Z)) such that there exists an ∈
A with γA(an) = nZ.

(1)If f ♯ is sound approximation of f on the singletons, that is ∀x ∈ Z,

αA({f(x)}) ≤A f ♯(αA({x})), then ATf♯

A is sound.
(2)If f ♯ is B-complete approximation of f on the singletons, that is ∀x ∈ Z,

αA({f(x)}) = f ♯(αA({x})), then ATf♯

A is complete.

proof: (1) Assume the satisfaction of the abstract test ATf♯

A , namely that
∀x ∈ Z : f ♯(αA({x})) ≤A an, then for any x ∈ Z:

f(x) ⊆ γA(αA({f(x)})) ⊆ γA(f ♯(αA({x}))) ⊆ γA(an) = nZ

5.3 Breaking Opaque Predicates by Abstract Interpretation 105

thus ∀x ∈ Z : f(x) ⊆ nZ and the concrete test CTf holds.
(2) Assume the satisfaction of the concrete test CTf , i.e., ∀x ∈ Z : f(x) ⊆ nZ.
Function f ♯ is B-complete on singletons by hypothesis and therefore for any
x ∈ Z:

f ♯(αA({x})) = αA({f(x)}) ⊆ αA(nZ) = an

�

Thus, the key point in order to detect an opaque predicate ∀x ∈ Z : n | f(x), is
to design a suitable abstract domain A together with a B-complete approxima-
tion f ♯ of f .

Abstract Functions

We already observed in Section 5.2.2 that a function f : Z → Z is de-
composed into elementary functions, i.e., assembly instructions within some
basic block. Following the same approach, let us assume that the function
f can be expressed as a composition of elementary functions, namely f =
λx.h(g1(x, ..., x), ..., gk(x, ..., x)) where h : Zk → Z and gi : Zni → Z. More
in general, each gi can be further decomposed into elementary functions. For
example, f(x) = x2 + x is decomposed as h(g1(x), g2(x)) where h(x, y) = x+ y,
g1(x) = x2 and g2(x) = x. Let us consider the pointwise extensions of the ele-
mentary functions, which are still denoted, with a slight abuse of notation, by
h : ℘(Z)k → ℘(Z) and gi : ℘(Z)ni → ℘(Z), and let us denote their composition
by

F
def
= λX.h(g1(X, ...,X), ..., gk (X, ...,X)) : ℘(Z)→ ℘(Z)

For example, for the above decomposition f(x) = x2 + x = h(g1(x), g2(x)),
we have that F : ℘(Z) → ℘(Z) is as follows: F (X) = {y2 + z | y, z ∈ X}.
Observe that F does not coincide with the pointwise extension fp of f , e.g.,
F ({1, 2}) = {2, 3, 5, 6} while fp({1, 2}) = {2, 6}. Let us also notice that F on
singletons coincides with f , namely for any x ∈ Z, F ({x}) = f(x). Thus, the
concrete test CTf can be equivalently formulated as ∀x ∈ Z : F ({x}) ⊆ nZ.

Let A ∈ uco(℘(Z)) be an abstract domain such that there exists some an ∈ A
with γA(an) = nZ. The attacker A approximates the computation of function
F : ℘(Z)→ ℘(Z) in a step by step fashion, meaning that A approximates every
elementary function composing F . Thus, the abstract function F ♯ : A → A is
defined as the composition of the best correct approximations hA and gA

i on A
of the elementary functions, namely:

F ♯(a)
def
= αA(h(γA(αA(g1(γA(a), ..., γA(a)))), ..., γA(αA(gk(γA(a), ..., γA(a))))))

= hA(gA
i (a), ..., gA

k (a))

106 5 Control Code Obfuscation

When the abstract test ATF ♯

A for F ♯ on A holds, the attacker modeled by the
abstract domain A classifies the predicate n|f(x) as opaque. It turns out that
F ♯ is a correct approximation of F on A, namely αA ◦ F ⊑A F ♯ ◦ αA, and this
guarantees the soundness of the abstract test ATF ♯

A .

Corollary 5.8. ATF ♯

A is sound.

proof: We first show that F ♯ : A→ A is a sound approximation of F : ℘(Z)→
℘(Z), namely ∀X ∈ ℘(Z) : αA(F (X)) ≤A F ♯(αA(X)). In fact for any X ∈ ℘(Z):

αA(F (X)) = αA(h(g1(X, ..., X), ..., gk(X, ..., X)))

≤A αA(h(γA(g1(X, ..., X), ..., γA(gk(X, ..., X)))))

≤A αA(h(γA(αA(g1(γA(αA(X)), ..., γA(αA(X))))), ...,

γA(αA(gk(γA(αA(X)), ..., γA(αA(X))))))))

= F ♯(αA(X))

In particular this means that ∀{x} ∈ ℘(Z) : αA(F ({x})) ≤A F ♯(αA({x})), i.e.,
∀x ∈ Z : αA({f(x)}) ≤A F ♯(αA({x})). Thus F ♯ is a sound approximation of f
on the singletons and therefore by point (1) of Theorem 5.7 the abstract test

ATF ♯ is sound.

�

Consider for example the opaque predicate ∀x ∈ Z : 3|(x3 − x), and the
abstract domain A3+ in the figure below. A3+ precisely represents the property
of being a multiple of 3, i.e., 3Z, and its negation, i.e., Zr 3Z.Z

{{
{ LL

LL

3Z Zr 3Z
∅

CCC rrrr

In this case, f(x) = x3 − x = h(g1(x), g2(x)) where h(x, y) = x− y, g1(x) = x3

and g2(x) = x, so that F : ℘(Z)→ ℘(Z) is given by F (X) = {y3− z | y, z ∈ X}.
Hence, it turns out that F ♯(3Z) = 3Z while F ♯(Zr 3Z) = Z. Here, the abstract

test ATF ♯

A3+
is sound but not B-complete, because F ♯ : A3+ → A3+ is a sound but

not complete approximation of f on the singletons. In fact, for {2} ∈ ℘(Z), it
turns out that αA3+({f(2)}) = αA3+({6}) = 3Z while F ♯(αA3+({2})) = F ♯(Zr

3Z) = Z. Thus, the abstract test ATF ♯

A3+
, i.e., ∀x ∈ Z : F ♯(αA3+({x})) ≤ 3Z

does not hold even if CTf does. This means that OPA ⊆ OP , namely that the
predicates that satisfy the abstract test are actually opaque, while there may
be predicates that are opaque and that are not detected by the abstract test.
Thus, in general, ATF ♯

A is sound but not complete, meaning that the attacker

〈A,F ♯〉 is not able to break the opaque predicate ∀x ∈ Z : n|f(x).

5.3 Breaking Opaque Predicates by Abstract Interpretation 107

Recall that abstract domain completeness is preserved by function composi-
tion [61], i.e., if an abstract domain A is complete for f and g then A is complete
for f ◦ g as well. As a consequence, if an abstract domain A is B-complete for
the elementary functions h and gi that decompose F then A is B-complete also
for their composition F . It turns out that B-completeness of an abstract domain
A with respect to the elementary functions composing F guarantees that the
attacker A is able to break the opaque predicate ∀x ∈ Z : n|f(x).

Corollary 5.9. Consider an abstract domain A ∈ uco(℘(Z)) such that ∃an ∈ A
with γA(an) = nZ. If A is B-complete for the elementary functions h and gi

composing F then 〈A,F ♯〉 breaks the opaque predicate ∀x ∈ Z : n|f(x).

proof: If A is B-complete for h and gi then it is also B-complete for their
composition F = λX.h(g1(X, ...,X), ..., gk (X, ...,X)). When A is B-complete
for h : ℘(Z)k → ℘(Z) and gi : ℘(Z)n1 → ℘(Z), it means that the best correct
approximations of h and gi respectively are B-complete approximation, namely:

– ∀Xi ∈ ℘(Z) : αA(h(X1, ...,XK)) = αA(h(γA(αA(X1))), ..., γA(αA(Xk)))
– ∀Yi ∈ ℘(Z) : αA(gi(Y1, ..., Yni)) = αA(gi(γA(αA(Y1))), ..., γA(αA(Yni))))

Thus the best correct approximation of F in A is B-complete, i.e., ∀X ∈ ℘(Z) :
αA(F (X)) = FA(αA(X)). It turns out that when the domain is B-complete for
h and gi, then the best correct approximation of F on A coincides with the
composition of the best correct approximations of h and gi, namely F ♯ = FA.
In fact for all S ∈ A ∈ uco(℘(Z)):

F ♯(S) = αA(h(γA(αA(g1(γA(S)), ..., γA(S))))), ..., γA(αA(gk(γA(S)), ..., γA(αA(X))))))

= αA(h(g1(γA(S))), ..., γA(S))), ..., (gk(γA(S))), ..., γA(S)))))

= αA(F (γA(S))) = FA(S)

This means that F ♯ is a B-complete approximation of F , namely ∀X ∈
℘(Z) : F ♯(αA(X)) = αA(F (X)). In particular ∀{x} ∈ ℘(Z) : F ♯(αA({x})) =
αA(F ({x})) = αA({f(x)}), meaning that F ♯ is a B-complete approximation of
f on the singletons. Therefore by point (2) of Theorem 5.7, the abstract test

ATF ♯

A is complete, meaning that the attacker A breaks the opaque predicate
∀x ∈ Z : n|f(x).

�

Let us consider the opaque predicate ∀x ∈ Z : 3|(x3 − x) and the abstract
domain 3-arity represented in the following figure.Z

rr
rr

r
PPPPP

3Z 1 + 3Z 2 + 3Z
∅

MMMMM
nnnnn

108 5 Control Code Obfuscation

The function f(x) = x3 − x is decomposed as h(g1(x), g2(x)) where h(x, y) =
x− y, g1(x) = x3 and g2(x) = x. It turns out that the abstract domain 3-arity
is B-complete for the pointwise extensions of h, g1 and g2, i.e., λ〈X,Y 〉.X − Y ,
λX.X3 and λX.X, and therefore, by Corollary 5.9, the attacker 3-arity is able
to break the opaque predicate ∀x ∈ Z : 3|(x3 + x).

Lemma 5.10. 3-arity is B-complete for λX.X3, λX.X and λ〈X,Y 〉.X − Y .

proof: It is easy to verify that given X ⊆ 3Z(1+3Z, 2+3Z) then X3 ⊆ 3Z(1+
3Z, 2 + 3Z) respectively. We can see that 3-arity is B-complete for g(X) = X3,
in fact: if X ⊆ 3Z then 3-arity(g(3-arity (X))) = 3-arity(g(3Z)) = 3Z, and 3-
arity(g(X)) = 3Z, and the same holds for X ⊆ 1 + 3Z and X ⊆ 2 + 3Z. At
the end we have to consider also the case in which 3-arity(X) = Z and the one
whenX = ∅. If 3-arity(X) = Z then 3-arity(g(3-arity (X))) = 3-arity(g(Z)) = Z
and 3-arity(g(X)) = Z, while if X = ∅ then 3-arity(X) = ⊥ and therefore 3-
arity(g(3-arity (X))) = 3-arity(g(⊥)) = ⊥ and 3-arity(g(∅)) = ⊥.
Now we need to prove that 3-arity is complete for the function h(X,Y) = X−Y ,
namely we have to check that for every possible abstractions of X and Y in 3-
arity then 3-arity(h(3-arity (X), 3-arity (Y))) = 3-arity(h(X,Y)). This proof is
done by analyzing all the possible cases:

– X ⊆ 3Z, Y ⊆ 3Z, and X,Y 6= ∅:
3-arity(3-arity(X) − 3-arity(Y)) = 3-arity(3Z − 3Z) = 3Z and 3-arity(X −
Y) = 3Z

– X ⊆ 1 + 3Z, Y ⊆ 3Z, and X,Y 6= ∅:
3-arity(3-arity(X) − 3-arity(Y)) = 3-arity((1 + 3Z) − 3Z) = 1 + 3Z and
3-arity(X − Y) = 1 + 3Z

– X ⊆ 2 + 3Z, Y ⊆ 3Z, and X,Y 6= ∅:
3-arity(3-arity(X) − 3-arity(Y)) = 3-arity((2 + 3Z) − 3Z) = 2 + 3Z and
3-arity(X − Y) = 2 + 3Z

– X = ∅ and Y = ∅:
3-arity(3-arity(X)−3-arity(Y)) = 3-arity(⊥−⊥) = ⊥ and 3-arity(X−Y) =
⊥

– X ⊆ 3Z, Y = ∅, and X 6= ∅:
3-arity(3-arity(X) − 3-arity(Y)) = 3-arity(3Z − ⊥) = 3Z and 3-arity(X −
Y) = 3Z

– X ⊆ 1 + 3Z, Y = ∅, and X 6= ∅:
3-arity(3-arity(X) − 3-arity(Y)) = 3-arity((1 + 3Z) − ⊥) = 1 + 3Z and 3-
arity(X − Y) = 1 + 3Z

– X ⊆ 2 + 3Z, Y = ∅, and X 6= ∅:
3-arity(3-arity(X) − 3-arity(Y)) = 3-arity((2 + 3Z) − ⊥) = 2 + 3Z and 3-
arity(X − Y) = 2 + 3Z

5.3 Breaking Opaque Predicates by Abstract Interpretation 109

– X ⊆ 2 + 3Z, Y ⊆ 1 + 3Z, and X,Y 6= ∅:
3-arity(3-arity(X)−3-arity(Y)) = 3-arity((2+3Z)− (1+3Z)) = 1+3Z and
3-arity(X − Y) = 1 + 3Z

– X ⊆ Z, Y ⊆ 3Z, X,Y 6= ∅ and X 6⊆ 3Z, 1 + 3Z, 2 + 3Z:
3-arity(3-arity(X)−3-arity(Y)) = 3-arity(Z−3Z) = Z and 3-arity(X−Y) =Z

– X ⊆ Z, Y ⊆ 1 + 3Z, X,Y 6= ∅ and X 6⊆ 3Z, 1 + 3Z, 2 + 3Z:
3-arity(3-arity(X)−3-arity (Y)) = 3-arity(Z−(1+3Z)) = Z and 3-arity(X−
Y) = Z

– X ⊆ Z, Y ⊆ 2 + 3Z, X,Y 6= ∅ and X 6⊆ 3Z, 1 + 3Z, 2 + 3Z:
3-arity(3-arity(X)−3-arity (Y)) = 3-arity(Z−(2+3Z)) = Z and 3-arity(X−
Y) = Z

– X ⊆ Z, Y ⊆ Z, X,Y 6= ∅ and X,Y 6⊆ 3Z, 1 + 3Z, 2 + 3Z:
3-arity(3-arity(X)−3-arity (Y)) = 3-arity(Z−Z) = Z and 3-arity(X−Y) =Z

– X ⊆ Z, Y = ∅, X 6= ∅ and X 6⊆ 3Z, 1 + 3Z, 2 + 3Z:
3-arity(3-arity(X)−3-arity(Y)) = 3-arity(Z−⊥) = Z and 3-arity(X−Y) =Z

– X ⊆ 1 + 3Z, Y ⊆ 1 + 3Z, X,Y 6= ∅
3-arity(3-arity(X) − 3-arity(Y)) = 3-arity((1 + 3Z) − (1 + 3Z)) = 3Z and
3-arity(X − Y) = 3Z

– X ⊆ 2 + 3Z, Y ⊆ 2 + 3Z, X,Y 6= ∅
3-arity(3-arity(X) − 3-arity(Y)) = 3-arity((2 + 3Z) − (2 + 3Z)) = 3Z and
3-arity(X − Y) = 3Z

Observe that these are all the cases we have to consider since the remaining
once follow for semi-commutativity, i.e., X − Y = −(Y −X).

�

Designing Domains for Breaking Opaque Predicates

In the following we show how B-completeness domain refinement can be used
to derive models of attackers which are able to break a given opaque predicate.
Let us consider the opaque predicate ∀x ∈ Z : 3|(x3 − x) and the attacker
A3

def
= {Z, 3Z}, that is the minimal abstract domain which represents precisely

the property of being a multiple of 3. Recall that the function f(x) = x3 − x is
decomposed as h(g1(x), g2(x)) where h(x, y) = x− y, g1(x) = x3 and g2(x) = x.
It turns out that A3 is not able to break the above opaque predicate, since
F ♯ : A3 → A3 is not a B-complete approximation of f on singletons. In fact,
consider {2} ∈ ℘(Z), it turns out that αA3({f(2)}) = αA3({6}) = 3Z while

F ♯(αA3({2})) = F ♯(Z) = Z. Corollary 5.9 does not apply here because A3 is
B-complete for g1 and g2 but not for h. However, as recalled in Section 2.2,

110 5 Control Code Obfuscation

completeness can be obtained by a domain refinement. Thus, we systemati-
cally transform A3 by the B-completeness domain refinement with respect to
h = λ〈X,Y 〉.X − Y . We obtain the abstract domain RB

h (A3) that models an
attacker which is able to break ∀x ∈ Z : 3|(x3 − x). As recalled in Section 2.2,
the application of the B-completeness domain refinement adds to A3Z the max-
imal inverse images under h of all its elements until a fixpoint is reached, that
is for any fixed X ⊆ Z and a belonging to the current abstract domain, we
iteratively add the following sets of integers: max{Z ⊆ Z | Z−X ⊆ a}. It is not
hard to verify that the following elements provide exactly the minimal amount
information to add to A3 in order to make it complete for h.

– if X = {0} then: max{Z ⊆ Z | Z −X ⊆ 3Z} = 3Z
– if X = {1} then: max{Z ⊆ Z | Z −X ⊆ 3Z} = 1 + 3Z
– if X = {2} then: max{Z ⊆ Z | Z −X ⊆ 3Z} = 2 + 3Z
Therefore, RB

h (A3) = {Z, 3Z, 1 + 3Z, 2 + 3Z,∅} = 3-arity . Note that we are
able to systematically obtain attacker 3-arity , which is able to break the opaque
predicate, through a B-completeness refinement of the minimal abstract domain
A3.

It turns out that given n ∈ N, the abstract domain n-arity , in Fig. 5.6,
is B-complete for addition, difference and, for k ∈ N, k-power (i.e., λX.Xk).
Therefore, by Corollary 5.9, the attacker n-arity breaks the opaque predicates
∀x ∈ Z, n|f(x), where f is a polynomial function. The abstract domain n-arity
turns out to be an instance of a more general domain designed by Granger to
represent integer congruences [66].

Theorem 5.11. The attacker n-arity breaks all the opaque predicates of the
following form: ∀x ∈ Z : n|f(x), where f(x) is a polynomial function.

proof: Follows from Corollary 5.9 since n-arity is B-complete for addition,
difference and k-power (xk), with k ∈ N, which are the elementary functions
composing f .

– Addition ∀X,Y ∈ ℘(Z) : n-arity(n-arity(X)+n-arity(Y)) = n-arity(X+Y)
Let i, j ∈ [0, n − 1] and let X,Y ∈ ℘(Z) such that: n-arity(X) = i + nZ,
n-arity(Y) = j+nZ, then: n-arity(i+nZ+ j +nZ) = n-arity(i+ j +nZ) =
(i+ j) mod n+ nZ and n-arity(X + Y) = (i+ j) mod n+ nZ.

– Difference: same as for addition
– Power: ∀X ∈ ℘(Z), k ∈ N : n-arity(n-arity(X)k) = n-arity(Xk)

Let i ∈ [0, n − 1] and let X ∈ ℘(Z) such that n-arity(X) = i + nZ then: n-
arity((i+nZ)k) = n-arity((i+nZ)(i+nZ)k−1) = i+nZ and n-arity(Xk) = n-
arity(xxk−1) = i+ nZ.

�

5.3 Breaking Opaque Predicates by Abstract Interpretation 111

⊥

Z
nZ . . . (n − 1) + nZ2 + nZ1 + nZ

Fig. 5.6. Abstract domain n-arity

Breaking Opaque Predicates P (f(x))

In the following we generalize the result obtained for opaque predicates of the
form ∀x ∈ Z : n|f(x) to a wider class of opaque predicates. Let us now consider
the class P (f(x)) of opaque predicates where each predicate has the following
form: ∀x ∈ Z : f(x) ⊆ P , where P ⊆ Z is any property on integers numbers and
f : Z→ Z. It is possible to generalize the results of Theorem 5.7, Corollary 5.8
and Corollary 5.9, to opaque predicates in P (f(x)). This is simply done by
replacing the property nZ of being a multiple of n, with a general property P over
integers. This allows us to provide a formal methodology for designing abstract
domains that model attackers able to break opaque predicates in P (f(x)). Let
∀x ∈ Z : f(x) ⊆ P be an opaque predicate and let us consider the minimal
abstract domain AP that represents precisely the property P , i.e., AP

def
= {Z, P}.

As above, we assume that the function f can be expressed as a composition of
elementary functions, namely f = λx.h(g1(x, ..., x), ..., gk(x, ..., x)) where h :Zk → Z and gi : Zni → Z. Then, we compute the B-completeness domain
refinement of AP with respect to the set of elementary functions composing f ,
namely RB

h,g1,...,gk
(AP). It turns out that the refined domain is able to break the

opaque predicate ∀x ∈ Z : f(x) ⊆ P .

Theorem 5.12. The attacker modeled by the abstract domain RB
h,g1,...,gk

(AP)
breaks the opaque predicate ∀x ∈ Z : f(x) ⊆ P .

proof: The abstract domain RB
h,g1,...,gk

(AP) is B-complete for the elementary
functions h and gi composing function f . Thus the result follows form Corol-
lary 5.9 where the property nZ of being a multiple of n is replaced by the general
property P over integers.

�

Thus, B-completeness domain refinement provides here a systematic method-
ology for designing attackers that are able to break opaque predicates of the
general form: ∀x ∈ Z : f(x) ⊆ P .

It is clear that, the previous result is independent from the choice of the
concrete domain Z and can be extended to a general domain of computation
Dom.

112 5 Control Code Obfuscation

Corollary 5.13. Consider an opaque predicate ∀x ∈ Dom: f(x) ⊆ P , with
function f : Dom → Dom, f = h(g1(x, ..., x), ..., gk(x, ..., x)), and P ⊆ Dom.
The abstract domain RB

h,g1,...,gk
({Dom,P}) is able to break opaque predicate

∀x ∈ Z : f(x) ⊆ P .

5.3.2 Experimental results

A prototype of the above described attack based on the abstract domain Parity
has been implemented using Loco [105], a x86 tool for obfuscation/deobfuscation
transformations which is able to insert opaque predicates. This experimental
evaluation has been conducted on the aforementioned 1.6 GHz Pentium M-
based system. Each program of the SPECint2000 benchmark suite is obfuscated
by inserting the following true opaque predicates: ∀x ∈ Z : 2|(x2 + x) and
∀x ∈ Z : 2|(x + x). It turns out that Parity is B-complete for addition, square
and identity function, thus by Corollary 5.9, the abstract domain Parity models
an attacker that is able to break these opaque predicates. In the obfuscating
transformation each basic block of the input assembly program is split into two
basic blocks. Then, Loco checks whether the opaque predicate can be inserted
between these two basic blocks: a liveness analysis is used here to ensure that no
dependency is broken and that the obfuscated program is functionally equiva-
lent to the original one. In particular, liveness analysis checks that the registers
and the conditional flags affected by the opaque predicate are not live in the
program point where the opaque predicate will be inserted. Moreover, our tool
checks by a standard constant propagation whether the registers associated to
the opaque predicate are constant or not. If constant propagation detects that
these are constant then the opaque predicate can be trivially broken and there-
fore is not inserted. Although liveness analysis and constant propagation are
noticeably time-consuming, they are nevertheless necessary both to ensure func-
tional equivalence between original and obfuscated program and to guarantee
that the opaque predicate cannot be trivially broken by constant propagation.
The algorithm used to detect opaque predicates is analogous to the brute force
attack algorithm described in Section 5.2.2. Fig. 5.7 describes the basic block,
by pseudo-code, which implements the opaque predicate ∀x ∈ Z : 2|(x2 + x).

Fig. 5.7. Breaking ∀x ∈ Z, 2|(x2 + x)

5.3 Breaking Opaque Predicates by Abstract Interpretation 113

Let us describe how our deobfuscation algorithm works. For each conditional
jump j, jump if zero in the figure, we consider the instruction i which immedi-
ately precedes j, cond=z%2 in the figure. The instructions j and i are abstractly
executed on each value of the abstract domain (i.e., the attack). In the consid-
ered case of the attack modeled by Parity, both non-trivial values even and odd
are given as input to cond=z%2. When z evaluates to even, cond evaluates to 0
and therefore the true path is followed. On the other hand, when z is evaluated
to odd, cond evaluates to 1 and the false path is taken. Thus, i does not give rise
to an opaque predicate, so that we need to consider the instruction z=x+y which
immediately precedes i. The instruction z=x+y is binary and therefore we need
to consider all the values in Parity × Parity. This process is iterated until an
opaque predicate is detected or the end of the basic block is reached. In our case,
the opaque predicate is detected when the algorithm analyses the instruction
y=x*x because whether x is evaluated to even or odd the true path is taken. The
number of computational steps needed for breaking one single opaque predicate
by an attack based on an abstract domain A is n2 ∗dr, where n is the number of
instructions composing the opaque predicate, r is the number of registers used
by the opaque predicate and d is the number of abstract values in A. The reduc-
tion of the computational effort of the abstract interpretation-based attack with
respect to the brute force attack can therefore be huge since the abstract domain
can encode a very coarse approximation (namely d may be much smaller than
2w where w is the register width). Since in the considered example the opaque
predicate consists of 3 instructions, uses 2 registers and Parity has 2 non-trivial
abstract values, the number of steps for detecting ∀x ∈ Z : 2|x+ x through the
abstract domain Parity becomes 32 ∗ 22.

Table 5.3. Timings of obfuscation and deobfuscation

In Table 5.3 we show the results of the obfuscation/deobfuscation process on
the standard suite of benchmarks SPECint2000. For each program we report

114 5 Control Code Obfuscation

the number ♯OP of inserted opaque predicates and the time needed to obfus-
cate and deobfuscate the program, that is the time needed to insert and to detect
the considered opaque predicates. For each program the left (blue) column rep-
resents the time (in seconds) needed to insert the opaque predicates and the
right (violet) column represents the time needed to detect the inserted opaque
predicates. It turns out that the Parity-based deobfuscation process is able to
detect all the inserted opaque predicates. Let us recall that the brute force at-
tack took 8.83 seconds to detect only one occurrence of the opaque predicate
∀x ∈ Z : 2|x+x in a 16-bit environment, while the abstract interpretation-based
deobfuscation attack took 8.13 seconds to deobfuscate 66176 opaque predicates
in a 32-bit environment. Observe that, in general, the time needed to obfuscate
is grater than the time needed to deobfuscate, due to the fact that the insertion
of opaque predicates needs some preliminary static analysis which can be time
consuming.

The experimental results show the improvement in performance obtained
from the theoretical investigation. It is clear that the approach described for
this class of opaque predicates can be applied to other classes of predicates. As
an example, in the next section we consider another class of numerical opaque
predicates and show that, once again, predicate detection can be reduced to a
completeness property of abstract domains.

5.3.3 Breaking Opaque Predicates h(x) = g(x)

In [35] Collberg et al. observe that the study of random Java programs reveals
that most predicates are extremely simple. In particular, common patterns in-
clude the comparison of integer quantities using binary operators such as equal
to, greater than, smaller than, etc. It is clear that, in order to design stealthy
obfuscating transformations, the inserted opaque predicates have to resemble
the structure of predicates typically present in a program. For this reason we
restrict our study to numerical opaque predicates on integer values. In general,
an opaque predicate of this kind is a function Zn → B⊥ that takes an array of n
integer values and returns true, false , ⊥ or ⊤. A wide class of numerical opaque
predicates can be characterized by the following structure:

∀x̄ ∈ Zn : h(x̄) compare g(x̄)

where compare stands for any binary operator in the set {=,≥,≤}, x̄ is an array
of n integer values, namely x̄ ∈ Zn, h and g are two functions over integers, in
particular h, g : Zn → Z. Let us assume that each variable of program P ranges
over Z and let |var[[P]]| = m. Each abstract domain (attacker) ϕ ∈ uco(℘(Zm))
induces an abstraction on the values of variables and therefore on the value
that the opaque predicate input can assume. From now on, the abstract domain

5.3 Breaking Opaque Predicates by Abstract Interpretation 115

ϕ ∈ uco(℘(Zn)) models the attacker that observes an approximation ϕ of opaque
predicate inputs. Let us consider a numerical opaque predicate of the form ∀x̄ ∈Zn : h(x̄) = g(x̄), which verifies whether two functions h and g always return
the same value when applied to the same array of integer values. In order to
precisely detect the opaqueness of ∀x̄ ∈ Zn : h(x̄) = g(x̄), one needs to check
the concrete test, denoted as CTh,g and defined as follows:

CTh,g def
= ∀x̄ ∈ Zn : h(x̄) = g(x̄)

Once again, the set of predicates that satisfy the concrete test corresponds to
the set OP of predicates characterizes by (5.1). Our goal is to characterize the
family of abstractions of ℘(Zn) that perform the test of opaqueness for h and
g in a precise way, namely the set of abstractions that loose information that
is irrelevant for the precise computation of h and g. We are therefore interested
in the family of abstract domains that are able to precisely compute functions
h and g, which corresponds to the class of attackers able to deobfuscate the
insertion of predicates of the form ∀x̄ ∈ Zn : h(x̄) = g(x̄). Given a set X ⊆ Zn

let h(X)
.
= g(X) denote the point to point definition of equality, where h(X)

.
=

g(X) if and only if ∀x̄ ∈ X : h(x̄) = g(x̄). Let ATh,g
ϕ denote the abstract test for

opaqueness associated to an attacker modeled by the abstract domain ϕ. The
abstract test is defined as follows:

ATh,g
ϕ

def
= ∀x̄ ∈ Zn : ϕ(h(ϕ(x̄)))

.
= ϕ(g(ϕ(x̄)))

Also in this case the set of opaque predicates satisfying the abstract test on ϕ
corresponds to the set OPϕ of opaque predicates characterized by (5.2). Once
again, the precision of the abstract test strongly depends on the considered
abstract domain. Thus, as in Section 5.3.1, sound and complete abstract tests
are defined as follows.

Definition 5.14. Given an opaque predicate ∀x̄ ∈ Zn : h(x̄) = g(x̄), and an
abstraction ϕ ∈ uco(℘(Σ+)), we say that:

– ATh,g
ϕ is sound when ATh,g

ϕ ⇒ CTh,g

– ATh,g
ϕ is complete when CTh,g ⇒ ATh,g

ϕ

When the abstract test ATh,g
ϕ is both sound and complete, i.e., ATh,g

ϕ ⇔ CTh,g,
we say that attacker ϕ breaks the opaque predicate ∀x̄ ∈ Zn : h(x̄) = g(x̄). In
fact, in this case the set of opaque predicates coincides with the set of opaque
predicates classified as opaque by the abstract test, meaning that we have ob-
tained the desired equality OP = OPϕ.

It turns out that, considering opaque predicates of the form ∀x̄ ∈ Zn : h(x̄) =
g(x̄), for any abstract domain ϕ ∈ uco(℘(Zn)) modeling the attacker, the ab-
stract test defined above is always complete.

116 5 Control Code Obfuscation

Corollary 5.15. ATg,h
ϕ is complete.

proof: If the concrete test CTh,g is verified we have that ∀x̄ ∈ Zn : h(x̄) = g(x̄),
since ϕ(x̄) ⊆ Zn then ∀x̄ ∈ Zn : ∀ȳ ∈ ϕ(x̄) : h(ȳ) = g(ȳ). This means that
∀x̄ ∈ Zn : h(ϕ(x̄))

.
= g(ϕ(x̄)), thus ∀x̄ ∈ Zn : ϕ(h(ϕ(x̄)))

.
= ϕ(g(ϕ(x̄))) that

corresponds to the satisfaction of the abstract test Ag,h
ϕ .

�

This means that if a predicate is opaque then the attacker recognises it, namely
OP ⊆ OPϕ. Thus, dOPϕ(S

ϕ[[P]]) = dOPϕ(S
ϕ[[tOP [[P,I[[P]]]]]]). In fact, dOPϕ

eliminates all the opaque predicates from the right term and the common regular
predicate that are erroneously classified as opaque from both terms. For the
same reason we have that Sϕ[[P]] 6= dOPϕ(S

ϕ[[P]]). This means that Sϕ[[P]] 6=
dOPϕ(S

ϕ[[tOP [[P,I[[P]]]]]]) and therefore that attacker ϕ is defeated. As argued
above, attacker ϕ is able to break opaque predicates insertion when OP = OPϕ,
which is guaranteed when the abstract test ATh,g

ϕ is both sound and complete.
Corollary 5.15 guarantees completeness of the abstract test, thus, in order to
break an opaque predicate, we need to verify the soundness condition. In general
ATh,g

ϕ is not sound, but it is possible to show that soundness is guaranteed when
the abstract domain ϕ modeling the attacker is F-complete for both functions
h and g.

Theorem 5.16. Given an opaque predicate ∀x̄ ∈ Zn : h(x̄) = g(x̄), and an
attacker modeled by ϕ ∈ uco(℘(Zn)), if the abstraction ϕ is F-complete for
both functions h and g then the abstract test ATh,g

ϕ is sound.

proof: We have to prove that ATh,g
ϕ ⇒ CTh,g. If the abstract test ATh,g

ϕ holds
then ∀x̄ ∈ Zn : ϕ(h(ϕ(x̄)))

.
= ϕ(g(ϕ(x̄))), namely ∀x̄ ∈ Zn : ϕ(h(ϕ(ϕ(x̄))))

.
=

ϕ(g(ϕ(ϕ(x̄)))). The abstract domain ϕ is F-complete by hypothesis, therefore
∀x̄ ∈ Zn : h(ϕ(ϕ(x̄)))

.
= g(ϕ(ϕ(x̄))), which is equivalent to ∀x̄ ∈ Zn : h(ϕ(x̄))

.
=

g(ϕ(x̄)). By definition of
.
= this means that ∀x̄ ∈ Zn : ∀ȳ ∈ ϕ(x̄) : h(ȳ) = g(ȳ).

ϕ is extensive by hypothesis, namely x̄ ∈ ϕ(x̄), and therefore ∀x̄ ∈ Zn : h(x̄) =
g(x̄), that corresponds to the satisfaction of the concrete test CTh,g.

�

This means that, when the abstract domain modeling the attacker is able to
precisely compute the functions composing the opaque predicate, then the at-
tacker breaks the opaque predicate. Thus, given an attacker ϕ and an opaque
predicate ∀x̄ ∈ Zn : h(x̄) = g(x̄), the F-completeness domain refinement of ϕ
with respect to functions h and g adds the minimal amount of information to
attacker ϕ to make it able to defeat the considered opaque predicate. Hence,
completeness domain refinement provides here a systematic technique to design
attackers that are able to break an opaque predicate of interest. Once again, the

5.3 Breaking Opaque Predicates by Abstract Interpretation 117

completeness property of abstract interpretation precisely captures the ability
of an attacker to disclose an opaque predicate.

The above result holds also when considering ≤,≥, and the corresponding
point to point extensions ≤̇, ≥̇, instead of = and

.
=.

Corollary 5.17. Given an opaque predicate ∀x̄ ∈ Zn : h(x̄) compare g(x̄),
and an attacker modeled by ϕ ∈ uco(℘(Zn)), if the abstraction ϕ is F-complete
for both functions h and g, then ϕ breaks opaque predicates that are instances
of ∀x̄ ∈ Zn : h(x̄) compare g(x̄).

In the following example we show how the lack of F-completeness of the abstract
domain modeling the attacker can cause the abstract test to hold, even if the
concrete one fails.

Example 5.18. Let us consider the predicate ∀x ∈ Z : 2x2 = 2x, where h(x) =
2x2 and g(x) = 2x. It is clear that CTh,g does not hold, since the predicate
is not opaque. Let us consider an attacker modeled by the abstract domain of
Parity = {⊤,⊥, even, odd}. In turns out that ATh,g

Parity holds, in fact:

even :: Parity(h(even)) = even = Parity(g(even))

odd :: Parity(h(odd)) = even = Parity(g(odd))

The reason why the abstract test holds on Parity is the fact that Parity is not
F-complete for both h and g. In fact, let Parity = γ ◦ α, then 2(γ(even)) ={

2x
∣∣x ∈ 2Z }

which is strictly contained in γ(2even) = γ(even) = 2Z.
When computing the F-completeness domain refinement of Parity with re-
spect to h and g, we close the considered abstract domain with respect to
h and g. This means that, for example the elements Double2 , such that
γ(Double2) =

{
2x

∣∣x ∈ 2Z }
, Double1 , such that γ(Double1) = {2x | x ∈

2Z+ 1}, DoubleSq2 , such that γ(DoubleSq2) = {2x2 | x ∈ 2Z}, and DoubleSq1 ,
such that γ(DoubleSq1) = {2x2 | x ∈ 2Z+1}, belong to RF

h,g(Parity) = Parity+.
Observe that on this domain the abstract test does not hold any more, in fact
Parity+(h(even)) = DoubleSq2 6= Double2 = Parity+(g(even)), and so on for
all the other elements since the direct image of all elements under h and g are
precisely expressed by the domain obtained through the completeness refine-
ment.

�

Observe that the theoretical investigation of Section 5.3.1 takes into ac-
count the elementary functions implementing the opaque predicates while in
this section we do not consider such details. It is clear that, in order to provide
some experimental results also for the class of opaque predicates of the form
∀x̄ ∈ Zn : h(x̄) = g(x̄) the F-completeness problem needs to be described in
terms of elementary functions composing the predicates (which can be easily
done since completeness is preserved by composition).

118 5 Control Code Obfuscation

5.3.4 Comparing Attackers

The completeness results obtained in Section 5.3.1 and in Section 5.3.3 allow
us to compare on the lattice of abstract interpretation both the efficiency of
different attackers in disclosing a particular opaque predicate, and the resilience
of different opaque predicates with respect to an attacker.

Let P T denote a predicate belonging to either one of the two considered
classes of opaque predicates, and let us denote with RPT the completeness
domain refinement needed to make an attacker able to break P T (without
distinguishing between backward or forward completeness refinements). Let
Potency(P T , ϕ) denote the potency of opaque predicate P T in contrasting at-
tacker ϕ, and Resilience(P T , ϕ) the resilience of opaque predicate P T in pre-
venting attacker ϕ.

Definition 5.19. Given two attackers ϕ, φ ∈ uco(℘(Σ+)) and two opaque pred-
icates P T

1 and P T
2 :

– if ϕ ⊏ ψ and RPT (ψ) = RPT (ϕ), we say that Potency(P T , ψ) is greater than
Potency(P T , ϕ)

– when RPT1
(ϕ) ⊏ RPT2

(ϕ), we say that Resilience(P T
1 , ϕ) is greater than

Resilience(P T
2 , ϕ)

The first point of the above definition refers to the situation represented in
Fig. 5.8 (a), where ϕ ⊏ ψ and RPT (ψ) = RPT (ϕ). In this case we have that the
insertion of P T contrasts attacker ψ more than what contrasts attacker ϕ. This
is because more information needs to be added to ψ than to ϕ in order to gain
an attacker able to break P T , namely ψ is farther away than ϕ from disclosing
P T .

R
P T
2

(ϕ)

⊤

id

ϕ

(a)

⊤

id

(b)

ψ

R
P T
1

(ϕ)
R

PT (ϕ) = R
P T (ψ))

ϕ

Fig. 5.8. Comparing attackers

The same reasoning allows us to compare the resilience of different opaque
predicates in the lattice of abstract interpretation. In fact, the second point

5.4 Discussion 119

of the above definition considers two predicates P T
1 and P T

2 and an attacker
ϕ ∈ uco(℘(Σ+)) and assumes that RPT1

(ϕ) ⊏ RPT2
(ϕ) as shown in Fig. 5.8 (b).

In this case we can say that the insertion of opaque predicate P T
1 is more efficient

in obstructing attacker ϕ than the insertion of opaque predicate P T
2 , because

more information needs to be added to ϕ in order to disclose P T
1 than P T

2 . Thus,
in order to understand which opaque predicate in OP is more efficient for con-
trasting a given attacker ϕ, it is necessary to compute the fixpoint solution of the
completeness domain refinement of ϕ with respect to the different opaque pred-
icates available, and then choose the one that corresponds to the most concrete
refinement. In fact, the closer the refined attacker is to the identical abstraction
(concrete semantics), the higher is the resilience of the opaque predicate. In par-
ticular, if RPT (ϕ) = id , it means that the attacker ϕ can break the considered
opaque predicate only if it can access the concrete program semantics. In this
case the considered opaque predicate provides the best obstruction to ϕ.

5.4 Discussion

We have studied the effects that opaque predicate insertion has on program
trace semantics and we have systematically derived a possible obfuscating al-
gorithm following the methodology proposed by Cousot and Cousot [44]. The
semantic understanding of opaque predicate insertion leads us to observe how
this transformation does not irremediably affect program trace semantics. As
usual, we assume that attackers have a constrained observation of a program’s
behaviour, and this is specified by modeling attackers as abstractions of trace
semantics. The semantics-based notion of potency given in Definition 4.3 states
that a transformation t is potent if it defeats attackers modeled as proper-
ties of program trace semantics, namely if there exists a property ϕ such that
ϕ(S+[[P]]) 6= ϕ(S+[[t[[P]]]]). This measure of potency fits transformations that
deeply modify program trace semantics, and provides an advanced technique
for comparing obfuscating algorithms relatively to their potency in the lattice
of abstract interpretation (as stated by Definition 4.10). However, Definition 4.3
is not adequate for modeling the potency of obfuscating transformations that
leave program trace semantics almost unchanged, as in the case of opaque pred-
icate insertion. In this case, we need a notion of program potency that captures
the noise introduced at the level of program control flow, which is an abstraction
of trace semantics. This observation has led to Definition 5.5, where transforma-
tion potency is formalized with respect to the abstract semantics computed on
the abstract domain modeling the attacker, namely a transformation t is potent
if there exists an abstraction ϕ such that Sϕ[[P]] 6= Sϕ[[t[[P]]]]. It is clear how
the two definitions of potency are deeply different and orthogonal and how each
of them fits different kinds of obfuscations. In Chapter 6 we classify program

120 5 Control Code Obfuscation

transformations according to the effects that they have on trace semantics. In
particular, a transformation t is conservative when the semantics of the original
and obfuscated program share the same structure (more formally when for each
trace σ ∈ S+[[P]] there exists a trace δ ∈ S+[[t[[P]]]] that presents all the states
of σ in the same order), non-conservative otherwise. In Chapter 6 we discuss
the importance of this classification. This classification turns out to be related
to the above-mentioned definitions of potency, in fact Definition 4.3 of transfor-
mation potency suites non-conservative obfuscations, while Definition 5.5 suites
conservative obfuscations.

In the particular case of opaque predicate insertion, the use of abstract in-
terpretation ensures that, when the abstraction is complete, the attacker is able
to break the opaque predicate, namely to remove the obfuscation. This proves
that deobfuscation in the case of opaque predicates requires complete abstrac-
tions and therefore the potency of opaque predicates can be measured by the
amount of information that has to be added to the incomplete domain to be-
come complete. This allows us to compare both the potency of different opaque
predicates with respect to a given attack, and the resilience of an opaque predi-
cate with respect to different attackers. Some further work is necessary in order
to validate our theory in practice. In fact, while measuring the resilience of
opaque predicates in the lattice of abstract domains may provide an absolute
and domain-theoretical taxonomy of attackers and obfuscators, it would be in-
teresting to investigate the true effort, in terms of dynamic testing, which is
necessary to enforce static analysis in order to break opaque predicates. We
believe that this is proportional to the missing information in the abstraction
modeling the static analysis with respect to its complete refinement. However,
preliminary works on this directions show promising experimental results, as
described in Section 5.3.2.

As observed above, the insertion of an opaque predicate creates a path that is
never taken. It is clear that when the false path of a true opaque predicate con-
tains another opaque predicate the degree of obfuscation of the transformation
increases. The two opaque predicates interact with each other, and this depen-
dence adds more confusion in the understanding of the original control flow of
the program. Thus, we propose the insertion of dependent opaque predicates as
a new and more potent obfuscation technique.

Consider for example the true opaque predicates P1 : ∀x ∈ Z : 2|(x2 + x)
and P2 : ∀x ∈ Z : 3|(x3 − x) that interact with each other as depicted Fig 5.9.
On the left-hand side we have the opaque predicate P1, while on the right-hand
side we have P2, expressed in terms of elementary functions, i.e., assembly
instructions. Observe that the false branch of predicate P1 enters the second
basic block of predicate P2 and vice versa. Following our completeness result,
the attacker modeled by the abstract domain Parity should be able to break
opaque predicate P1. The problem is that Parity cannot break P2 and therefore

5.4 Discussion 121

y = x2

jump jump

z = x − y

TFFT

z = x + y

t = z mod 2 t = z mod 3

if (t = 0) if (t = 0)

y = x2

Fig. 5.9. Dependent opaque predicates

we have an incoming edge on the second basic block of opaque predicate P1
coming from P2. This gives the idea of why we are no longer able to break
opaque predicate P1 with the Parity domain. Therefore, when there are opaque
predicates that interact with each other the attacker needs to take into account
these dependencies. Our guess is that a suitable attacker to handle this situation
could probably be obtained by combining the abstract domains breaking the
individual opaque predicates. This means that one opaque predicate which is
not breakable by our technique could protect breakable opaque predicates by
interacting with them.

Another aspect that we would like to investigate is the use of abstract do-
mains that are more complex than the ones considered so far in order to con-
struct new opaque predicates and to detect more sophisticated ones. The idea
is that program properties that can be studied only on complex domains could
lead to the design of novel opaque predicates. Since these properties derive from
a complex analysis the corresponding opaque predicates should be resilient to
attacks. Consider for example the polyhedral abstract domain [45] and the ab-
stract domain of octagons [113] for discovering properties of numerical variables.

6

A Semantics-Based approach to Malware Detection

o

b

f

u

s

c

a

t

i

o

n

Virus

Attacker
Alice

Signature

Matching

The Malicious Code Perspective

The theoretical framework proposed in Chapter 4 and Chapter 5 provides a
formal setting where to understand code obfuscation from a semantic point of
view. As noticed earlier, potency of obfuscating transformations and attackers,
namely users interested in recovering the original code, can both be modeled
as abstractions of program trace semantics. This allows us to compare potency
and resilience of different obfuscating transformations with respect to different
attackers on the lattice of abstract interpretation. It is clear that the results of
the previous chapters still hold when considering obfuscating transformations as
malicious transformations used by malware writers to prevent detection, and de-
obfuscation tools, i.e., attackers, as malware detection algorithms. Notice that,
if in the software protection field we are interested in the design of resilient ob-

124 6 A Semantics-Based approach to Malware Detection

fuscating techniques that are able to contrast as many attacks as possible, in the
malware detection scenario, we are interested in defeating as many obfuscations
as possible.

As observed in Section 3.2, a malware is a program with a malicious intent
that has the potential to harm the machine on which it executes or the network
over which it communicates. A malware detector is a tool designed to iden-
tify malware and the design of efficient malware detection schemes is a crucial
aspect of software security. As argued earlier, a misuse malware detector (or,
alternately, a signature-based malware detector) is based on a list of signatures
(traditionally known as a signature database [114]). The idea is that, when part
of a program matches a signature in the database, the program is classified as
infected by the malware [140]. Misuse malware detectors’ low false-positive rate
and ease of use have led to their widespread deployment. Other approaches for
identifying malware have not proved practical as they suffer from high false pos-
itive rates (e.g., anomaly detection using statistical methods [87,96]) or can only
provide a post-infection forensic capability (e.g., correlation of network events to
detect propagation after infection [68]). Malware writers continuously test the
limits of malware detectors in an attempt to discover ways to evade detection.
This leads to an ongoing game of one-upmanship [119], where malware writers
find new ways to create undetected malware, and where researchers design new
signature-based techniques for detecting such evasive malware. This co-evolution
is a result of the theoretical undecidability of malware detection [20, 27]. This
means that, in the currently accepted model of computation, no ideal malware
detector exists. The only achievable goal in this scenario is to design better de-
tection techniques that jump ahead of evasion techniques and make the malware
writers task harder.

We have already observed how code obfuscation can be used to foil malware
detection algorithms based on signature matching, which attempt to capture
(syntactic) characteristics of the machine-level byte sequence of the malware.
This reliance on a syntactic approach makes such detectors vulnerable to code
obfuscation that alters syntactic properties of the malware byte sequence with-
out significantly affecting their execution behavior. If a signature describes a
certain sequence of instructions [140], then those instructions can be reordered
or replaced with equivalent instructions [155, 156]. Such obfuscations are es-
pecially applicable on CISC architectures, such as the Intel IA-32 [76], where
the instruction set is rich and many instructions have overlapping semantics.
If a signature describes a certain distribution of instructions in the program,
insertion of junk code [80, 141, 156] that acts as a nop so as not to modify the
program behavior can defeat frequency-based signatures. If a signature identifies
some of the read-only data of a program, packing or encryption with varying
keys [52, 129] can effectively hide the relevant data. Therefore, an important

6.1 Overview 125

requirement of a robust malware detection technique is to handle obfuscating
transformations.

In this chapter we take the position that the key to identify (possibly ob-
fuscated) malware lies in a deeper investigation of their semantics. Program
semantics provides a formal model of program behavior, therefore addressing
the malware-detection problem from a semantic point of view could lead to a
more robust detection system.

We propose a semantics-based framework for reasoning about malware de-
tectors and proving properties such as soundness and completeness of these
detectors. The basic idea of our approach is to use trace semantics to charac-
terize the behaviors of the malware as well as of the program to be checked for
infection, and to use abstract interpretation to “hide” irrelevant aspects of these
behaviors. Preliminary work by Christodorescu et al. [25] and Kinder et al. [84]
on a formal approach to malware detection confirms the potential benefits of
a semantics-based approach. Moreover, the proposed semantics-based frame-
work can be used by security researchers to reason about and evaluate (prove)
the resilience of malware detectors to various kinds of obfuscating transforma-
tions. In particular, we present a formal definition of what it means for a detec-
tor to be sound (i.e., no false positives) and complete (i.e., no false negatives)
with respect to a class of obfuscations, together with a formal framework that
malware-detection researchers can use to prove completeness and soundness of
their algorithms with respect to classes of obfuscations. As an integral part of
the formal framework, we provide a trace semantics to characterize the program
and malware behaviors. In Section 6.6, we investigate the relation between the
semantics-based malware detector and the signature matching algorithm and we
prove that signature matching approaches are generally sound, while they are
complete only for a restricted class of obfuscating transformations. Moreover,
in Section 6.7, we show our formal framework in action by proving that the
semantics-aware malware detector AMD proposed by Christodorescu et al. [25]
is complete with respect to some common obfuscations used by malware writers.
The soundness of AMD was proved in [25]. The results presented in this chapter
have been published in [46].

6.1 Overview

In this section we provide definitions of what it means for a malware detector to
be sound and complete with respect to a class of obfuscations, together with the
description of a possible strategy to prove such properties in a semantics-based
framework (Section 6.1.1). In Section 6.1.2, we introduce the syntax and the
semantics of the programming language used in this chapter.

126 6 A Semantics-Based approach to Malware Detection

As usual, an obfuscating transformation, denoted as O : P→ P, is a potent
program transformer that preserves program functionality to some extent. LetO denote the set of all obfuscating transformations. A malware detector can be
seen as a function D : P× P→ {0, 1} that, given a program P and a malware
M , decides if program P is infected by malware M . For example, D(P,M) = 1
means that program P is infected with malware M or with an obfuscated variant
O[[M]] whereO ∈ O. Our treatment of malware detectors is focused on detecting
variants of existing malware. When a program P is infected with a malware M ,
we write M →֒ P . The precision of a malware detector can be formalized in
terms of soundness and completeness properties. Intuitively, a malware detector
is sound if it never erroneously claims that a program is infected, i.e., there
are no false positives, and it is complete if it always detects programs that are
infected, i.e., there are no false negatives. More formally, these properties can
be defined as follows.

Definition 6.1.
– A malware detector D is complete for an obfuscation O ∈ O if and only if

∀M,P ∈ P : O[[M]] →֒ P ⇒ D(P,M) = 1

– A malware detector D is sound for an obfuscation O ∈ O if and only if

∀M,P ∈ P : D(P,M) = 1⇒ O[[M]] →֒ P

Observe that, the aim of an attacker observing a program that uses code obfusca-
tion to protect its sensitive information, is to recover enough information on the
original program in order to perform reverse engineering. On the other side, the
goal of malware detection is to understand if a certain program is an obfuscated
version of another one, with no need of recovering the original malware. Besides
this difference, the proposed definitions of soundness and completeness can be
applied to deobfuscating techniques as well. In other words, our definitions are
not tied to the concept of malware detection.

Most malware detectors are built on top of other static-analysis techniques for
problems that are hard or undecidable. For example, most malware detectors [25,
84] that are based on static analysis assume that the control flow graph for an
executable can be extracted. As shown by researchers [100], simply disassembling
an executable can be quite tricky. Therefore, we want to introduce the notion of
relative soundness and completeness with respect to algorithms that a detector
uses. In other words, we want to prove that a malware detector is sound or
complete with respect to a class of obfuscations if the static analysis algorithms
that the detector uses are perfect. This allows us to measure the precision of
a given detection algorithm independently from the precision of related static
analysis algorithms.

6.1 Overview 127

Definition 6.2. An oracle is an algorithm over programs that provides perfect
answers in time O(1). For example, a CFG oracle is an algorithm that takes a
program as an input and produces its control flow graph.

Let DOR denote a malware detector that uses a set of oracles OR1. For exam-
ple, let ORCFG be a static analysis oracle that given an executable provides a
perfect control flow graph for it. Thus, a detector that uses the oracle ORCFG

is denoted DORCFG . In the following, when proving soundness and completeness
of a given malware detector in the semantics-based framework, we will assume
that the oracles that the detector uses are perfect. Soundness (resp. complete-
ness) with respect to perfect oracles is also called oracle soundness (resp. oracle
completeness).

Definition 6.3. A malware detector DOR is oracle complete with respect to an
obfuscation O, if DOR is complete for that obfuscation O when all oracles in
the set OR are perfect. Oracle soundness of a detector DOR can be defined in
a similar manner.

6.1.1 Proving Soundness and Completeness of Malware Detectors

When a new malware detection algorithm is proposed, one of the criteria of
evaluation is its resilience to obfuscations, both current and future. In fact,
when an attacker, i.e., a malware writer, has access to the detection algorithm
and to its inner workings, he can use such knowledge in order to design ad-hoc
obfuscation tools to bypass such detection scheme. As the malware detection
problem is in general undecidable, it is always possible to design a new obfus-
cating transformation that defeats a given detector. Unfortunately, identifying
the classes of obfuscations for which a detector is resilient can be a complex
and error-prone task. A large number of obfuscation schemes exist, both from
the malware world and from the intellectual property protection industry. Fur-
thermore, obfuscations and detectors are defined using different languages (e.g.,
program transformation vs program analysis), complicating the task of compar-
ing one against the other.

In the following, we present a formal framework for proving soundness and
completeness of malware detectors in the presence of obfuscating transforma-
tions. This framework operates on programs described through the collection
of their execution traces – thus, program trace semantics is the building block
of our approach. In particular, in Section 6.2 and Section 6.3, we describe how
both obfuscations and detectors can be elegantly expressed as operations on
traces, and in Section 6.4 we characterize classes of obfuscating transformations

1 We assume that detector D can query an oracle from the set OR, and the query is answered
perfectly and in O(1) time. These types of relative completeness and soundness results are
common in cryptography.

128 6 A Semantics-Based approach to Malware Detection

in terms of the effects that they have on program trace semantics, and we prove
soundness and completeness of malware detectors with respect to such classes
of transformations. Our approach allows us to certify that a certain detection
algorithm is able to deal with all obfuscations (even future ones) that satisfy a
certain property.

In this formal setting, we propose the following two step proof strategy for
showing that a detectorDOR is sound or complete with respect to an obfuscation
or a class of obfuscations.

Step 1: Relating the two worlds.
Consider a malware detector DOR that uses a set of oracles OR. Given a
program P and malware M , let S[[P]] and S[[M]] denote the set of traces
corresponding to the semantics of P and M respectively. In Section 6.2 and
Section 6.3 we describe a detector DTr which works in the semantic world
of traces, and classifies a program P as infected by a malware M if the se-
mantics of P matches the semantics of M up to abstraction α (where the
matching relation up to α will be precisely defined later). Thus, the first step
is to prove that, given a proper abstraction α and assuming that the oracles
in OR are perfect, the two detectors are equivalent, i.e., for all P and M inP: DOR(P,M) = 1 if and only if DTr (α(S[[P]]), α(S[[M]])) = 1. In other
words, this step shows the equivalence of the two worlds: the concrete world
of programs and the semantic world of traces.

Step 2: Proving soundness and completeness in the semantic world.
After step 1, we are ready to prove the desired property (e.g., completeness)
about the trace-based detector DTr on α, with respect to the chosen class
of obfuscations. In this step, the detector’s effects on trace semantics are
compared to the effects of obfuscations on trace semantics. This allows us
to evaluate the detector against whole classes of obfuscations, as long as the
obfuscations have similar effects on trace semantics.

The requirement for equivalence in step 1 above might be too strong if only one
of completeness or soundness is desired. For example, if the goal is to prove only
completeness of a malware detector DOR, then it is sufficient to find a trace-
based detector that classifies only malware and malware variants in the same
way as DOR. Then, if the trace-based detector is complete, so is DOR.

Observe that the proof strategy presented above works under the assumption
that the set of oracles OR used by the detector DOR are perfect. In fact, the
equivalence of the semantic malware detector DTr to the detection algorithm
DOR is stated and proved under the hypothesis of perfect oracles. This means
that when the oracles in OR are perfect then:

6.1 Overview 129

– DOR is sound with respect to obfuscation O ⇔ DTr is sound with respect
to obfuscation O

– DOR is complete with respect to obfuscation O ⇔ DTr is complete with
respect to obfuscation O

Consequently, the proof of soundness (resp. completeness) of DTr with respect
to a given obfuscation O implies soundness (resp. completeness) of DOR with
respect to obfuscation O and viceversa. However, even when the oracles used
by the detection scheme DOR are not perfect it is possible to deduce some
properties of DOR by analyzing its semantic counterpart DTr . Let DTr denote
the semantic malware detection algorithm which is equivalent to the detection
scheme DOR working on perfect oracles. In general, by relaxing the hypothesis
of perfect oracles, we have that the malware detector DOR is less precise than
its (ideal) semantic counterpart DTr . This means that:

– DOR is sound with respect to obfuscation O ⇒ DTr is sound with respect
to obfuscation O

– DOR is complete with respect to obfuscation O ⇒ DTr is complete with
respect to obfuscation O

In this case, by proving that DTr is not sound (resp. complete) with respect to a
given obfuscation O we can deduce that DOR is not sound (resp. complete) with
respect to O as well. On the other hand, even if we are able to prove that DTr

is sound or complete with respect to an obfuscation O we cannot infer anything
about the soundness or completeness of DOR with respect to O.

Under the assumption of perfect oracles, in Section 6.7 we apply the proof
strategy presented above to the semantics-aware malware detector proposed by
Christodorescu et al. [25], and in Section 6.6 to the standard signature matching
approach.

6.1.2 Programming Language

The language considered in this chapter is a simple extension of the one in-
troduced by Cousot and Cousot [44] (and described in Section 2.3), the main
difference being the ability of programs to generate code dynamically (this fa-
cility is added to accommodate certain kinds of malware obfuscations where the
payload is unpacked and decrypted at runtime). The syntax of our language is
given in Table 6.1. As usual, given a set S, we use S⊥ to denote the set S ∪{⊥},
where ⊥ denotes an undefined value. Assume that program variables can store
either an integer value or a command, encoded as a pair (A,S), where A and
S correspond respectively to the action and the successor labels of the stored
command. This leads to the introduction of the syntactic category E∪(A×℘(L))
representing the set of possible assignment r-values. Commands can be either

130 6 A Semantics-Based approach to Malware Detection

Syntactic Categories: Syntax:

n ∈ Z (integers) E ::= n | X | E1 op E2

X ∈ X (variable names) (op ∈ {+,−, ∗, /, . . .})
L ∈ L (labels) B ::= true | false | E1 < E2

E ∈ E (integer expr.) | ¬B1 | B1 && B2

B ∈ B (Boolean expr.) A ::= X := D | skip | assign(L,X)
A ∈ A (actions) C ::= L : A→ L′ (unconditional)
D ∈ E ∪ (A× ℘(L)) (assignment r-values) L : B → {LT , LF } (conditional)
C ∈ C (commands) P ::= ℘(C)
P ∈ P (programs)

Table 6.1. Syntax of the programming language

conditional or unconditional. A conditional command at a label L has the form
L : B → {LT , LF }, where B is a Boolean expression and LT (respectively, LF)
is the label of the command to execute when B evaluates to true (respectively,
false); an unconditional command at a label L is of the form L : A→ L1, where
A is an action and L1 the label of the command to be executed next. As ob-
served earlier, a variable can be undefined (⊥), or it can store either an integer
or an (appropriately encoded) pair (A,S) ∈ A × ℘(L). The auxiliary functions
in Table 6.2 are useful in defining the semantics of the considered programming
language, which is described in Table 6.3. A program consists of an initial set of

Labels Successors of a command

lab[[L : A→ L′]]
def
= L suc[[L : A→ L′]]

def
= L′

lab[[L : B → {LT , LF }]]
def
= L suc[[L : B → {LT , LF }]]

def
= {LT , LF }

lab[[P]]
def
= {lab[[C]]|C ∈ P}

Variables Memory locations used by a program

var[[L1 : A→ L2]]
def
= var[[A]] Luse [[L : A→ L′]]

def
= Luse [[A]]

var[[P]]
def
=

S

C∈P var[[C]] Luse [[P]]
def
=

S

C∈P Luse [[C]]

var[[A]] = {variables occurring in A} Luse [[A]] = {locations occurring in A} ∪ ρ(var[[A]])

Action of a command Commands in sequences of program states

act[[L : A→ L2]]
def
= A cmd [[{(C1, ξ1), . . . , (Ck, ξk)}]] = {C1, . . . , Ck}

Table 6.2. Auxiliary functions

commands together with all the commands that are reachable through execution
from the initial set. In other words, if Pinit denotes the initial set of commands,

then P = cmd [[
⋃

C∈Pinit

(⋃
ξ∈X

C∗(C, ξ)
)
]], where we extend the transition rela-

tion C to a set of program states, i.e., C(S) =
⋃

σ∈S C(σ). Since each command

6.1 Overview 131

Value Domains

B = {true , false} (truth values)
n ∈ Z (integers)
ρ ∈ E = X→ L⊥ (environments)
m ∈M = L→ Z⊥ ∪ (A× ℘(L)) (memories)
ξ ∈ X = E×M (execution contexts)
Σ = C× X (program states)

Arithmetic Expressions E : A× X→ Z⊥ ∪ (A× ℘(L))
E[[n]]ξ = n

E[[X]]ξ = m(ρ(X)), where ξ = (ρ,m)

E[[E1 op E2]]ξ =

E[[E1]]ξ op E[[E2]]ξ if E[[E1]]ξ,E[[E2]]ξ ∈ Z
⊥ otherwise

Boolean expressions B : B× X→ B⊥

B[[true]]ξ = true

B[[false]]ξ = false

B[[E1 < E2]]ξ =

E[[E1]]ξ < E[[E2]]ξ if E[[E1]]ξ,E[[E2]]ξ ∈ Z
⊥ otherwise

B[[¬B]]ξ = if (B[[B]]ξ ∈ B) then ¬B[[B]]ξ; else ⊥

B[[B1 && B2]]ξ =

B[[B1]]ξ ∧B[[B2]]ξ if B[[B1]]ξ, [[B2]]ξ ∈ B
⊥ otherwise

Actions A : A× X → X

A[[skip]]ξ = ξ

A[[X := D]]ξ = (ρ,m′), where ξ = (ρ,m),m′ = m[ρ(X)← δ] and

δ =

D if D ∈ A× ℘(L)
E[[D]](ρ,m) if D ∈ E

A[[assign(L′,X)]]ξ = (ρ′,m), where ξ = (ρ,m) and ρ′ = ρ[X L′]

Commands C : Σ → ℘(Σ)

C[[L : A→ L′]]ξ = {(C, ξ′) | ξ′ = A[[A]]ξ, lab[[C]] = L′,
〈act[[C]] : suc[[C]]〉 = m′(L′)}, where ξ′ = (ρ′,m′)

C[[L : B → {LT , LF }]]ξ

= {(C, ξ) | lab[[C]] =

LT if B[[B]]ξ = true
LF if B[[B]]ξ = false

∧

〈act[[C]] : suc[[C]]〉 =

m(LT) if B[[B]]ξ = true
m(LF) if B[[B]]ξ = false

}

Table 6.3. Semantics of the programming language

132 6 A Semantics-Based approach to Malware Detection

explicitly mentions its successors, the program need not to maintain an explicit
sequence of commands. This definition allows us to represent programs that
generate code dynamically.

An environment ρ ∈ E maps variables in dom(ρ) ⊆ X to memory locationsL⊥. Given a program P we denote with E(P) its environments, i.e., if ρ ∈ E(P)
then dom(ρ) = var[[P]]. Let ρ[X L] denote environment ρ where label L
is assigned to variable X. The memory is represented as a function m : L →Z⊥ ∪ (A × ℘(L)). Let m[L ← D] denote memory m where element D is stored
at location L. When considering a program P , we denote with M(P) the set of
program memories, namely if m ∈M(P) then dom(m) = Luse[[P]]. This means
that m ∈ M(P) is defined on the set of memory locations that are affected by
the execution of program P (excluding the memory locations storing the initial
commands of P).

The behavior of a command when it is executed depends on its execution
context, i.e., the environment and memory in which it is executed. The set of
execution contexts is given by X = E ×M. A program state is a pair (C, ξ)
where C is the next command that has to be executed in the execution context
ξ. Σ = C × X denotes the set of all possible states. Given a state s ∈ Σ,
the semantic function C(s) gives the set of possible successor states of s; in
other words, C : Σ → ℘(Σ) defines the transition relation between states. Let
Σ(P) = P ×X(P) be the set of states of a program P , then we can specify the
transition relation on program P as C[[P]] : Σ(P)→ ℘(Σ(P)):

C[[P]](C, ξ)
def
=

{
(C ′, ξ′)

∣∣ (C ′, ξ′) ∈ C(C, ξ), C ′ ∈ P, and ξ, ξ′ ∈ X(P)
}

Let A∗ denote the Kleene closure of a set A, i.e., the set of finite sequences over
A. A trace σ ∈ Σ∗ is a sequence of states s1...sn of length |σ| ≥ 0 such that
for all i ∈ [1, n): si ∈ C(si−1). The finite partial traces semantics S[[P]] ⊆ Σ∗ of
program P is the least fixpoint of the function F :

F [[P]](T)
def
= Σ(P) ∪ {ss′σ|s′ ∈ C[[P]](s), s′σ ∈ T}

where T is a set of traces, namely S[[P]] = lfp⊆F [[P]]. The set of all partial trace
semantics, ordered by set inclusion, forms a complete lattice.

6.2 Semantics-Based Malware Detection

In this section we introduce a formalization of the malware detection problem
based on program semantics and abstract interpretation. Intuitively, a program
P is infected by a malware M if (part of) P ’s execution behavior is similar to
that ofM , namely if there is a moment during the execution of program P where
malware M is executed. Therefore, in order to detect the presence of a malicious

6.2 Semantics-Based Malware Detection 133

behavior from a malware M in a program P , we need to check whether there
is a part (i.e., a restriction) of program semantics S[[P]] that “matches” (in a
sense that will be made precise) the malware semantics S[[M]]. In the following
we show how program restriction as well as semantic matching can actually be
expressed as abstractions of program semantics in the abstract interpretation
sense.

It is clear how the process of considering only a portion of program seman-
tics can be seen as an abstraction of S[[P]]. A subset of a program P ’s labels
(i.e., commands) labr[[P]] ⊆ lab[[P]] characterizes a restriction of program P .
In particular, let varr[[P]] and Luser[[P]] denote, respectively, the set of vari-
ables occurring in the restriction and the set of memory locations used in the
restriction:

varr[[P]]
def
=

⋃{
var[[C]]

∣∣ lab[[C]] ∈ labr[[P]]
}

Luser[[P]]
def
=

⋃{
Luse[[C]]

∣∣ lab[[C]] ∈ labr[[P]]
}

Thus, the set of labels labr[[P]] induces a restriction on environment and memory
maps. Given ρ ∈ E(P) and m ∈ M(P), let ρr def

= ρ|varr [[P]] and mr def
= m|Luser[[P]]

denote the restricted set of environments and memories induced by the restricted
set of labels labr[[P]]. Let Σr = {(C, ρr,mr) | lab[[C]] ∈ labr[[P]]} be the set
of restricted program states. Let us define abstraction αr : Σ∗ → Σ∗

r that
propagates restriction labr[[P]] on a given a trace σ = (C1, ρ1,m1)σ

′:

αr(σ)
def
=

ǫ if σ = ǫ
(C1, ρ

r
1,m

r
1)αr(σ

′) if lab[[C1]] ∈ labr[[P]]
αr(σ

′) otherwise

Given a function f : A → B we denote, by a slight abuse of notation, its
pointwise extension on powerset as f : ℘(A) → ℘(B), where f(X)

def
= {f(x)|x ∈

X}. Note that the pointwise extension is additive. Therefore, the function αr :
℘(Σ∗)→ ℘(Σ∗

r) can be seen as an abstraction that discards information outside
the restriction labr[[P]]. Moreover, αr is surjective and defines a Galois insertion:

〈℘(Σ∗),⊆〉 →−→←−αr

γr
〈℘(Σ∗

r),⊆〉

Let αr(S[[P]]) be the restricted semantics of program P . Given a program P
and a restriction labr[[P]] ∈ ℘(lab[[P]]), let Pr

def
= {C ∈ P |lab[[C]] ∈ labr[[P]]} be

the program obtained by considering only the commands of P with labels in
labr[[P]]. If Pr is a program, namely if it is possible to compute its semantics,
then S[[Pr]](I) = αr(S[[P]]), where I is the set of possible states of program P
when P executes the first command in Pr.

Let us observe that the effects of program execution on the execution context,
i.e., on environments and memories, express program behaviour more than the

134 6 A Semantics-Based approach to Malware Detection

particular commands that cause such effects (in fact different sequences of com-
mands may produce the same sequence of modifications on environments and
memories). For this reason, let us consider the transformation αe : Σ∗ → X∗

that, given a trace σ, discards from σ all information about the commands that
are executed, retaining only the information about the changes in the execution
context (i.e., in environments and memories).

αe(σ)
def
=

{
ǫ if σ = ǫ
ξ1αe(σ

′) if σ = (C1, ξ1)σ
′

Two traces σ and δ in Σ∗ are considered “similar” if they are the same under αe,
namely if they have the same sequence of effects on environments and memories,
i.e., if αe(σ) = αe(δ). This semantic matching relation between program traces
is the basis of our approach to malware detection. The additive function αe :
℘(Σ∗) → ℘(X∗) abstracts from the trace semantics of a program and defines a
Galois insertion:

〈℘(Σ∗),⊆〉 →−→←−αe

γe
〈℘(X∗),⊆〉

Let us say that a malware is a vanilla malware if no obfuscating transformations
have been applied to it. The following definition provides a semantic character-
ization of the presence of a vanilla malware M in a program P in terms of the
semantic abstractions αr and αe.

Definition 6.4. A program P is infected by a vanilla malware M , i.e., M →֒ P ,
if:

∃labr[[P]] ∈ ℘(lab[[P]]) : αe(S[[M]]) ⊆ αe(αr(S[[P]]))

A semantic malware detector is a system that verifies the presence of a malware
in a program by checking the truth of the inclusion relation of the above defini-
tion. Following this definition, a program P is classified as infected by a vanilla
malware M , if P exhibits behaviors that, under abstractions αr and αe, match
all of the behaviors of M . It is clear that this is a strong requirement and that
the notion of semantic infection can be weakened. In fact, in Section 6.5, we
will consider a weaker notion of malware infection, where only some (not all)
behaviors of the malware are present in the program.

6.3 Obfuscated Malware

We have argued above how malware writers usually obfuscate the malicious code
in order to prevent detection. Thus, a robust malware detector needs to handle
possibly obfuscated versions of a malware. While obfuscation may modify the
original code, the obfuscated code has to be equivalent (up to some notion of
equivalence) to the original one. Given an obfuscating transformation O : P→ P

6.3 Obfuscated Malware 135

on programs our idea is to design a suitable abstract domain A, such that the
abstraction α : ℘(X∗)→ A discards the details changed by the obfuscation while
preserving the maliciousness of the program. The main idea is that, different
obfuscated versions of a program are equivalent up to α ◦ αe. Hence, in order
to verify program infection, we check whether there exists a semantic program
restriction that matches the malware behavior up to α, formally:

∃ labr[[P]] ∈ ℘(lab[[P]]) : α(αe(S[[M]])) ⊆ α(αe(αr(S[[P]]))) (6.1)

Here αr(S[[P]]) is the restricted semantics of program P ; αe(αr(S[[P]])) retains
only the environment-memory traces from the restricted semantics; and α fur-
ther discards any effects due to obfuscation. We then check that the resulting set
of environment-memory traces contains all of the environment-memory traces
from the malware semantics, with obfuscation effects abstracted away via α. In
this setting, abstraction α allows us to ignore obfuscation and concentrate on
the malicious intent. A semantic malware detector on α is a detection algorithm
that verifies program infection according to 6.1.

Example 6.5. Let us consider the fragment of program P that computes the
factorial of variableX and its obfuscation O[[P]] obtained by inserting commands
that do not affect the execution context (at labels L2 and LF+1 in the example).

P O[[P]]

L1 : F := 1→ L2

L2 : (X = 1)→ {LT , LF }
LF : X := X − 1→ LF+1

LF+1 : F := F ×X → L2

LT : ...

L1 : F := 1→ L2

L2 : F := F × 2− F → L3

L3 : (X = 1)→ {LT , LF }
LF : X := X − 1→ LF+1

LF+1 : X := X × 1→ LF+2

LF+2 : F := F ×X → L3

LT :

It is clear that A[[F := F × 2 − F]]ξ = ξ and A[[X := X × 1]]ξ = ξ for all
ξ ∈ X. Thus, a suitable abstraction α in order to deal with the insertion of such
semantic nop commands, is the one that observes modifications in the execution
context, formally let ξi = (ρi,mi):

α(ξ1, ξ2, ..., ξn)
def
=

ǫ if ξ1, ξ2, ..., ξn = ǫ

α(ξ2, ..., ξn) if ξ1 = ξ2

ξ1α(ξ2, ..., ξn) otherwise

In fact it is possible to show that α(αe(S[[P]])) = α(αe(S[[O[[P]]]])).

�

136 6 A Semantics-Based approach to Malware Detection

The extent to which a semantic malware detector is able to discriminate be-
tween infected and uninfected code, and therefore the balance between any false
positives and any false negatives it may incur, depends on the abstraction func-
tion α. On one side, augmenting the degree of abstraction of α increases the
ability of the detector to deal with obfuscation but, at the same time, increases
the false positive rate, namely the number of programs erroneously classified as
infected. On the other side, a more concrete α makes the detector more sensi-
tive to obfuscation, while decreasing the presence of programs miss-classified as
infected. In the following we provide a semantic characterization of the notions
of soundness and completeness, introduced in Definition 6.1.

Definition 6.6.
– A semantic malware detector on α is complete for a set O of transformations

if and only if ∀O ∈ O:

O[[M]] →֒ P ⇒

{
∃labr[[P]] ∈ ℘(lab[[P]]) :

α(αe(S[[M]])) ⊆ α(αe(αr(S[[P]])))

– A semantic malware detector on α is sound for a set O of transformations if
and only if:

∃labr[[P]] ∈ ℘(lab[[P]]) :

α(αe(S[[M]])) ⊆ α(αe(αr(S[[P]])))

}
⇒ ∃O ∈ O : O[[M]] →֒ P

In particular, completeness for a class O of obfuscating transformations means
that, for every obfuscation O ∈ O, when program P is infected by a variant
O[[M]] of a malware, then the semantic malware detector is able to detect it
(i.e., no false negatives). On the other side, soundness with respect to the classO of obfuscating transformations, means that when the semantic malware de-
tector classifies a program P as infected by a malware M , then there exists an
obfuscation O ∈ O, such that program P is infected by the variant O[[M]] of
the malware (i.e., no false positives). In the following, when considering a classO of obfuscating transformations, we will assume that also the identity func-
tion belongs to O, in this way we include in the set of variants identified by O
the malware itself. It is interesting to observe that, considering an obfuscating
transformation O, completeness is guaranteed when abstraction α is preserved
by O, namely when ∀P ∈ P : α(αe(S[[P]])) = α(αe(S[[O[[P]]]])).

Theorem 6.7. If abstraction α : ℘(X∗)→ A is preserved by transformation O,
then the semantic malware detector on α is complete for O.

proof: In order to show that the semantic malware detector on α is complete
for O, we have to show that if O[[M]] →֒ P then there exists labr[[P]] ∈ ℘(lab[[P]])
such that α(αe(S[[M]])) ⊆ α(αe(αr(S[[P]]))). If O[[M]] →֒ P , it means that there

6.4 A Semantic Classification of Obfuscations 137

exists labr[[P]] ∈ ℘(lab[[P]]) such that Pr = O[[M]]. By definition O[[M]] is a
program and therefore S[[O[[M]]]] = S[[Pr]] = αr(S[[P]]). Moreover, we have that
α(αe(αr(S[[P]]))) = α(αe(S[[Pr]])) = α(αe(S[[O[[M]]]])) = α(αe(S[[M]])), where
the last equality follows from the hypothesis that α is preserved by O. Thus,
α(αe(S[[M]])) = α(αe(αr(S[[P]]))) which concludes the proof.

�

However, the preservation condition of Theorem 6.7 is too weak to imply sound-
ness of the semantic malware detector. As an example let us consider the ab-
straction α⊤ = λX.⊤ that loses all information. It is clear that α⊤ is preserved
by every obfuscating transformation, but the semantic malware detector on α⊤

classifies every program as infected by every malware. Unfortunately, we do not
have a result analogous to Theorem 6.7 that provides a property of abstraction α
that characterizes soundness of the semantic malware detector. However, given
an abstraction α, we can characterize the set of transformations for which α is
sound.

Theorem 6.8. Given an abstraction α, consider the set O of transformations
such that: ∀P,Q ∈ P:

(α(αe(S[[Q]])) ⊆ α(αe(S[[P]]))) ⇒ (∃O ∈ O : αe(S[[O[[Q]]]]) ⊆ αe(S[[P]]))

Then, a semantic malware detector on α is sound for O.

proof: Suppose that these exists labr[[P]] ∈ ℘(lab[[P]]) such that α(αe(S[[M]])) ⊆
α(αe(αr(S[[P]]))), since M,P,Pr ∈ P and αr(S[[P]]) = S[[Pr]], then by definition
of set O we have that: ∃O ∈ O : αe(S[[O[[M]]]]) ⊆ αe(αr(S[[P]])), and therefore
O[[M]] →֒ P .

�

6.4 A Semantic Classification of Obfuscations

In this section we classify obfuscating transformations according to their effects
on program trace semantics. In particular, we distinguish between transforma-
tions that add new instructions while maintaining the structure of the original
program traces, and transformations that insert new instructions causing major
changes to the original semantic structure. Given two sequences s, t ∈ A∗ for
some set A, let s � t denote that s is a subsequence of t, i.e., if s = s1s2 . . . sn

then t is of the form . . . s1 . . . s2 . . . sn

138 6 A Semantics-Based approach to Malware Detection

6.4.1 Conservative Obfuscations

An obfuscating transformation O : P→ P is a conservative obfuscation if every
trace σ of the original program semantics is a subsequence of some trace δ of
the obfuscated program semantics, formally, if:

∀σ ∈ S[[P]],∃δ ∈ S[[O[[P]]]] : αe(σ) � αe(δ)

Let Oc denote the set of conservative obfuscating transformations. When dealing
with conservative obfuscations, we have that a trace δ of a program P presents
a possibly obfuscated malicious behavior M , if there is a malware trace σ ∈
S[[M]] whose environment-memory evolution is “contained” in the environment-
memory evolution of δ, namely if αe(σ) � αe(δ). Let us define the abstraction
αc : ℘(X∗)→ (X∗ → ℘(X∗)) that, given a context sequence s ∈ X∗ and a set of
context sequences S ∈ ℘(X∗), returns the elements t ∈ S that are subsequences
of s:

αc[S](s)
def
= S ∩ SubSeq(s)

where SubSeq(s)
def
= {t|t � s} denotes the set of all subsequences of s. For any

S ∈ ℘(X∗), the additive function αc[S] defines a Galois connection:

〈℘(X∗),⊆〉 −→←−
αc[S]

γc[S]
〈℘(X∗),⊆〉

The abstraction αc turns out to be a suitable approximation when dealing
with conservative obfuscations. In fact, the semantic malware detector on
αc[αe(S[[M]])] is complete and sound with respect to the class of conservative
obfuscations Oc.

Theorem 6.9. Considering a vanilla malware M we have that a semantic mal-
ware detector on αc[αe(S[[M]])] is complete and sound for Oc, namely:
Completeness:

∀Oc ∈ Oc :
Oc[[M]] →֒ P

}
⇒

{
∃labr[[P]] ∈ ℘(lab[[P]]) :

αc[αe(S[[M]])](αe(S[[M]])) ⊆ αc[αe(S[[M]])](αe(αr(S[[P]])))

Soundness:

∃labr[[P]] ∈ ℘(lab[[P]]) :

αc[αe(S[[M]])](αe(S[[M]])) ⊆ αc[αe(S[[M]])](αe(αr(S[[P]])))

}

⇒

{
∃Oc ∈ Oc :
Oc[[M]] →֒ P

proof: Completeness: Let Oc ∈ Oc, if Oc[[M]] →֒ P it means that ∃ labr[[P]] ∈
℘(lab[[P]]) such that Pr = Oc[[M]]. Such restriction is the one that satisfies the
condition on the right. In fact, Pr = Oc[[M]] means that αr(S[[P]]) = S[[Oc[[M]]]].
We have to show: αc[αe(S[[M]])](αe(S[[M]])) ⊆ αc[αe(S[[M]])](αe(S[[Oc[[M]]]])).
By definition of conservative obfuscation for each trace σ ∈ S[[M]] there exists

6.4 A Semantic Classification of Obfuscations 139

δ ∈ S[[Oc[[M]]]] such that: αe(σ) � αe(δ). Considering such σ and δ we show that
αc[αe(S[[M]])](αe(σ)) ⊆ αc[αe(S[[M]])](αe(δ)), in fact:

αc[αe(S[[M]])](αe(δ)) = αe(S[[M]]) ∩ SubSeq(αe(δ))

αc[αe(S[[M]])](αe(σ)) = αe(S[[M]]) ∩ SubSeq(αe(σ))

Since αe(σ) � αe(δ), it follows that SubSeq(αe(σ)) ⊆ SubSeq(αe(δ)). Therefore,
αc[αe(S[[M]])](αe(σ)) ⊆ αc[αe(S[[M]])](αe(δ)), which concludes the proof.
Soundness: By hypothesis there exists labr[[P]] ∈ ℘(lab[[P]]) for which it holds
that αc[αe(S[[M]])](αe(S[[M]])) ⊆ αc[αe(S[[M]])](αe(αr(S[[P]]))). This means that
∀σ ∈ S[[M]] we have that: αc[αe(S[[M]])](αe(σ)) ⊆ αc[αe(S[[M]])](αe(αr(S[[P]]))),
which means that αe(σ) ∈ {αc[αe(S[[M]])](αe(δ)) | δ ∈ αr(S[[P]])}. Thus, ∀σ ∈
S[[M]], there exists δ ∈ αr(S[[P]]) such that αe(σ) � αe(δ) and this means that
Pr is a conservative obfuscation of malware M , namely ∃Oc ∈ Oc such that
Oc[[M]] →֒ P .

�

It turns out that many obfuscating transformations commonly used by malware
writers are conservative; a partial list of such conservative obfuscations is given
below. For each transformation we provide a simple example and a sketch proof
of their conservativeness. It follows that Theorem 6.9 is applicable to a signifi-
cant class of malware-obfuscation transformations.

Code reordering

This transformation, commonly used to avoid signature matching detection,
changes the order in which commands are written, while maintaining the exe-
cution order through the insertion of unconditional jumps (see Fig. 6.1 for an
example).

P OJ [[P]]

L1 : F := 1→ L2

L2 : (X = 1)→ {LT , LF }
LF : X := X − 1→ LF+1

LF+1 : F := F ×X → L2

LT : ...

L1 : F := 1→ L2

L2 : skip→ L3

LF : X := X − 1→ LF+1

LF+1 : skip→ L4

L3 : (X = 1)→ {LT , LF }
LT :
L4 : F := F × 2− F → L3

Fig. 6.1. Code reordering

Observe that, in the programming language introduced in Section 6.1.2, an
unconditional jump is expressed as a command L : skip → L′ that directs the

140 6 A Semantics-Based approach to Malware Detection

flow of control of the program to a command labelled by L′. Let P be a pro-
gram, P = {Ci : 1 ≤ i ≤ N}. The code reordering obfuscating transformation
OJ : P → P inserts L : skip → L′ commands after selected commands from
the program P . Let R ⊆ P be a set of m ≤ N commands selected by the obfus-
cating transformation OJ , i.e., |R| = m. The skip commands are then inserted
after each one of the m selected commands in R. Let us define the subset S of
commands of P that contains the successors of the commands in R:

S
def
=

{
C ′ ∈ P

∣∣∃C ∈ R : lab[[C ′]] ∈ suc[[C]]
}

Effectively, the code reordering obfuscating transformation adds a skip between
a command C ∈ R and its successor C ′ ∈ S. Define η : C → C, a command-
relabeling function, as follows:

η (L1 : A→ L2)
def
= NewLabel (L \ {L1}) : A→ L2

where NewLabel(H) returns a label from the set H ⊆ L. We extend η to a set
of commands T = {. . . , Li : A→ Lj , . . . }:

η(T)
def
=

{
. . . ,NewLabel(L′) : A→ Lj , . . .

}

where L′ = L \ {. . . , Li, . . . }. We can define the set of skip commands inserted
by this obfuscating transformation:

Skip(S)
def
=

{
L : skip→ L′

∣∣∃C ∈ S : L = lab[[C]], L′ = lab[[η(C)]]
}

Then, OJ [[P]] = (P \ S) ∪ η(S) ∪ Skip(S). Observing the effects that code re-
ordering has on program semantics we have that for each trace σ ∈ S[[P]], where
σ = 〈C1, ρ1,m1〉...〈Cn, ρn,mn〉, there exists an obfuscated trace δ ∈ S[[OJ [[P]]]]
such that δ = 〈SK, ρ1,m1〉

∗〈C ′
1, ρ1,m1〉 . . . 〈SK, ρn,mn〉

∗〈C ′
n, ρn,mn〉, where

act[[Ci]] = act[[C ′
i]] and SK ∈ Skip(S). Thus, αe(σ) � αe(δ) and OJ ∈ Oc.

Opaque predicate insertion

This program transformation confuses the original control flow of the program
by inserting opaque predicates, i.e., a predicate whose value is known a priori to
a program transformation but is difficult to determine by examining the trans-
formed program [31]. In the following, we given an idea of way opaque predicate
insertion is a conservative transformation, considering the three major types of
opaque predicates: true, false and unknown (see Fig. 6.2 for an example of true
opaque predicate insertion). In the considered programming language a true
opaque predicate is expressed by a command L : P T → {LT , LF }. Since P T

always evaluate true the next command label is always LT . When a true opaque

6.4 A Semantic Classification of Obfuscations 141

P OT [[P]]

L1 : F := 1→ L2

L2 : (X = 1)→ {LT , LF }
LF : X := X − 1→ LF+1

LF+1 : F := F ×X → L2

LT : ...

L1 : F := 1→ L2

L2 : (X = 1)→ {LT , LO}
LO : P T → {LF , LB}
LF : X := X − 1→ LF+1

LF+1 : F := F ×X → L2

LB : buggy code
LT : ...

Fig. 6.2. True opaque predicate insertion at label LO

predicate is inserted after command C the sequence of commands starting at
label LT is the sequence starting at suc[[C]] in the original program, while some
buggy code is inserted starting form label LF . Let OT : P → P be the obfus-
cating transformation that inserts true opaque predicates, and let P , R, S and
η be defined as in the code reordering case. In fact, transformation OT inserts
opaque predicates between a command C in R and its successor C ′ in S. Let us
define the set of commands encoding opaque predicate P T inserted by OT as:

TrueOp(S)
def
=

{
L : P T → {LT , LF }

∣∣∣∣
∃C ∈ S :
L = lab[[C]], LT = lab[[η(C)]]

}

Bug(TrueOp(S))
def
=

 B1...Bk

∣∣∣∣∣∣

B1...Bk ∈ ℘(C)
∃L : P T → {LT , LF } ∈ TrueOp(S) :
lab[[B1]] = LF

where B1...Bk is a sequence of commands expressing some buggy code. Then:

OT [[P]] = (P \ S) ∪ η(S) ∪TrueOp(S) ∪ Bug(TrueOp(S))

Observing the effects on program semantics we have that for each trace σ ∈
S[[P]], such that σ = 〈C1, ρ1,m1〉...〈Cn, ρn,mn〉 there exists δ ∈ S[[OT [[P]]]] such
that:

δ = 〈OP, ρ1,m1〉
∗〈C ′

1, ρ1,m1〉〈OP, ρ2,m2〉
∗...〈OP, ρn,mn〉

∗〈C ′
n, ρn,mn〉

where OP ∈ TrueOp(S), act[[Ci]] = act[[C ′
i]]. Thus αe(σ) � αe(δ) and OT ∈ Oc.

The same holds for the insertion of false opaque predicates.
An unknown opaque predicate P ? sometimes evaluates to true and sometimes

evaluates to false, thus the true and false branches have to exhibit equivalent
behaviors. Usually, in order to avoid detection, the two branches present different
obfuscated versions of the original command sequence. This can be seen as the
composition of two or more distinct obfuscations: the first one OU that inserts
the unknown opaque predicates and duplicates the commands in such a way

142 6 A Semantics-Based approach to Malware Detection

that the two branches present the same code sequence, and subsequent ones
that obfuscate the code in order to make the two branches look different. Let
OU : P → P be the program transformation that inserts unknown opaque
predicates, and let P , R, S and η be defined as in the code reordering case. In
the considered programming language an unknown opaque predicate is expressed
as L : P ? → {LT , LF }. Let us define the set of commands encoding an unknown
opaque predicate P ? inserted by the transformation OU :

UnOp(S)
def
=

{
L : P ? → {LT , LF }

∣∣∣∣
∃C ∈ S :
lab[[C]] = L, lab[[η(C)]] = LT

}

Rep(UnOp(S))
def
=

{
R1...Rk

∣∣∣∣
R1...Rk ∈ ℘(C)
lab[[R1]] = LF

}

where R1...Rk present the same sequence of actions of the commands starting at
label LT . Then, OU [[P]] = (P \S)∪UnOp(S)∪η(S)∪Rep(UnOp(S)). Observing
the effects on program semantics we have that, for every trace σ ∈ S[[P]], where
σ = 〈C1, ρ1,m1〉...〈Cn, ρn,mn〉, there exists δ ∈ S[[OU [[P]]]] such that:

δ = 〈U, ρ1,m1〉
∗〈C ′

1, ρ1,m1〉〈U, ρ2,m2〉
∗...〈U, ρn,mn〉

∗〈C ′
n, ρn,mn〉

where U ∈ UnOp(S) and act[[Ci]] = act[[C ′
i]]. Thus αe(σ) = αe(δ), and OU ∈ Oc.

Semantic nop insertion

This transformation inserts commands that are irrelevant with respect to pro-
gram trace semantics (see Fig. 6.3 for an example).

P ON [[P]]

L1 : F := 1→ L2

L2 : (X = 1)→ {LT , LF }
LF : X := X − 1→ LF+1

LF+1 : F := F ×X → L2

LT : ...

L1 : F := 1→ L2

L2 : (X = 1)→ {LT , LF }
LF : X := X − 1→ LF+1

LF+1 : X := X × 2−X
LF+2 : F := F ×X → L2

LT : ...

Fig. 6.3. Semantic nop insertion at label LF+1

Let us consider SN,C1, C2 ∈ ℘(C), SN is a semantic nop with respect to
C1 ∪C2 if for every σ ∈ S[[C1 ∪C2]], there exists δ ∈ S[[C1 ∪SN ∪C2]] such that
αe(σ) � αe(δ). Let ON : P → P be the program transformation that inserts
irrelevant instructions, therefore ON [[P]] = P ∪ SN where SN represents the
set of irrelevant instructions inserted in P . Following the definition of semantic

6.4 A Semantic Classification of Obfuscations 143

nop we have that for every σ ∈ S[[P]] there exists δ ∈ S[[ON [[P]]]] such that
αe(σ) � αe(δ), thus ON ∈ OC .

Substitution of Equivalent Commands

This program transformation replaces a single command with an equivalent one,
with the goal of thwarting signature matching (see Fig 6.4 for an example).

P OI [[P]]

L1 : F := 1→ L2

L2 : (X = 1)→ {LT , LF }
LF : X := X − 1→ LF+1

LF+1 : F := F ×X → L2

LT : ...

L1 : F := 1→ L2

L2 : (X = 1)→ {LT , LF }
LF : X := X −X/X → LF+1

LF+1 : F := F ×X × 2− F ×X → L2

LT : ...

Fig. 6.4. Substitution of equivalent commands at label LF and LF+1

Let OI : P → P be the program transformation that substitutes com-
mands with equivalent ones. Two commands C and C ′ are equivalent if they
always cause the same effects, namely if ∀ξ ∈ ELC[[C]]ξ = C[[C ′]]ξ. Thus,
OI [[P]] = P ′ where ∀C ′ ∈ P ′,∃C ∈ P such that C and C ′ are equivalent. Ob-
serving the effects on program semantics we have that: for every σ ∈ S[[P]]
such that σ = 〈C1, ρ1,m1〉...〈Cn, ρn,mn〉, there exists δ ∈ S[[OJ [[P]]]] such
that δ = 〈C ′

1, ρ1,m1〉...〈C
′
n, ρn,mn〉 where C〈Ci, ρi,mi〉 = C〈C ′

i, ρi,mi〉. Thus,
αe(σ) = αe(δ), and OI ∈ Oc.

Of course, malware writers usually combine different obfuscating transfor-
mations in order to prevent detection. The following result shows that the com-
position of conservative obfuscations is a conservative obfuscation. Thus, when
more than one conservative obfuscation is applied, it can be handled as a single
conservative obfuscation through abstraction αc.

Lemma 6.10. Given O1,O2 ∈ Oc then O1 ◦ O2 ∈ Oc.

proof: By definition of conservative transformations we have that:

∀σ ∈ S[[P]],∃δ ∈ S[[O1[[P]]]] : αe(σ) � αe(δ)

∀δ ∈ S[[O1[[P]]]],∃η ∈ S[[O2[[O1[[P]]]]]] : αe(δ) � αe(η)

Thus for transitivity of �: ∀σ ∈ S[[P]],∃η ∈ S[[O2[[O1[[P]]]]]] such that αe(σ) �
αe(η), which proves that O2 ◦ O1 is a conservative transformation.

�

144 6 A Semantics-Based approach to Malware Detection

Example 6.11. Let us consider a fragment of a malwareM presenting the decryp-
tion loop used by polymorphic viruses. Such a fragment writes, starting from
memory location B, the decryption of memory locations starting at location A
and then executes the decrypted instructions. Observe that, given a variable
X the semantics of π2(X) is the label expressed by π2(m(ρ(X))), in particular
π2(n) = ⊥, while π2(A,S) = S. Moreover, given a variable X, let Dec(X) denote
the execution of a set of commands that decrypt the value stored in the memory
location ρ(X). Let Oc[[M]] be a conservative obfuscation of M obtained through
code reordering, opaque predicate insertion and semantic nop insertion.

M Oc[[M]]

L1 : assign(LB , B)→ L2

L2 : assign(LA, A)→ Lc

Lc : cond(A)→ {LT , LF }
LT : B := Dec(A)→ LT1

LT1 : assign(π2(B), B)→ LT2

LT2 : assign(π2(A), A)→ LC

LF : skip→ LB

L1 : assign(LB , B)→ L2

L2 : skip→ L4

Lc : cond(A)→ {LO, LF }
L4 : assign(LA, A)→ L5

L5 : skip→ Lc

LO : P T → {LN , Lk}
LN : X := X − 3→ LN1

LN1 : X := X + 3→ LT

LT : B := Dec(A)→ LT1

LT1 : assign(π2(B), B)→ LT2

LT2 : assign(π2(A), A) → Lc

Lk : . . .
LF : skip→ LB

It can be shown that αc[αe(S[[M]])](αe(S[[Oc[[M]]]])) = αc[αe(S[[M]])](αe(S[[M]])),
i.e., our semantics-based approach is able to see through the obfuscations and
identify O[[M]] as matching the malware M . In particular, let ⊥ denote the
undefined function.

αc[αe(S[[M]])](αe(S[[M]])) = αe(S[[M]])

= (⊥,⊥), ((B LB),⊥), ((B LB , A LA),⊥)2,

((B LB , A LA), (ρ(B)← Dec(A))),

((B π2(m(ρ(B)), A LA), (ρ(B)← Dec(A))),

((B π2(m(ρ(B)), A π2(m(ρ(A)))),

(ρ(B)← Dec(A)))...

while

6.4 A Semantic Classification of Obfuscations 145

αe(S[[Oc[[M]]]]) = (⊥,⊥), ((B LB),⊥)2, ((B LB, A LA),⊥)5,

((B LB , A LA), (ρ(X)← X − 3)),

((B LB , A LA), (ρ(X)← X + 3, ρ(X)← X − 3)),

((B LB , A LA), (ρ(B)← Dec(A))),

((B π2(m(ρ(B)), A LA), (ρ(B)← Dec(A))),

((B π2(m(ρ(B)), A π2(m(ρ(A)))), (ρ(B) ← Dec(A)))

...

Thus, αc[αe(S[[M]])](αe(S[[M]])) ⊆ αc[αe(S[[M]])](αe(S[[Oc[[M]]]])).

�

6.4.2 Non-Conservative Obfuscations

An obfuscating transformation that does not satisfy the conservativeness con-
dition is called non-conservative. A non-conservative transformation modifies
the program semantics in such a way that the original environment-memory
traces are not present in the semantics of the transformed program. A possible
way to tackle these transformations is to identify the set of all possible modi-
fications induced by a non-conservative obfuscation, and fix, when possible, a
canonical one. In this way the abstraction would reduce the original semantics
to the canonical version before checking malware infection. In the following we
consider a non-conservative transformation, known as variable renaming, and
propose a canonical abstraction that leads to a sound and complete semantic
malware detector.

Another possible approach comes from Theorem 6.7 that states that if α
is preserved by O then the semantic malware detector on α is complete with
respect to O. Recall that, given a program transformation O : P → P, it is
possible to systematically derive the most concrete abstraction preserved by O,
as shown in Chapter 4. This systematic methodology can be used in presence of
non-conservative obfuscations in order to derive a complete semantic malware
detector when it is not easy to identify a canonical abstraction.

Moreover, in Section 6.5 we show how it is possible to handle a class of
non-conservative obfuscations through a further abstraction of the malware se-
mantics.

Variable Renaming

Variable renaming is a simple obfuscating transformation, often used to prevent
signature matching, that replaces the names of variables with some different
new names (see Fig. 6.5 for an example).

146 6 A Semantics-Based approach to Malware Detection

P OJ [[P]]

L1 : F := 1→ L2

L2 : (X = 1)→ {LT , LF }
LF : X := X − 1→ LF+1

LF+1 : F := F ×X → L2

LT : ...

L1 : P := 1→ L2

L2 : (Y = 1)→ {LT , LF }
LF : Y := Y − 1→ LF+1

LF+1 : P := P × Y → L2

LT : ...

Fig. 6.5. Variable renaming

Assuming that every environment function associates variable VL to memory
location L, allows us to reason about variable renaming also in the case of
compiled code, where variable names have disappeared. Let Ov : P × Π → P
denote the obfuscating transformation that, given a program P , renames its
variables according to a mapping π ∈ Π, where π : var[[P]] → Names is a
bijective function that relates the name of each program variable in var[[P]] to
its new name in Names .

Ov(P, π)
def
=

 C

∣∣∣∣∣∣

∃C ′ ∈ P : lab[[C]] = lab[[C ′]],
suc[[C]] = suc[[C ′]],
act[[C]] = act[[C ′]][X/π(X)]

where A[X/π(X)] represents action A where each variable name X is replaced
by the new name π(X). Recall that the matching relation between program
traces considers the abstraction αe of traces, thus it is interesting to observe
that:

αe(S[[Ov [[P, π]]]]) = αv[π](αe(S[[P]])) (6.2)

where αv : Π → (X∗ → X∗) is defined as:

αv[π]((ρ1,m1) . . . (ρn,mn))
def
= (ρ1 ◦ π

−1,m1) . . . (ρn ◦ π
−1,mn)

In order to deal with variable renaming obfuscation we introduce the notion
of canonical variable renaming, denoted as π̂. The idea of canonical map-
pings is that there exists a renaming π : var[[P]] → var[[Q]] that transforms
program P into program Q, namely such that Ov[[P, π]] = Q, if and only if
αv[π̂](αe(S[[Q]])) = αv[π̂](αe(S[[P]])). This means that a program Q is a renamed
version of program P if and only if Q and P are indistinguishable after canon-
ical renaming. In the following we define a possible canonical renaming for the
variables of a given a program.

Let {Vi}i∈N be a set of canonical variable names. The idea is to order the
variables appearing in program semantics S[[P]], and to define a canonical re-
naming that renames the first variable with V1, the second with V2 and so on.
The set L of memory locations is an ordered set with ordering relation ≤L. With

6.4 A Semantic Classification of Obfuscations 147

a slight abuse of notation we denote with ≤L also the lexicographical order in-
duced by ≤L on sequences of memory locations. Let us define the ordering ≤Σ

over traces Σ∗ where, given σ, δ ∈ Σ∗:

σ ≤Σ δ if

{
|σ| ≤ |δ| or

|σ| = |δ| and lab(σ1)lab(σ2)...lab(σn) ≤L lab(δ1)lab(δ2)...lab(δn)

where lab(〈C, ρ,m〉) = lab[[C]]. It is clear that, given a program P, the ordering
≤Σ on its traces induces an order on the set Z = αe(S[[P]]) of its environment-
memory traces, i.e., given σ, δ ∈ S[[P]]:

σ ≤Σ δ ⇒ αe(σ) ≤Z αe(δ)

By definition, the set of variables assigned in Z is exactly var[[P]], therefore,
for equation (6.2), a canonical renaming π̂P : var[[P]] → {Vi}i∈N, is such that
αe(S[[Ov [[P, π̂P]]]]) = αv[π̂P](Z). Let Z̄ denote the list of environment-memory
traces of Z = αe(S[[P]]) ordered following the ordering ≤Z defined above. Let
B be a list, then hd(B) returns the first element of the list, tl(B) returns list
B without the first element, B : e (e : B) is the list resulting by inserting
element e at the end (beginning) of B, B[i] returns the i-th element of the list,
and e ∈ B means that e is an element of B. The relation ≤Z defines an order
between context traces in αe(S[[P]]), now we need to define an order between
the variables in a context trace. Given s ∈ X∗, the idea is to order the variables
according to their assignment time. Note that, program execution starts from
the uninitialized environment ρuninit = λX.⊥, and that each command assigns at
most one variable. Let def (ρ) denote the set of variables that have defined (i.e.,
non-⊥) values in an environment ρ. This means that considering s ∈ X∗ we have
that def (ρi−1) ⊆ def (ρi), and if def (ρi−1) ⊂ def (ρi) then def (ρi) = def (ρi−1)∪
{X} where X ∈ X is the new variable assigned to memory location ρi(X). Given
s ∈ X∗, let us define List(s) as the list of variables in s ordered according to their
assignment time. Formally, let s = (ρ1,m1)(ρ2,m2)...(ρn,mn) = (ρ1,m1)s

′:

List(s) =

ǫ if s = ǫ
X : List(s′) if def (s2) r def (s1) = {X}
List(s′) if def (s2) r def (s1) = ∅

Algorithm 1, given a list Z̄ encoding the ordering ≤Z on context traces in
αe(S[[P]]), and given List(s) for every s ∈ αe(S[[P]]) encoding the assignment
ordering of variables in s, returns the list Rename [Z] encoding the ordering of
variables in αe(S[[P]]). Given Z = αe(S[[P]]), we rename its variables following
the canonical renaming π̂P : var[[P]]→ {Vi}i∈N that associates the new canonical
name Vi to the variable of P in the i-th position in the list Rename [Z]. Thus,
the canonical renaming π̂P : var[[P]]→ {Vi}i∈N is defined as follows:

148 6 A Semantics-Based approach to Malware Detection

Input: A list of context sequences Z̄, with Z ∈ αe(S[[P]]).
Output: A list Rename[Z] used to associate canonical variable Vi to the variable in the

list position i.

Rename[Z] = List(hd(Z̄))
Z̄ = tl(Z̄)
while (Z̄ 6= ∅) do

trace = List(hd(Z̄))
while (trace 6= ∅) do

if (hd(trace) 6∈ Rename[Z]) then
Rename [Z] = Rename [Z] : hd(trace)

end

trace = tl(trace)
end

Z̄ = tl(Z̄)
end

Algorithm 1: Algorithm for canonical renaming of variables.

π̂P (X) = Vi ⇔ Rename [Z][i] = X

The following result is necessary in order to prove that the mapping π̂P defined
above is a canonical renaming.

Lemma 6.12. Given two programs P,Q ∈ P let Z = αe(S[[P]]) and Y =
αe(S[[Q]]). Then we have that:

1 αv[π̂P](Z) = αv[π̂Q](Y) ⇒ ∃π : var[[P]]→ var[[Q]] : αv[π](Z) = Y
2 ∃π : var[[P]]→ var[[Q]] : αv[π](Z) = Y and (αv [π](s) = t⇒ (Z̄[i] = s∧Y[i] =

t)) ⇒ αv[π̂P](Z) = αv[π̂Q](Y)

proof:

1 Assume αv[π̂P](Z) = αv[π̂Q](Y), i.e., {αv[π̂P](s) | s ∈ Z} = {αv [π̂Q](t) | t ∈
Y}. This means that |var[[Z]]| = |var[[Y]]| = k, and that π̂P : var[[Z]] →
{V1...Vk} while π̂Q : var[[Y]] → {V1...Vk}. Recall that var[[Z]] = var[[P]] and
var[[Y]] = var[[Q]]. Let us define π : var[[P]] → var[[Q]] as π

def
= π̂−1

Q ◦ π̂P . The
mapping π is bijective since it is obtained as composition of bijective func-
tions. Let us show that π satisfies the condition on the left, namely that
Y = αv[π](Z). To prove this we show that given s ∈ Z and t ∈ Y such
that αv[π̂P](s) = αv[π̂Q](t) then αv[π](s) = t. Let αv[π̂P](s) = αv[π̂Q](t) =
(ρ̂1,m1)...(ρ̂n,mn), while s = (ρs

1,m1)...(ρ
s
n,mn) and t = (ρt

1,m1)...(ρ
t
n,mn).

Then:

αv[π](s) = (ρs
1 ◦ π

−1,m1)...(ρ
s
n ◦ π

−1,mn)

= (ρs
1 ◦ π̂

−1
P ◦ π̂Q,m1)...(ρ

s
n ◦ π̂

−1
P ◦ π̂Q,mn)

= (ρ̂1 ◦ π̂Q,m1)...(ρ̂n ◦ π̂Q,mn)

= (ρt
1,m1)...(ρ

t
n,mn) = t

6.4 A Semantic Classification of Obfuscations 149

2 Assume ∃π : var[[P]] → var[[Q]] such that Y = αv[π](Z). By definition Y =
{αv[π](s) | s ∈ Z}. Let us show that αv[π̂P](Z) = αv[π̂Q]({αv [π](s) | s ∈ Z}).
We prove this by showing that αv[π̂P](s) = αv[π̂Q](αv [π](s)). By definition
we have that |Y| = |Z| and |var[[P]]| = |var[[Q]]| = k, moreover we have
π : var[[P]] → var[[Q]]. Given s ∈ Z and t ∈ Y such that t = αv[π](s) then
|s| = |t| and |var[[s]]| = |var[[t]]|, thus List(s)[i] = X and List(t)[i] = π(X),
moreover, by hypothesis, Z̄[i] = s and Ȳ[i] = t. This hold for every pair
of traces obtained trough renaming. Therefore, considering the canonical
rename for Y as given by π̂Q

def
= π̂P ◦ π

−1, we have that ∀s ∈ Z, t ∈ Y such
that αv[π](s) = t then αv[π̂P](s) = αv[π̂Q](t). In fact:

αv[π̂Q](t) = αv[π̂Q](αv [π](s))

= αv[π̂Q]((ρs
1 ◦ π

−1,m1)...(ρ
s
n ◦ π

−1,mn))

= (ρs
1 ◦ π

−1 ◦ π̂−1
Q ,m1)...(ρ

s
n ◦ π

−1 ◦ π̂−1
Q ,mn)

= (ρs
1 ◦ π

−1 ◦ π ◦ π̂−1
P ,m1)...(ρ

s
n ◦ π

−1 ◦ π ◦ π̂−1
P ,mn)

= (ρs
1 ◦ π̂

−1
P ,m1)...(ρ

s
n ◦ π̂

−1
P ,mn)

= (ρ̂1,m1)...(ρ̂n,mn) = αv[π̂P](s)

�

Let Π̂ denote a set of canonical variable renamings, the additive function
αv : Π̂ → (℘(X∗) → ℘(X∗

c)), where Xc denotes execution contexts where envi-
ronments are defined on canonical variables, is an approximation that abstracts
from the names of variables. Thus, we have the following Galois connection:

〈℘(X∗),⊆〉 −→←−
αv[bΠ]

γv [bΠ]
〈℘(X∗

c),⊆〉

The following result, where π̂M and π̂Pr denote respectively the canonical re-
naming of the malware variables and of restricted program variables, shows that
the semantic malware detector on αv[Π̂] is both complete and sound for variable
renaming.

Theorem 6.13. ∃π : Ov [[M,π]] →֒ P if and only if

∃labr[[P]] ∈ ℘(lab[[P]]) : αv[π̂M](αe(S[[M]])) ⊆ αv[π̂Pr](αe(αr(S[[P]])))

proof: (⇒) Completeness: Assume that Ov[[M,π]] →֒ P , this means that
∃labr[[P]] ∈ ℘(lab[[P]]) such that Pr = Ov[[M,π]]. Therefore αe(αr(S[[P]])) =
αe(S[[Ov[[M,π]]]]). Thus, in order to conclude the proof we have to show that
αv[π̂M](αe(S[[M]])) ⊆ αv[π̂Pr](αe(S[[Ov [[M,π]]]])). Recall that αe(S[[Ov[[M,π]]]]) =
αv[π](αe(S[[M]])). Following Lemma 6.12 point 2 we have that:

150 6 A Semantics-Based approach to Malware Detection

αv[π̂M](αe(S[[M]])) = αv[π̂Pr](αv [π](αe(S[[M]]))) = αv[π̂Pr](αe(S[[Ov [[M,π]]]]))

which concludes the proof.
(⇐) Soundness: Assume that ∃labr[[P]] ∈ ℘(lab[[P]]) : αv[π̂M](αe(S[[M]])) ⊆
αv[π̂Pr](αe(αr(S[[P]]))). Let αR be the program restriction that satisfies the
above equation with equality: αv[π̂M](αe(S[[M]])) = αv[π̂Pr](αe(αR(S[[P]]))).
It is clear that αR(S[[P]]) ⊆ αr(S[[P]]). From Lemma 6.12 point 1 we have
that ∃π : var[[M]] → var[[PR]] such that αe(αR(S[[P]])) = αv[π](αe(S[[M]])) =
αe(S[[Ov[[M,π]]]]), namely αe(S[[Ov [[M,π]]]]) = αe(αR(S[[P]])) ⊆ αe(αr(S[[P]])),
meaning that Ov[[M,π]] →֒ P .

�

6.4.3 Composition

As observed earlier, in general, malware writers use multiple obfuscating trans-
formations concurrently to prevent detection, therefore we have to consider the
composition of non-conservative obfuscations (Lemma 6.10 regards composition
of conservative obfuscations only). Investigating the relation between abstrac-
tions α1 and α2, on which the semantic malware detector is complete (resp.
sound) respectively for obfuscations O1 and O2, and the abstraction that is
complete (resp. sound) for their compositions, i.e., for {O1 ◦ O2,O2 ◦ O1}, we
have obtained the following result.

Theorem 6.14. Given two abstractions α1 and α2 and two obfuscations O1

and O2 then:

1 if the semantic malware detector on α1 is complete for O1, the semantic
malware detector on α2 is complete for O2, and α1 ◦ α2 = α2 ◦ α1, then the
semantic malware detector on α1 ◦ α2 is complete for {O1 ◦ O2,O2 ◦ O1};

2 if the semantic malware detector on α1 is sound for O1, the semantic malware
detector on α2 is sound for O2, and α1(X) ⊆ α1(Y) ⇒ X ⊆ Y , then the
semantic malware detector on α1 ◦ α2 is sound for O1 ◦ O2.

proof:

1 Recall that the semantic malware detector on αi is complete for Oi if
Oi[[M]] →֒ P ⇒ ∃labr[[P]] ∈ ℘(lab[[P]]) : αi(αe(S[[P]])) ⊆ αi(αe(αr(S[[P]]))).
Assume that O1[[O2[[P]]]] →֒ P , this means that there exists labr[[P]] ∈
℘(lab[[P]]) : S[[O1[[O2[[P]]]]]] = αr(S[[P]]). Since the semantic malware de-
tector on α1 is complete for O1, we have that: α1(αe(S[[O2[[M]]]]))) ⊆
α1(αe(αr(S[[P]]))). Abstraction α2 is monotone and therefore:

α2(α1(αe(S[[O2[[M]]]])))) ⊆ α2(α1(αe(αr(S[[P]]))))

6.4 A Semantic Classification of Obfuscations 151

In general we have that O2[[M]] →֒ O2[[M]], and since α2 is complete we
have that α2(αe(S[[M]])) ⊆ α2(αe(S[[O2[[M]]]])). Abstraction α1 is monotone
and therefore α1(α2(αe(S[[M]]))) ⊆ α1(α2(αe(S[[O2[[M]]]]))). Since α1 and α2

commute we have:

α2(α1(αe(S[[M]]))) ⊆ α2(α1(αe(S[[O2[[M]]]])))

Thus, ∃labr[[P]] ∈ ℘(lab[[P]]) : α1(α2(αe(S[[M]]))) ⊆ α2(α1(αe(αr(S[[P]])))).
The proof that O2[[O1[[M]]]] →֒ P implies that there exists labr[[P]] ∈
℘(lab[[P]]) : α1(α2(αeS[[M]])) ⊆ α1(α2(αe(αr(S[[P]])))) is analogous.

2 We have to prove that if ∃labr[[P]] ∈ ℘(lab[[P]]) such that α1(α2(αe(S[[P]]))) ⊆
α1(α2(αe(αr(S[[P]])))) then O1[[O2[[M]]]] →֒ P .
Assume ∃labr[[P]] ∈ ℘(lab[[P]]) : α1(α2(αe(S[[P]]))) ⊆ α1(α2(αe(αr(S[[P]])))),
since α1(X) ⊆ α1(Y)⇒ X ⊆ Y we have that ∃labr[[P]] ∈ ℘(lab[[P]]) such that
α2(αe(S[[P]])) ⊆ α2(αe(αr(S[[P]]))). The semantic malware detector on α2 is
sound by hypothesis, therefore O2[[M]] →֒ P , namely ∃labr[[P]] ∈ ℘(lab[[P]])
such that αe(S[[O2[[M]]]]) ⊆ αe(αr(S[[P]])). Abstraction α1 is monotone and
therefore α1(αe(S[[O2[[M]]]])) ⊆ α1(αe(αr(S[[P]]))). The semantic malware de-
tector on α1 is sound by hypothesis and therefore O1[[O2[[M]]]] →֒ P .

�

Thus, in order to propagate completeness through composition O1 ◦ O2 and
O2 ◦ O1 the corresponding abstractions have to be independent. On the other
side, in order to propagate soundness through composition O1 ◦ O2 the ab-
straction α1, corresponding to the last applied obfuscation, has to be an order-
embedding, namely α1 has to be both order-preserving and order-reflecting,
i.e., α1(X) ⊆ α1(Y) ⇔ X ⊆ Y . Observe that, when composing a non-
conservative obfuscation O, for which the semantic malware detector on αO

is complete, with a conservative obfuscation Oc, the commutation condition
αO ◦ αc = αc ◦ αO of point 1 of the above theorem is satisfied if and only if
(αe(σ) � αe(δ))⇔ αO(αe(σ)) � αO(αe(δ)). In fact, only in this case αc and αO

commute, as shown by the following equations:

αO(αc[S](αe(σ))) = αO(S ∩ Subseq(αe(σ)))

=
{
αO(αe(δ))

∣∣αe(δ) ∈ S ∩ SubSeq(αe(σ))
}

= αO(S) ∩
{
αO(αe(δ))

∣∣αe(δ � αe(σ))
}

αc[αO(S)](αO(αe(σ))) = αO(S) ∩ SubSeq(αO(αe(σ)))

= αO(S) ∩
{
αO(αe(δ))

∣∣αO(αe(δ)) � αO(αe(σ))
}

152 6 A Semantics-Based approach to Malware Detection

Example 6.15. Let us consider Ov[[Oc[[M]], π]] obtained by obfuscating the por-
tion of malware M in Example 6.11 through variable renaming and some
conservative obfuscations, where the renaming function is defined by π(B) =
D,π(A) = E. It is clear that variable renaming preserves�, namely αv[π]αe(σ) �
αv[π]αe(δ) if and only if αe(σ) � αe(δ). In fact, it is possible to show that:

αc[αv[Π̂](αe(S[[M]])](αv [Π̂](αe(S[[M]]))) ⊆

αc[αv[Π̂](αe(S[[M]]))](αv [Π̂](αe(αr(S[[Ov [[Oc[[M]], π]]]]))))

Ov [[Oc[[M]], π]]

L1 : assign(D,LB)→ L2

L2 : skip→ L4

Lc : cond(E)→ {LO, LF }
L4 : assign(E,LA)→ L5

L5 : skip→ Lc

LO : P T → {LT , Lk}
LT : D := Dec(E)→ LT1

LT1 : assign(π2(D),D)→ LT2

LT2 : assign(π2(E), E)→ Lc

Lk : . . .
LF : . . .

Namely, given the abstractions αc[αe(S[[M]])] and αv on which, by definition, the
semantic malware detector is complete respectively for Oc and Ov, the semantic
malware detector on αc ◦ αv is complete for the composition Ov ◦ Oc. Let ⊥
denote the undefined function, then we have the following.
αc[αv[Π̂]αe(S[[M]])](αv [Π̂]αe(S[[M]])) =

(⊥,⊥), ((V1 LB),⊥), ((V1 LB, V2 LA),⊥)2, ((V1 LB, V2 LA),

(ρ(V1)← Dec(V2))), ((V1 π2(m(ρ(V1))), V2 LA), (ρ(V1)← Dec(V2))),

((V1 π2(m(ρ(V1)), V2 π2(m(ρ(V2)))), (ρ(V1)← Dec(V2))), ...

while, αv[Π̂]αe(S[[Ov[[Oc[[M,π]]]]]]) =

(⊥,⊥), ((V1 LB),⊥)2, ((V1 LB , V2 LA),⊥)5, ((V1 LB , V2 LA),

(ρ(V1)← Dec(V2)))((V1 π2(m(ρ(V1)), V2 LA), (ρ(V1)← Dec(V2))),

((V1 π2(m(ρ(V1)), V2 π2(m(ρ(V2)))), (ρ(V1)← Dec(V2))), ...

Thus:
αc[αv[Π̂]αe(S[[M]])](αv [Π̂]αe(S[[Ov [[Oc[[M]], π]]]])) =

αc[αv [Π̂]αe(S[[M]])](αv [Π̂]αe(S[[M]]))

�

6.5 Further Malware Abstractions 153

6.5 Further Malware Abstractions

Definition 6.4 characterizes the presence of a malware M in a program P
as the existence of a restriction labr[[P]] ∈ ℘(lab[[P]]) such that αe(S[[M]]) ⊆
αe(αr(S[[P]])). This means that program P is infected by malware M if for ev-
ery malware behaviour there exists a program behaviour that matches it. In
the following we show how this notion of malware infection can be weakened in
three different ways. First, we can abstract the malware traces by eliminating
the states that are not relevant to determine maliciousness, and then check if
program P matches this simplified behavior (i.e., interesting states). Second, we
can require program P to match a proper subset of malicious behaviors (i.e.,
interesting behaviours). Furthermore these two notions of malware infection can
be combined by requiring program P to match some states on a subset of mal-
ware behaviors. Finally, the infection condition can be expressed in terms of
a sequence of actions rather than a sequence representing the evolution of the
execution context (i.e., interesting actions). Once again, action abstraction can
be combined with either states abstraction or behaviours abstraction or with
both of them. It is clear that a deeper understanding of the malware behavior
is necessary in order to specify each of the proposed simplifications.

6.5.1 Interesting States

The maliciousness of a malware behaviour may be expressed by the fact that
some (malware) states are reached in a certain order during program execution.
Observe that this condition is clearly implied by, i.e., weaker than, the (standard)
matching relation between all malware traces and the restricted program traces.
Let us use the interesting states of a malware to refer to those states that capture
the malicious behaviour. Assume that we have an oracle that, given a malware
M , returns the set of its interesting states Int(M) ⊆ Σ[[M]]. These states could
be selected based on a security policy. For example, the states could represent
the result of network operations. This means that in order to verify if program
P is infected by malware M , we have to check whether the malicious sequences
of interesting states are present in P . Let us define the trace transformation
αInt(M) : X∗ → X∗ which considers only the interesting contexts in a given trace
s = ξ1s

′:

αInt(M)(s) =

ǫ if s = ǫ
ξ1αInt(M)(s

′) if ξ1 ∈ αe(Int(M))

αInt(M)(s
′) otherwise

The following definition characterizes the presence of malware M in terms of its
interesting states, i.e., through abstraction αInt(M).

Definition 6.16. A program P is infected by a vanilla malware M with inter-
esting states Int(M), i.e., M →֒Int(M) P , if ∃labr[[P]] ∈ ℘(lab[[P]]) such that:

154 6 A Semantics-Based approach to Malware Detection

αInt(M)(αe(S[[M]])) ⊆ αInt(M)(αe(αr(S[[P]])))

Thus, we can weaken the standard notion of conservative transformation by
saying that O : P → P is conservative with respect to Int(M) if for every
malware trace σ ∈ S[[M]] there exists a program trace δ ∈ S[[O[[M]]]] such that
αInt(M)(αe(σ)) � αInt(M)(αe(δ))

When program infection is characterized by Definition 6.16, the semantic
malware detector on αc ◦ αInt(M) is complete and sound for the obfuscating
transformations that are conservative with respect to Int(M).

Theorem 6.17. Let Int(M) be the set of interesting states of a vanilla malware
M . Then we have that:
Completeness: For every obfuscation O which is conservative with respect to
Int(M), if O[[M]] →֒Int(M) P there exists labr[[P]] ∈ ℘(lab[[P]]) such that:

αc[αInt(M)(αe(S[[M]]))](αInt (M)(αe(S[[M]]))) ⊆

αc[αInt(M)(αe(S[[M]]))](αInt (M)(αe(αr(S[[P]]))))

Soundness: If there exists labr[[P]] ∈ ℘(lab[[P]]) such that:

αc[αInt(M)(αe(S[[M]]))](αInt (M)(αe(S[[M]]))) ⊆

αc[αInt(M)(αe(S[[M]]))](αInt (M)(αe(αr(S[[P]]))))

then there exists an obfuscation O that is conservative with respect to Int(M)
such that O[[M]] →֒ P .

proof: Completeness: Let O be a conservative obfuscation with respect to
Int(M) such that O[[M]] →֒Int(M) P , then it means that ∃labr[[P]] ∈ ℘(lab[[P]])
such that Pr = O[[M]], namely αInt(M)(αe(S[[O[[M]]]])) = αInt(M)(αe(αr(S[[P]]))).
Therefore, we have that:

αc[αInt(M)(αe(S[[M]]))](αInt (M)(αe(S[[O[[M]]]]))) =

αc[αInt(M)(αe(S[[M]]))](αInt (M)(αe(αr(S[[P]]))))

Thus, we have to show that:

αc[αInt(M)(αe(S[[M]]))](αInt (M)(αe(S[[M]]))) ⊆

αc[αInt(M)(αe(S[[M]]))](αInt (M)(αe(S[[O[[M]]]])))

By hypothesis O is conservative with respect to Int(M), thus we have that for
every σ ∈ S[[M]], there exists δ ∈ S[[O[[M]]]] : αInt(M)(αe(σ)) � αInt(M)(αe(δ)).
Moreover, for every s ∈ αc[αInt(M)(αe(S[[M]]))](αInt (M)(αe(S[[M]]))) there ex-
ists σ ∈ S[[M]] : s = αInt(M)(αe(σ)), therefore ∀σ ∈ S[[M]], there exists δ ∈

6.5 Further Malware Abstractions 155

S[[O[[M]]]] such that s = αInt(M)(αe(σ)) � αInt(M)(αe(δ)), and αInt(M)(αe(δ)) =
t ∈ αInt(M)(αe(S[[O[[M]]]])). This means that ∀s ∈ αInt(M)(αe(S[[M]])),∃t ∈
αInt(M)(αe(S[[O[[M]]]])) such that s ∈ SubSeq(t). Hence, ∀s ∈ αInt(M)(αe(S[[M]]))
we have that

s ∈ αc[αInt(M)(αe(S[[M]]))](αInt (M)(αe(S[[O[[M]]]])))

which concludes the proof.
Soundness: Assume that ∃labr[[P]] ∈ ℘(lab[[P]]) such that:

αc[αInt(M)(αe(S[[M]]))](αInt (M)(αe(S[[M]]))) ⊆

αc[αInt(M)(αe(S[[M]]))](αInt (M)(αe(αr(S[[P]]))))

This means that ∀σ ∈ S[[M]]:

αInt(M)(αe(σ)) ⊆ αc[αInt(M)(αe(S[[M]]))](αInt (M)(αe(αr(S[[P]])))

and for every σ ∈ S[[M]] there exists δ ∈ αr(S[[P]]) such that αInt(M)(αe(σ)) ∈
αInt(M)(αe(S[[M]]))∩SubSeq(αInt(M)(αe(δ))). This means that ∀σ ∈ S[[M]] there
exists δ ∈ αr(S[[P]]) such that αInt(M)(αe(σ)) � αInt(M)(αe(δ)), which means
that Pr is a conservative obfuscation of M with respect to Int(M).

�

It is clear that transformations that are non-conservative may be conservative
with respect to Int(M), meaning that knowing the set of interesting states of
a malware allows us to handle also some non-conservative obfuscations. For
example the abstraction αInt(M) may allow the semantic malware detector to
deal with reordering of independent instructions, as the following example shows.

Example 6.18. Let us consider the malware M and its obfuscation O[[M]] ob-
tained by reordering independent instructions.

M O[[M]]

L1 : A1 → L2

L2 : A2 → L3

L3 : A3 → L4

L4 : A4 → L5

L5 : A5 → L6

L1 : A1 → L2

L2 : A3 → L3

L3 : A2 → L4

L4 : A4 → L5

L5 : A5 → L6

In the above example actions A2 and A3 are independent, meaning that
A[[A2]](A[[A3]](ρ,m)) = A[[A3]](A[[A2]](ρ,m)) for every (ρ,m) ∈ E ×M. Con-
sidering malware M , we have the trace σ = σ1σ2σ3σ4σ5 where:

156 6 A Semantics-Based approach to Malware Detection

σ1 = 〈L1 : A1 → L2, (ρ,m)〉 = 〈L1 : A1 → L2, ξ
σ
1 〉

σ2 = 〈L2 : A2 → L3, (A[[A1]](ρ,m))〉

σ3 = 〈L3 : A3 → L4, (A[[A2]](A[[A1]](ρ,m)))〉

σ4 = 〈L4 : A4 → L5, (A[[A3]](A[[A2]](A[[A1]](ρ,m))))〉

σ5 = 〈L5 : A5 → L6, (A[[A4]](A[[A3]](A[[A2]](A[[A1]](ρ,m)))))〉

= 〈L5 : A5 → L6, ξ
σ
5 〉

while considering the obfuscated version, we have the trace δ = δ1δ2δ3δ4δ5,
where:

δ1 = 〈L1 : A1 → L2, (ρ,m)〉 = 〈L1 : A1 → L2, ξ
δ
1〉

δ2 = 〈L2 : A3 → L3, (A[[A1]](ρ,m))〉

δ3 = 〈L3 : A2 → L4, (A[[A3]](A[[A1]](ρ,m)))〉

δ4 = 〈L4 : A4 → L5, (A[[A2]](A[[A3]](A[[A1]](ρ,m))))〉

δ5 = 〈L5 : A5 → L6, (A[[A4]](A[[A2]](A[[A3]](A[[A1]](ρ,m)))))〉

= 〈L5 : A5 → L6, ξ
δ
5〉

Let Int(M) = {σ1, σ5}. Then αInt(M)(αe(σ)) = ξσ
1 ξ

σ
5 as well as αInt(M)(αe(δ)) =

ξδ
1ξ

δ
5, which concludes the example. It is obvious that ξσ

1 = ξδ
1, moreover ξδ

5 = ξσ
5

follows from the independence of A2 and A3.

�

6.5.2 Interesting Behaviors

Program trace semantics expresses malware behaviour on every possible input.
It is clear that it may happen that only some of the inputs cause the malware to
have a malicious behaviour (think for example of a virus that starts its payload
only after a certain date). In this case, maliciousness is properly encoded by a
subset of malware traces that identify the so called interesting behaviours of the
malware. Assume we have an oracle that given a malware M returns the set
T ⊆ S[[M]] of its interesting behaviors. Thus, in order to verify if P is infected
by M , we check whether program P matches the set of malicious behaviors T .
The following definition characterizes the presence of malware M in a program
P in terms of its interesting behaviors T .

Definition 6.19. A program P is infected by a vanilla malware M with inter-
esting behaviors T ⊆ S[[M]], i.e., M →֒T P if:

∃labr[[P]] ∈ ℘(lab[[P]]) : αe(T) ⊆ αe(αr(S[[P]]))

6.5 Further Malware Abstractions 157

It is interesting to observe that, when program infection is characterized by Def-
inition 6.19, all the results obtained in Section 6.3 still hold if we replace S[[M]]
with T .

Clearly the two abstractions can be composed. In this case, a program P is
infected by a malware M if there exists a program restriction that matches the
sequences given by the interesting states of the interesting behaviors of the mal-
ware, i.e., ∃labr[[P]] ∈ ℘(lab[[P]]) : αInt(M)(αe(T)) ⊆ αInt(M)(αe(αr(S[[P]]))).

6.5.3 Interesting Actions

To conclude, we present a matching relation based on interesting program actions
rather than environment-memory evolutions. In fact, sometimes, a malicious
behavior can be characterized as the execution of a sequence of bad actions.
In this case we consider the syntactic information contained in program states.
The main difference with purely syntactic approaches is the ability to observe
actions in their execution order and not in the order in which they appear in
the code. Assume we have an oracle that given a malware M returns the set
Bad ⊆ act[[M]] of actions capturing the essence of the malicious behaviour. In
this case, in order to verify if program P is infected by malware M , we check
whether the execution sequences of bad actions of the malware match the ones
of the program.

Definition 6.20. A program P is infected by a vanilla malware M with bad
actions Bad , i.e., M →֒Bad P if:

∃labr[[P]] ∈ ℘(lab[[P]]) : αa(S[[M]]) ⊆ αa(αr(S[[P]]))

Where, given the set Bad ⊆ act[[M]] of bad actions, the abstraction αa returns
the sequence of malicious actions executed by each trace. Formally, given a trace
σ = σ1σ

′:

αa(σ) =

ǫ if σ = ǫ
A1αa(σ

′) if A1 ∈ Bad
αa(σ

′) otherwise

Even if this abstraction considers syntactic information (program actions), it
is able to deal with certain kinds of obfuscations. In fact, considering the se-
quence of malicious actions in a trace, we observe actions in their execution
order, and not in the order in which they are written in the code. This means
that, for example, we are able to ignore unconditional jumps and therefore we
can deal with code reordering. Once again, abstraction αa can be combined
with interesting states and/or interesting behaviours. For example, program
infection can be characterized as the sequences of bad actions present in the

158 6 A Semantics-Based approach to Malware Detection

interesting behaviours of malware M , i.e., ∃labr[[P]] ∈ ℘(lab[[P]]) such that
αa(αe(T)) ⊆ αa(αe(αr(S[[P]]))).

It is clear that the notion of infection given in Definition 6.4 can be weakened
in many other ways, following the example given by the above simplifications.
This possibility of adjusting malware infection with respect to the knowledge
of the malicious behaviour we are searching for proves the flexibility of the
proposed semantic framework.

6.6 Relation to Signature Matching

In this section we consider the standard signature matching algorithm for mal-
ware detection, and we investigate the effects that it has on program trace se-
mantics in order to to certify the degree of precision of these detection schemes
in terms of soundness and completeness properties. We can express the signa-
ture of a malware M as a proper subset S ⊆ M of “consecutive” malicious
commands, formally S = C1, ..., Cn where ∀i ∈ [1, n − 1] : suc[[Ci]] = lab[[Ci+1]].
Given a malware M , S ⊆ M is an ideal signature if it unequivocally identifies
infection, meaning that S ⊆ P ⇔ M →֒ P . Signature-based malware detectors,
given an ideal signature S of a malware M (provided for example by a perfect
oracle ORS) and a possibly infected program P , syntactically verify infection
according to the following test:

Syntactic Test : S ⊆ P

Let us consider the semantic counterpart of the syntactic signature matching
test. Given a malware M and its signature S ⊆M , let labs[[M]] = lab[[S]] denote
the malware restriction identifying the commands composing the signature. Ob-
serve that the semantics of the malware restricted to its signature corresponds
to the semantics of the signature, i.e., αs(S[[M]]) = S[[S]]. Thus, we can say that
a program P is infected by a malware M if there exists a restriction of pro-
gram trace semantics that matches the semantics of the malware restricted to
its signature:

Semantic Test : ∃labr[[P]] ∈ ℘(lab[[P]]) : αs(S[[M]]) = αr(S[[P]])

which can be equivalently expressed as ∃labr[[P]] ∈ ℘(lab[[P]]) : S[[S]] = αr(S[[P]]).
The following result shows that the syntactic and semantic tests are equivalent,
meaning that they detect the same set of infected programs.

Proposition 6.21. Given a signature S of a malware M we have that:

S ⊆ P ⇔ ∃labr[[P]] ∈ ℘(lab[[P]]) : S[[S]] = αr(S[[P]])

6.6 Relation to Signature Matching 159

proof: (⇒) S ⊆ P means that ∀C ∈ S ⇒ C ∈ P , namely that ∃labr[[P]] ∈
℘(lab[[P]]) : Pr = S. Therefore, αr(S[[P]]) = S[[Pr]] = S[[S]]. (⇐) If ∃labr[[P]] ∈
℘(lab[[P]]) : S[[S]] = αr(S[[P]]), it means that |S[[S]]| = |αr(S[[P]])| and that
∀σ ∈ S[[S]], ∃δ ∈ αr(S[[P]]) such that σ = δ = (C1, ρ1,m1), ..., (Ck , ρk,mk). This
means that for every σ ∈ S[[S]] and δ ∈ αr(S[[P]]) such that σ = δ, we have that
cmd [[σ]] = ∪i∈[1,k]Ci = cmd [[δ]], and therefore S = cmd(S[[S]]) = cmd(S[[Pr]]) ⊆
P , namely S ⊆ P .

�

Observe that by applying abstraction αe to the semantic test we have that
M →֒ P if:

∃labr[[P]] ∈ ℘(lab[[P]]) : αe(αs(S[[S]])) = αe(αr(S[[P]]))

which corresponds to the standard infection condition specified by Definition 6.4
where the semantics of malware M has been restricted to its signature S and
the set-inclusion relation has been replaced by equality. It is clear that, in this
setting, by replacing S[[M]] with S[[S]] we can obtain results analogous to the
one proved following Definition 6.4 of infection.

Proving Soundness and Completeness of a Signature-based Detector

Following the proof strategy proposed in Section 6.1.1, we first need to define
a trace-based malware detector that is equivalent to the signature-based algo-
rithm, and then we have to prove soundness and completeness for such semantic
detector.

Step 1: Designing an equivalent trace-based detector

This point is actually solved by Proposition 6.21. In fact, let AS denote the
malware detector based on the signature matching algorithm. This syntactic
algorithm is based on an oracle ORS that, given a malware M , returns its
ideal signature S such that: S ⊆ P ⇔ M →֒ P , or, equivalently, ∃labr[[P]] ∈
℘(lab[[P]]) : S[[S]] = αr(S[[P]]) ⇔ M →֒ P . Let DS be the trace-based detector
that classifies a program P as infected by a malware M with signature S, if
∃labr[[P]] ∈ ℘(lab[[P]]) : S[[S]] = αr(S[[P]]). From Proposition 6.21 it follows that
AS(M,P) = 1 if and only if ∃labr[[P]] ∈ ℘(lab[[P]]) : S[[S]] = αr(S[[P]]) if and
only if DS(M,P) = 1.

Step 2: Prove soundness and completeness of DS

Let us identify the class of obfuscating transformations that the trace-based
detector DS is able to handle. The following result shows that DS is sound if
the signature oracle ORS is perfect, namely DS is oracle-sound.

160 6 A Semantics-Based approach to Malware Detection

Proposition 6.22. DS is oracle-sound.

proof: Given a malware M with signature S we have that: ∃labr[[P]] ∈
℘(lab[[P]]) : S[[S]] = αr(S[[P]]) ⇒ M →֒ P , follows from the hypothesis that
ORS is a perfect oracle that returns an ideal signature.

�

This confirms the general belief that signature matching algorithms have a low
false positive rate. In fact, the presence of false positives is caused by the imper-
fection in the signature extraction process, meaning that in order to improve the
signature matching algorithm we have to concentrate in the design of efficient
techniques for signature extraction.

Let us introduce the class OS of obfuscating transformations that preserve
signatures. We say that O preserves signatures, i.e., O ∈ OS , when for every
malware M with signature S the semantics of signature S is present in the
semantics of the obfuscated malware O[[M]], formally when:

S[[S]] ⊆ αs(S[[M]]) ⇒

∃labR[[O[[M]]]] ∈ ℘(lab[[O[[M]]]]) : S[[S]] ⊆ αR(S[[O[[M]]]]) (‡)

The above condition can equivalently be expressed in syntactic terms as

S ⊆M ⇒ S ⊆ O[[M]]

The following result shows that DS is oracle-complete for O if and only if O
preserves signatures.

Proposition 6.23. DS is oracle-complete for O ⇔ O ∈ OS .

proof: (⇐) Assume that O ∈ OS, then we have to show that: O[[M]] →֒
P ⇒ ∃labR[[P]] ∈ ℘(lab[[P]]) : S[[S]] = αR(S[[P]]). Observe that O[[M]] →֒ P ,
means that ∃labr[[P]] ∈ ℘(lab[[P]]) : Pr = O[[M]], namely ∃labr[[P]] ∈ ℘(lab[[P]]) :
αr(S[[P]]) = S[[O[[M]]]]. From (‡), we have that ∃labR[[O[[M]]]] ∈ ℘(lab[[O[[M]]]]) :
S[[S]] = αR(S[[O[[M]]]]), and therefore S[[S]] = αR(αr(S[[P]])) = αR(S[[P]]).
(⇒) Assume that DS is complete for O, this means that O[[M]] →֒ P ⇒
∃labR[[P]] ∈ ℘(lab[[P]]) : S[[S]] ⊆ αR(S[[P]]), meaning that there is a restric-
tion of program P that matches signature S. Thus, program P can be restricted
to a signature preserving transformation of M .

�

This means that a signature based detection algorithm AS is oracle-complete
with respect to the class of obfuscations that preserve malware signatures,
namely the ones belonging to OS. Unfortunately, a lot of commonly used ob-
fuscating transformations do not preserve signatures, namely are not in OS .

6.7 Case Study: Completeness of the Semantics-Aware Malware Detector 161

Consider for example the code reordering obfuscation OJ . It is easy to show
that AS is not complete for OJ . In fact, given a malware M with signa-
ture S ⊆ M , we have that, in general, S 6⊆ OJ [[M]], since jump instructions
are inserted between the signature commands changing therefore the signa-
ture. In particular, consider signature S ⊆ M such that S = C1, ..., Cn we
have that S 6⊆ OJ [[M]], while S′ ⊆ OJ [[M]], where S′ = C ′

1J
∗C ′

2J
∗...J∗C ′

n,
where J denotes a command implementing an unconditional jump, namely of
the form L : skip → L′, and C ′

i is given by command Ci with labels up-
dated according to jump insertion. This means that when OJ [[M]] →֒ P then
∀labR[[O[[M]]]] ∈ ℘(lab[[O[[M]]]]) : S[[S]] 6⊆ αR(S[[O[[M]]]]). Observe that incom-
pleteness is caused by the fact that DS , being equivalent to AS, is strongly
related to program syntax, and therefore the insertion of an innocuous jump
instruction is able to confuse it.

Following the same strategy, it is possible to show that AS is not complete for
opaque predicate insertion, semantic nop insertion and substitution of equiva-
lent commands. Thus, in general, the class of conservative transformations does
not preserve malware signatures, i.e., Oc 6⊆ OS , meaning that conservative ob-
fuscations are able to foil signature matching algorithms. Hence, it turns out that
AS is not complete, namely it is imprecise, for a wide class of obfuscating trans-
formations. This is one of the major drawbacks of signature-based approaches. A
common improvement of AS consists in considering regular expressions instead
of signatures. Namely, given a signature S = C1, ..., Cn, the detector A+

S verifies
if C ′

1C
∗C ′

2C
∗...C∗C ′

n ⊆ P , where C stands for any command in C and C ′
i is a

command with the same action as Ci. It is clear that this allows A+
S to deal

with the class of obfuscating transformations that are conservative with respect
to signatures, as for example code reordering OJ . Let Ocs denote the class of
obfuscations that are conservative with respect to signatures, where O ∈ Ocs

if for every malware M with signature S there exists S′ ⊆ O[[M]] such that
S = C1C2...Cn and S′ = C ′

1C
∗C ′

2C
∗...C∗C ′

n. However, this improvement does
not handle all conservative obfuscations in Oc. For example, the substitution of
equivalent commands OI belongs to Oc but not to Ocs.

6.7 Case Study: Completeness of the Semantics-Aware Malware

Detector

In this section we consider an existing detection algorithm and we prove that
it is oracle complete for certain obfuscating transformations. Recall that oracle-
completeness means that the detection algorithm is complete assuming that the
oracles that it uses are perfect. An algorithm called semantics-aware malware
detection was proposed by Christodorescu, Jha, Seshia, Song, and Bryant [25].
This approach to malware detection uses instruction semantics to identify mali-

162 6 A Semantics-Based approach to Malware Detection

Obfuscation Completeness of AMD

Code reordering Yes
Semantic-nop insertion Yes
Substitution of equivalent commands No
Variable renaming Yes

Table 6.4. Obfuscating transformations considered by AMD

cious behavior in a program, even when obfuscated. The obfuscations considered
in [25] are from the set of conservative obfuscations, together with variable re-
naming. In [25] the authors proved the algorithm to be oracle sound, so we focus
in this section on proving its oracle completeness using our abstraction-based
framework. The list of obfuscations we consider (shown in Table 6.4) is based
on the list described in the semantics-aware malware detection paper.

Description of the Algorithm

The semantics-aware malware detection algorithm AMD matches a program
against a template describing the malicious behavior. If a match is successful,
the program exhibits the malicious behavior of the template. Both the template
and the program are represented as control flow graphs during the operation of
AMD .

The algorithm AMD attempts to find a subset of program P that matches
the commands in malware M , possibly after renaming of variables and locations
used in the subset of P . Furthermore, AMD checks that any def-use relationship
that holds in the malware also holds in the program, across program paths that
connect consecutive commands in the subset.

A control flow graph G = (V,E) is a graph with the vertex set V representing
program commands, and edge set E representing control-flow transitions from
one command to its successor(s). For our language the control-flow graph (CFG)
can be easily constructed as follows:

– For each command C ∈ C, create a CFG node annotated with that command,
vlab[[C]]. Correspondingly, we write C[[v]] to denote the command at CFG node
v.

– For each command C = L1 : A → S, where S ∈ ℘(L), and for each label
L2 ∈ S, create a CFG edge (vL1 , vL2).

Consider a path θ through the CFG from node v1 to node vk, θ = v1 → . . .→ vk.
There is a corresponding sequence of commands in the program P , written
P |θ = {C1, . . . , Ck}, where Ci = C[[vi]]. Then we can express the set of states
possible after executing the sequence of commands P |θ as Ck[[P |θ]](C1, ρ,m), by
extending the transition relation C to a set of states, such that C : ℘(Σ) →
℘(Σ). Let us define the following basic functions:

6.7 Case Study: Completeness of the Semantics-Aware Malware Detector 163

mem [[(C, ρ,m)]] = m env[[(C, ρ,m))]] = ρ

The algorithm takes as inputs the CFG for the template, GT = (V T , ET), and
the binary file for the program, File[[P]]. For each path θ in GT , the algorithm
proceeds in two steps:

1. Identify a one-to-one map from template nodes in the path θ to program
nodes, denoted by µθ : V T → V P . A template node nT can match a program
node nP if the top-level operators in their actions are identical. This map
induces a map νθ : XT × V T → XP from variables at a template node
to variables at the corresponding program node, such that when renaming
the variables in the template command C[[nT]] according to the map νθ, we
obtain the program command C[[nP]] = C[[nT]][X/νθ

(
X,nT

)
].

This step makes use of the CFG oracle ORCFG that returns the control-flow
graph GP = (V P , EP) of a program P , given P ’s binary-file representation
File [[P]].

2. Check whether the program preserves the def-use dependencies that are true
on the template path θ. For each pair of template nodes mT , nT on the
path θ, and for each template variable XT defined in act[[C[[mT]]]] and used
in act[[C[[nT]]]], let λ be a program path µθ(v

T
1) → . . . → µθ(v

T
k), where

mT → vT
1 → . . . → vT

k → nT is part of the path θ in the template CFG. λ
is therefore a program path connecting the program CFG node correspond-
ing to mT with the program CFG node corresponding to nT . We denote by
T |θ =

{
C[[mT]], C[[vT

1]], . . . , C[[vT
k]], C[[nT]]

}
the sequence of commands corre-

sponding to the template path θ.
The def-use preservation check can be expressed formally as follows

∀ρ ∈ E,∀m ∈M,∀s ∈ Ck[[P |λ]] (µθ(v1) , ρ,m) :

E[[νθ(X
T , v1)]](ρ,m) = E[[νθ(X

T , nT)]] (env[[s]],mem[[s]])

The above formula checks weather the value of the program variable cor-
responding to the template variable XT before the execution of λ remains
constant during the execution of λ. This check is implemented in AMD as a
query to a semantic-nop oracle ORSNop . The semantic-nop oracle determines
whether the value of a variable X before the execution of a code sequence
ψ ⊆ P is equal to the value of a variable Y after the execution of ψ.

The semantics-aware malware detector AMD makes use of two oracles, ORCFG

and ORSNop , described in Table 6.5. Thus AMD = DOR, for the set of oracles
OR = {ORCFG ,ORSNop}. Our goal is then to verify whether AMD is oracle
complete with respect to the obfuscations from Table 6.4.

We follow the proof strategy proposed in Section 6.1.1. First, in step 1 below,
we develop a trace-based detector DTr based on an abstraction α, and show that

164 6 A Semantics-Based approach to Malware Detection

Oracle Notation

CFG oracle ORCFG (File[[P]])
Returns the control-flow graph of the program
P , given its binary-file representation File[[P]].

Semantic-nop oracle ORSNop(ψ,X, Y)
Determines whether the value of variable X
before the execution of code sequence ψ ⊆ P
is equal to the value of variable Y after the
execution of ψ.

Table 6.5. Oracles used by AMD .

DOR = AMD and DTr are equivalent. This equivalence of detectors holds only
if the oracles in OR are perfect. Then, in step 2, we show that DTr is complete
with respect to the obfuscations of interest.

Step 1: Design an Equivalent Trace-Based Detector

We can model the algorithm for semantics-aware malware detection using two
abstractions, αSAMD and αAct. The abstraction α that characterizes the trace-
based detector DTr is given by the composition of these two abstractions, i.e.,
α = αAct ◦ αSAMD . We will show that DTr is equivalent to AMD = DOR, when
the oracles in OR are perfect.

The abstraction αSAMD , when applied to a trace σ ∈ S[[P]], with σ =
(C ′

1, ρ
′
1,m

′
1) . . . (C ′

n, ρ
′
n,m

′
n), to a set of variable maps {πi}, and a set of location

maps {γi}, returns an abstract trace:

αSAMD(σ, {πi}, {γi}) = (C1, ρ1,m1) . . . (Cn, ρn,mn)

if ∀i, 1 ≤ i ≤ n : act[[Ci]] = act[[C ′
i]][X/πi(X)], lab[[Ci]] = γi(lab[[C

′
i]]),

suc[[Ci]] = γi(suc[[C
′
i]]), ρi = ρ′i ◦ π

−1
i ,mi = m′

i ◦ γ
−1
i

Otherwise, if the condition does not hold, αSAMD(σ, {πi}, {γi}) = ǫ. A map
πi : var[[P]] → X renames program variables such that they match malware
variables, while a map γi : lab[[P]] → L reassigns program memory locations to
match malware memory locations.

The abstraction αAct simply strips all labels from the commands in a trace
σ = (C1, ρ1,m1)σ

′, as follows:

αAct(σ) =

{
ǫ if σ = ǫ
(act[[C1]], ρ1,m1)αAct(σ

′) otherwise

Definition 6.24. An α-semantic malware detector is a malware detector on
the abstraction α, i.e., it classifies the program P as infected by a malware M ,
M →֒ P , if

∃labr[[P]] ∈ ℘(lab[[P]]) : α(S[[M]]) ⊆ α(αr(S[[P]]))

6.7 Case Study: Completeness of the Semantics-Aware Malware Detector 165

By this definition, a semantic malware detector (from Definition 6.4) is a spe-
cial instance of the α-semantic malware detector, for α = αe. Let DTr be a
αAct ◦ αSAMD -semantic malware detector. The following result shows that DTr

is equivalent to the semantics-aware malware detector AMD . In particular, the
proof has two parts, to show that AMD(P,M) = 1 ⇒ DTr (S[[P]],S[[M]]) = 1,
and then to show the reverse. For the first implication, it is sufficient to show
that for any path θ in the CFG of M and the path χ in the CFG of P , such that
θ and χ are found as related by the algorithm AMD , the corresponding traces
are equal when abstracted by αAct ◦ αSAMD . The proof for the second implica-
tion proceeds by showing that any two traces σ ∈ S[[M]] and δ ∈ S[[P]], that are
equal when abstracted by αAct ◦ αSAMD , have corresponding paths through the
CFGs of M and P , respectively, such that these paths satisfy the conditions in
the algorithm AMD . Both parts of the proof depend on the oracles used by AMD

to be perfect.

Proposition 6.25. The semantics-aware malware detector algorithm AMD is
equivalent to the αAct ◦ αSAMD -semantic malware detector DTr . In other words,
∀P,M ∈ P, we have that AMD(P,M) = DTr (S[[P]],S[[M]]).

proof: To show that AMD = DTr , we can equivalently show that ∀P,M ∈ P :
AMD(P,M) = 1 ⇐⇒ ∃labr[[P]] ∈ ℘(lab[[P]]), ∃{πi}i≥1, and ∃{γi}i≥1 such that
αAct(αSAMD(S[[M]], {πi}, {γi})) ⊆ αAct(αSAMD(αr(S[[P]]), {πi}, {γi})). Since πi

renames variables only from P (i.e., ∀V ∈ V\var[[P]], πi is the identity function,
πi(X) = X), and similarly γi remaps locations only from P , then we have that
αSAMD(S[[M]], {πi}, {γi}) = S[[M]].

(⇒) Assume that AMD(P,M) = 1. Let GM be the CFG of malware M and let
Path(GM) denote the set of all paths on GM . We can construct the restriction
labr[[P]] from the path-sensitive map µθ as follows:

labr[[P]] =
⋃

θ∈Paths(GM)

{
lab[[C[[µθ

(
vM

)
]]]]

∣∣vM ∈ θ
}

Following the above construction labr[[P]] collects the labels of program com-
mands whose nodes corresponds to a template node through µθ. The variable
maps {πi} can be defined based on νθ. For a path θ = vM

1 → . . .→ vM
k , πi(X) =

νθ

(
X, vM

i

)
. Similarly, γi(L) = L′ if lab[[C[[vM

i]]]] = L′ and lab[[C[[µθ

(
vM
i

)
]]]] = L.

Let σ ∈ S[[M]] and denote by θ = vM
1 → . . . → vM

k the CFG path corre-
sponding to this trace. By algorithm AMD , there exists a path χ in the CFG of
P of the form:

. . .→ µθ

(
vM
1

)
→ . . .→ µθ

(
vM
k

)
→ . . .

Let δ ∈ αr(S[[P]]) be the trace corresponding to the path χ in GP ,

δ = . . . 〈C[[µθ

(
vM
1

)
]], ρP

1 ,m
P
1 〉 . . . 〈C[[µθ

(
vM
k

)
]], ρP

k ,m
P
k 〉 . . .

166 6 A Semantics-Based approach to Malware Detection

For two states i and j > i of the trace σ, denote the intermediate states in the
trace δ by 〈C ′P

1 , ρ′P1 ,m
′P
1 〉 . . . 〈C

′P
l , ρ′Pl ,m

′P
l 〉, i.e., δ =

..〈C[[µθ

(
vM
i

)
]], ρP

i ,m
P
i 〉〈C

′P
1 , ρ′P1 ,m

′P
1 〉 . . . 〈C

′P
l , ρ′Pl ,m

′P
l 〉〈C[[µθ

(
vM
j

)
]], ρP

j ,m
P
j 〉..

From step 1 of algorithm AMD , we have that the following holds:

act[[C[[µθ

(
vM
i

)
]]]][X/πi(X)] = act[[C[[vM

i]]]]

γi

(
lab[[C[[µθ

(
vM
i

)
]]]]

)
= lab[[C[[vM

i]]]]

γi

(
suc[[C[[µθ

(
vM
i

)
]]]]

)
= suc[[C[[vM

i]]]]

From step 2 of algorithm AMD , we know that for any template variable XM

that is defined in C[[vM
i]] and used in C[[vM

j]] (for 1 ≤ i < j ≤ k), we have that:

E[[νθ(X
M , vM

i)]](ρ,m) = E[[νθ(X
M , vM

j)]](env[[s]],mem [[s]])

where s ∈ Cl
(
〈µ

(
vM
i

)
〉, ρ,m

)
. Since we have that act[[C[[µθ

(
vM
i

)
]]]][X/πi(X)] =

act[[C[[vM
i]]]], it follows that ρP

i (νθ(X
M , vM

i)) = ρP
j (νθ(X

M , vM
j)). Moreover,

since ρM
i (XM) = ρM

j (XM), then we can write ρM
i = ρP

i
◦ πi. Similarly,

mM
i = mP

i
◦ γi. Then it follows that for every σ ∈ S[[M]], there exists

δ ∈ αr(S[[P]]) such that:

αAct(αSAMD (σ, {πi}, {γi})) = αAct(σ)

= αAct(αSAMD (δ, {πi}, {γi}))

Thus, αAct(αSAMD(S[[M]], {πi}, {γi})) ⊆ αAct(αSAMD(αr(S[[P]]), {πi}, {γi})).

(⇐) Assume that labr[[P]], {πi}i≥1, and {γi}i≥1 exist such that:

αAct(αSAMD (S[[M]], {πi}, {γi})) ⊆ αAct(αSAMD(αr(S[[P]]), {πi}, {γi}))

We will show that AMD returns 1, that is, the two steps of the algorithm com-
plete successfully.

Let σ ∈ αAct(αSAMD (S[[M]], {πi}, {γi})), with

σ = 〈A1, ρ
M
1 ,m

M
1 〉 . . . 〈Ak, ρ

M
k ,mM

k 〉.

Then there exists σ′ ∈ S[[M]]

σ′ = 〈CM
1 , ρM

1 ,mM
1 〉 . . . 〈C

M
k , ρM

k ,mM
k 〉,

such that ∀i, act[[CM
i]][X/πi(X)] = Ai. Similarly, there exists δ ∈ αr(S[[P]]),

with δ = 〈CP
1 , ρ

P
1 ,m

P
1 〉 . . . 〈C

P
k , ρ

P
k ,m

P
k 〉, such that ∀i, act[[CP

i]][X/πi(X)] = Ai,
ρP

i = ρM
i

◦ π−1
i , and mP

i = mM
i

◦ γ−1
i . In other words, we have that

6.7 Case Study: Completeness of the Semantics-Aware Malware Detector 167

σ = αAct(αSAMD(σ′, {πi}, {γi})) = αAct(αSAMD (δ′, {πi}, {γi})), where σ′ is a
malware trace and δ′ is a trace of the restricted program Pr induced by labr[[P]].
For each pair of traces (σ, δ) chosen as above, we can define a map µ from nodes
in the CFG of M to nodes in the CFG of P by setting µ(vlab[[CMi]]) = vlab[[CPi]].

Without loss of generality, we assume that lab[[M]] ∩ lab[[P]] = ∅. Then µ is a
one-to-one, onto map, and step 1 of algorithm AMD is complete.

Consider a variable XM ∈ var[[M]] that is defined by action Ai and later used
by action Aj in the trace σ′, for j > i, such that ρM

i+1(X
M) = ρM

j (XM). Let XP
i

be the program variable corresponding to XM at program command CP
i , and

XP
j the program variable corresponding to XM at program command CP

j :

xP
i = ν(XM , vlab[[CMi]]) xP

j = ν(XM , vlab[[CMj]])

If δ ∈ αr(S[[P]]), then there exists a δ′ ∈ S[[P]] of the form:

δ′ = . . . 〈CP
i , ρ

P
i ,m

P
i 〉 . . . 〈C

P
j , ρ

P
j ,m

P
j 〉 . . .

where 1 ≤ i < j ≤ k. Let θ be a path in the CFG of P , θ = vP
1 → . . . → vP

k ,
such that vP

lab[[CPi]]
→ vP

1 → . . .→ vP
k → vP

lab[[CPj]]
is also a path in the CFG of P .

Since ρM
i+1(X

M) = ρM
j (XM), then ρP

suc[[CPi]]
(XP

i) = ρM
i+1(πi(X

P
i)) = ρM

i+1(X
M) =

ρM
j (XM) = ρP

j (πj(X
P
j)) = ρP

j (XP
j). But suc[[CP

i]] = lab[[CP [[v1]]]] in the trace

δ′. As E[[XP
i]](ρ,m) = ρ(xP

i), it follows that

E[[ν(XM , vlab[[CMi]])]](ρ,m) = E[[ν(XM , vlab[[CMj]])]] (env[[s]],mem[[s]])

for any ρ ∈ E, any m ∈ M, and any state s of P at the end of executing the
path θ, i.e., s ∈ Ck[[P |θ]](〈µ(vP

lab [[CPi]]
), ρ,m〉). If the semantic-nop oracle queried

by AMD is complete, then the second step of the algorithm is successful. Thus
AMD(P,M) = 1.

�

Now we can characterize the semantics-aware malware detector algorithm
AMD as the following infection condition on program trace semantics.

Definition 6.26. A program P is infected by a vanilla malwareM , i.e.,M →֒ P ,
if:

∃labr[[P]] ∈ ℘(lab[[P]]), {πi}i≥1, {γi}i≥1 :

αAct(αSAMD (S[[M]], {πi}, {γi})) ⊆ αAct(αSAMD(αr(S[[P]]), {πi}, {γi})).

168 6 A Semantics-Based approach to Malware Detection

Step 2: Prove Completeness of the Trace-Based Detector

We are interested in finding out which classes of obfuscations are handled by
the semantics-aware malware detector AMD. We check the validity of the com-
pleteness condition expressed in Definition 6.6. In other words, if the program
is infected with an obfuscated variant of the malware, then the semantics-aware
detector should return 1. Consider for example the code reordering obfuscation
that inserts skip commands into the program and changes the labels of existing
commands. In this case, the restriction αr “eliminates” the inserted skip com-
mands, while the αAct abstraction allows for trace comparison while ignoring
command labels. Thus, the detector DTr is oracle-complete with respect to the
code-reordering obfuscation.

Proposition 6.27. The semantics-aware malware detector AMD is oracle-com-
plete with respect to the code-reordering obfuscation OJ :

OJ [[M]] →֒ P ⇒

∃labr[[P]] ∈ ℘(lab[[P]], {πi}i≥1, {γi}i≥1 :
αAct(αSAMD (S[[M]], {πi}, {γi})) ⊆
αAct(αSAMD (αr(S[[P]]), {πi}, {γi}))

proof: If OJ [[M]] →֒ P , and given that OJ inserts only skip commands into
a program, then ∃labr[[P]] ∈ ℘(lab[[P]]) such that Pr = OJ [[M]] \ Skip, where
Skip is a set of skip commands inserted by OJ , as defined in Section 6.4. Let
M ′ = OJ(M) \ Skip. Then αr(S[[P]]) = S[[M ′]]. Thus we have to prove that

αAct(αSAMD(S[[M]], {πi}, {γi})) ⊆ αAct(αSAMD (S[[M ′]], {πi}, {γi}))

for some {πi} and {γi}. As OJ [[M]] does not rename variables or change
memory locations, we can set πi and γj, for all i and j, to be the re-
spective identity maps, πi = Idvar[[P]] and γj = Id lab[[P]]. From this ob-
servation, it follows that αSAMD(S[[M ′]], {Id var[[P]]}, {Id lab[[P]]}) = S[[M ′]] and
αSAMD(S[[M]], {Id var[[P]]}, {Id lab[[P]]}) = S[[M]]. Thus, it remains to show that
αAct(S[[M]]) ⊆ αAct(S[[M ′]]). By the definition of OJ , we have that M ′ =
OJ [[M]] \ Skip = (M \ S) ∪ η(S), for some S ⊂ M . But η(S) only updates
the labels of the commands in S, and thus we have:

αAct(S[[M ′]]) = αAct(S[[(M \ S) ∪ η(S)]])

= αAct(S[[M]]).

It follows that αAct(S[[M]]) ⊆ αAct(S[[OJ [[M]] \ Skip]]).

�

Similar proofs confirm that DTr is oracle-complete with respect to variable re-
naming and semantic nop insertion.

6.7 Case Study: Completeness of the Semantics-Aware Malware Detector 169

Proposition 6.28. The semantics-aware malware detector AMD is oracle-com-
plete with respect to the variable-renaming obfuscation Ov.

Proposition 6.29. The semantics-aware malware detector AMD is oracle-com-
plete with respect to the semantic nop insertion obfuscation ON .

Additionally, DTr is oracle-complete with respect to a limited version of sub-
stitution of equivalent commands, when the commands in the original malware
M are not substituted with equivalent commands. Unfortunately, DTr is not
oracle-complete with respect to all conservative obfuscations, as the following
result illustrates.

Proposition 6.30. The semantics-aware malware detector AMD is not oracle-
complete with respect to all conservative obfuscations Oc ∈ Oc.

proof: To prove that semantics-aware malware detection is not complete on
αSAMD w.r.t. all conservative obfuscations, it is sufficient to find one conservative
obfuscation such that

αAct(αSAMD(S[[M]], {πi}, {γi})) ⊆

αAct(αSAMD (αr(S[[Oc(M)]]), {πi}, {γi})) (6.3)

cannot hold for any restriction labr[[Oc[[M]]]] ∈ ℘(lab[[Oc[[M]]]]) and any maps
{πi}i≥1 and {γi}i≥1.

Consider an instance of the substitution of equivalent commands obfus-
cating transformation OI that substitutes the action of at least one com-
mand for each path through the program (i.e., S[[P]] ∩ S[[OI [[P]]]] = ∅) –
for example, the transformation could modify the command at the start la-
bel of the program. Assume that ∃{πi}i≥1 and ∃{γi}i≥1 such that Equa-
tion 6.3 holds, where Oc = OI . Then ∃σ ∈ S[[M]] and ∃δ ∈ S[[OI [[M]]]] such
that αAct(σ) = αAct(αSAMD (αr(δ), {πi}, {γi})). As |σ| = |δ|, we have that
αr(δ) = δ. If σ = . . . 〈Ci, ρi,mi〉 . . . and δ = . . . 〈C ′

i, ρ
′
i,m

′
i〉 . . . , then we have

that ∀i, act[[Ci]] = act[[C ′
i]][X/πi(X)]. But from the definition of the obfuscating

transformation OI above, we know that ∀σ ∈ S[[M]], ∀δ ∈ S[[OI [[M]]]], ∃i ≥ 1
such that Ci ∈ σ, C ′

i ∈ δ, and ∀π : X → X, act[[Ci]] 6= act[[C ′
i]][X/π(X)]. Hence

we have a contradiction.

�

The cause for this incompleteness is the fact that the abstraction applied by DTr

still preserves some of the actions from the program. Consider an instance of the
substitution of equivalent commands obfuscating transformation OI that sub-
stitutes the action of at least one command for each path through the malware
(i.e., S[[M]]∩S[[OI [[M]]]] = ∅). For example, the transformation could modify the
command at M ’s start label. Such an obfuscation, because it affects at least one
action of M on every path through the program P = OI [[M]], will defeat the
detector.

170 6 A Semantics-Based approach to Malware Detection

6.8 Discussion

Malware detectors have traditionally relied upon syntactic approaches, typi-
cally based on signature-matching algorithms. While such approaches are sim-
ple, they are easily defeated by obfuscations. To address this problem, we present
a semantics-based framework within which one can specify what it means for a
malware detector to be sound and complete, and reason about the completeness
and soundness of malware detectors with respect to various classes of obfusca-
tions. For example, in this framework, it is possible to show that the signature-
based malware detector is generally sound but not complete, as well as that the
semantics-aware malware detector proposed by Christodorescu et al. is complete
with respect to some commonly used malware obfuscations.

Our framework uses a trace semantics to characterize the behaviors of both
the malware and the program being analyzed. It shows how we can get around
the effects of obfuscations by using abstract interpretation to “hide” irrelevant
aspects of these behaviors. Thus, given an obfuscating transformation O, the
key point is to characterize the proper semantic abstraction that recognises in-
fection even if the malware is obfuscated through O. So far, given an obfuscating
transformation O, we assume that the proper abstraction α, which discards the
details changed by the obfuscation and preserves maliciousness, is provided by
the malware detector designer. We are currently investigating how to design a
systematic (ideally automatic) methodology for deriving an abstraction α that
leads to a sound and complete semantic malware detector. As a first step in this
direction, we observe that if abstraction α is preserved by the obfuscation O then
the malware detection is complete, i.e., no false negatives. However, preservation
is not enough to eliminate false positives. Hence, an interesting research task
consists in characterizing the set of semantic abstractions that prevents false
positives. This, characterization may help us in the design of suitable abstrac-
tions that are able to deal with a given obfuscation.

Other approaches to the automatic design of abstraction α can rely on mon-
itoring malware execution in order to extract its malicious behaviours, i.e., the
set of malicious (abstract) traces that characterizes the malign intent. The idea
is that every time that a malware exhibits a malicious intent (for example every
time it violates some security policies) the behaviour is added to the set of ma-
licious ones. Another possibility we are interested in is the use of data mining
techniques to extract maliciousness in malware behaviours. In this case, given
a sufficient wide class of malicious variants we can analyze their semantics and
use data mining to extract common features.

For future work in designing malware detectors, an area of great promise is
that of detectors that focus on interesting actions. Depending on the execution
environment, certain states are reachable only through particular actions. For ex-
ample, system calls are the only way for a program to interact with OS-mediated

6.8 Discussion 171

resources such as files and network connections. If the malware is characterized
by actions that lead to program states in an unique, unambiguous way, then all
applicable obfuscation transformations are conservative. As we showed, a seman-
tic malware detector that is both sound and complete for a class of conservative
obfuscations exists, if an appropriate abstraction can be designed. In practice,
such an abstraction cannot be precisely computed, due to undecidability of pro-
gram trace semantics – a future research task is to find suitable approximations
that minimize false positives while preserving completeness.

One further step would be to investigate whether and how model checking
techniques can be applied to detect malware. Some works along this line already
exist [84]. Observe that abstraction α actually defines a set of program traces
that are equivalent up to O. In model checking, sets of program traces are
represented by formulae of some linear/branching temporal logic. Hence, we aim
at defining a temporal logic whose formulae are able to express normal forms of
obfuscations together with operators for composing them. This would allow us
to use standard model checking algorithms to detect malware in programs. This
could be a possible direction to follow in order to develop a practical tool for
malware detection based on our semantic model. We expect this semantics-based
tool to be significantly more precise than existing virus scanners.

7

Conclusions

In this dissertation we consider code obfuscation as a defense technique for pre-
venting attacks to the intellectual property of programs, as well as a malicious
transformation used by malware writers to foil misuse detection. In order to
contrast some well known drawbacks of both scenarios, such as the lack of rig-
orous theoretical bases for software protection and the purely syntactic basis of
misuse detection, we have proposed a formal approach to code obfuscation and
malware detection based on program semantics and abstract interpretation.

Recently, it has been shown how programs can be seen as abstractions of
their semantics and how syntactic transformations can be specified as approxi-
mations of their semantic counterpart [44]. In particular, this result shows that
abstract interpretation provides the right setting in which to formalize the re-
lationship between code obfuscation and its effects on program semantics. We
propose a semantic framework which relies on a semantics-based definition of
code obfuscation and on an abstract interpretation-based model for attackers.
In fact, we characterize the obfuscating behaviour of a program transforma-
tion t in terms of the most concrete semantic property δt it preserves. Given a
transformation t, property δt precisely expresses the amount of information still
available after the obfuscation t, namely what the obfuscated program might
reveal to attackers about the original program. Following our definition, any pro-
gram transformation t can be seen as an obfuscator defeating the attackers that
are interested in something more precise than δt. This is one of the reason why
our definition turns out to be a generalization of the standard notion of code ob-
fuscation, which requires obfuscating transformations to preserve denotational
program semantics [34]. In this formal setting, it comes natural to model at-
tackers as semantic properties, namely as abstractions of trace semantics, where
the abstraction modeling the attacker precisely encodes the semantic properties
in which the attacker is interested. Hence, obfuscations as well as attackers are
characterized as semantic properties, meaning that they can be compared and
related to each other in the lattice of abstract interpretation. In fact, given a

174 7 Conclusions

program transformation it is possible to define the class of attackers it defeats,
and given an attacker we can identify the family of obfuscations it is able to
break. Investigating the semantics aspects of code obfuscation is crucial in order
to understand the true potency of these transformations. Following our defini-
tion, code obfuscation aims at confusing program syntax while preserving an
approximation of its semantics. Thus, being able to precisely identify what can
be deduced of the original program behaviour when observing an obfuscated
version of it, tells us the maximal amount of information that an attacker can
recover from the obfuscated program and therefore if a given defense technique
is appropriate in a certain scenario.

We show our semantic framework in action by investigating the effects that
control code obfuscation through opaque predicate insertion has on program
trace semantics. We define a semantic transformation tOP that transforms sets
of traces, namely program semantics, according to opaque predicate insertion.
Next we show how an iterative algorithm for opaque predicate insertion can be
derived from tOP , following the methodology proposed in [44]. It is clear that,
in order to recover a program from opaque predicate insertion, an attacker has
to identify the predicates that are opaque and eliminate them together with
their never executed branches. For this reason, we say that an attacker breaks
an opaque predicate when it is able to detect its opaqueness. It turns out that,
modeling, as usual, attackers as abstract domains, the ability of an attacker to
break certain classes of opaque predicates can be expressed as a completeness
problem in the abstract interpretation sense. In particular, our completeness
result holds for two interesting classes of numerical opaque predicates commonly
used by existing obfuscating tools. The importance of this result relies in the
fact that there exists a systematic way for minimally refining an abstract domain
in order to make it complete for a given function. This means that, given an
attacker A and an opaque predicate P T it is always possible to formalize the
amount of information needed by A in order to break P T . It is clear that the
bigger the amount of information needed by A, the greater is the degree of
protection provided by opaque predicate P T . Obviously, this can be used to
compare the efficiency of an opaque predicate in contrasting different attackers,
as well as the resilience of different opaque predicates against a certain attack.

A recent result by Christodorescu et al. [25] confirms the potential benefits
of a semantics-based approach to malware detection. Following this observation,
and the work already done on the semantic aspects of code obfuscation, we ad-
dress the malware detection problem from a semantic point of view. The basic
idea of our approach is to model both program and malware behaviours through
their trace semantics, and to use abstract interpretation to hide irrelevant as-
pects of these behaviours. Given an obfuscating transformation O, our idea is to
identify a suitable abstraction α that is able to discards the details changed by
the obfuscation while preserving maliciousness. Thus, checking if the semantics

7 Conclusions 175

of a program P matches the semantics of a malware M up to abstraction α
we are able to decide if program P is infected with a variant of malware M
obtained through obfuscation O. Obviously the key point of this approach is
the design of a suitable abstraction α able to deal with as many obfuscating
transformations as possible. In order to determine a common pattern for the
design of a useful abstraction we have analyzed the effects of different obfus-
cating transformations on program trace semantics. We provide a classification
of obfuscating transformations based on such semantic effects. In particular, an
obfuscation O is conservative when for each trace σ of the original program se-
mantics there exists a trace δ in the semantics of the transformed program such
that σ is a subtrace of δ, namely such that all the states of σ are present in δ
in the same order. When O does not satisfy this condition the transformation
is non-conservative. We prove that most obfuscating transformation typically
used by malware to avoid detection are conservative, and that the property of
being conservative is preserved by composition. Moreover, for the widely used
class of conservative obfuscations we are able to provide a suitable abstraction
αc. In fact, we prove that a detection algorithm D that verifies the presence
of a malicious behaviour in a program up to abstraction αc, i.e., a semantic
malware detector on αc, is both sound and complete for the class of obfuscating
transformations. This means that D is always able to detect programs that are
infected with a conservative obfuscation of malware M (i.e., completeness), and
that if D classifies a program P as infected by a malware M then a conservative
obfuscation of M is actually present in program P (i.e., soundness). This means
that abstraction αc allows us to handle conservative obfuscations and their com-
position. Unfortunately, we are not able to provide an analogous result in the
case of non-conservative transformations. Non-conservative obfuscations deeply
affect program trace semantics and therefore we were not able to identify a
common pattern. However, we describe some possible solutions to the design
of an ad-hoc abstraction for a non-conservative obfuscation. Of course malware
writers combine different obfuscating techniques to avoid detection. For this
reason we show how, under certain assumptions, given the suitable abstractions
for some elementary obfuscations it is possible to derive the abstraction able
to deal with their composition. In this way, identifying the right abstractions
for a set of elementary obfuscations we can handle also their composition. Our
notion of semantic infection turns out to be quite flexible. In fact, given some
specific information about the malicious behaviour that we are looking for, it is
possible to weaken the original definition of semantic infection. We can say that
our methodology verifies malware infection searching for a “semantic signature”,
while misuse detection verifies the presence of a syntactic signature. Thus, the
proposed approach shares the advantages of misuse malware detection, while
it is more resilient to obfuscation since it concentrates on the meaning of the
malicious code and not on its syntax.

176 7 Conclusions

An aspect that deserves more investigation is related to the detection of non-
conservative variants of a malware. Note that, by weakening the semantic notion
of infection, it may be possible to find a semantic pattern that is common to
a significant subset of non-conservative transformations. Our idea is to analyze
the effects that typical non-conservative transformations have on program trace
semantics in order to identify, if possible, some common features. If this is the
case, we could further classify the family of non-conservative obfuscations and
provide a suitable abstraction in order to handle such a subset. For example, the
reordering of independent statements as well as the substitution of equivalent
sequences of instructions could be handled by an abstraction that observes the
state preceding the starting state and the state succeeding the ending state of
the reordering/substitution fragment. Obviously, the point here is to define a
methodology for identifying such “interesting states”.

Moreover, we are interested in the investigation of the benefits that may
come from the application of data mining and machine learning techniques to
the systematic design of an abstraction able to handle a given obfuscating trans-
formation. Both data mining and machine learning techniques try to discover
new knowledge in large data collections, by identifying hidden patterns that a
human would not be able to discover efficiently. It might be possible to spec-
ify such techniques in order to extract features that are common to different
obfuscated versions of the same malware. This would provide an abstract char-
acterization of the malicious behaviour that discards the changes made by the
obfuscation while keeping the malicious intent. It is clear how such definition
could be used to design an abstraction that is able to contrast a given obfusca-
tion.

Observe that, given an obfuscation O, the problem of systematically de-
riving a suitable abstraction that is able to detect all malware variants ob-
tained through obfuscation O, is strongly related to the problem of identifying
the semantic property characterizing the obfuscating behaviour of a program
transformation. Recall that a systematic methodology for deriving the most
concrete property αO preserved by a program transformation O exists. This
means that, given an obfuscation O and two programs P and Q = O[[P]], then
αO(S[[P]]) = αO(S[[Q]]), which guarantees completeness of the malware detector
with respect to O. The converse, which does not hold in general, would provide a
more precise characterization of the obfuscating behaviour of O and would prob-
ably be able to guarantee the soundness of the malware detector with respect
to O. Given an abstraction αO such that αO(S[[P]]) = αO(S[[Q]]) ⇔ Q = O[[P]],
we have that the semantic malware detector on αO is both sound and complete
with respect to O, and abstraction αO uniquely characterizes the obfuscating
power of O. This means that abstraction αO can be used to precisely compare
the power of O against attackers and other obfuscating techniques. Thus, the
design of an abstraction αO that uniquely identifies obfuscation O is an impor-

7 Conclusions 177

tant and challenging research task both in the software protection and in the
malware detection scenario. The result obtained on conservative transformations
suggests to address this task by considering abstractions that characterize the
semantic behaviour of classes of obfuscating transformations.

It is well known that code obfuscation is a defence technique able to defend
the intellectual property of a program only for a limited period of time. In
fact, given enough time, effort and determination a competent programmer is
always able to defeat a given application. In some sense, a metamorphic malware
solves this problem by obfuscating itself every time it infects a new machine. It
may be possible to use metamorphism in order to develop a powerful defence
technique. Given a program P that we want to protect, the idea is to use an
obfuscating engine that replaces the current obfuscation O1[[P]] of the program,
with a new obfuscation O2[[P]] with a certain frequency. In this way a malicious
reverse engineer has a fixed and limited amount of time for breaking a certain
obfuscation. It is clear that the set of obfuscating techniques used by the self-
mutating engine have to join some “independence” property. In fact, we have to
guarantee that no further information is given to an attacker who knows more
than one obfuscation of P .

Software developers, as well as malware writers, typically compose different
obfuscating transformations either for protecting the intellectual property of
their programs or to avoid misuse detection. Thus, given two obfuscating trans-
formations O1 and O2, it would be interesting to investigate the relationship
between the obfuscating power of O1 and O2 and the one of their compositions
O1 ◦ O2 and O2 ◦ O1. Assume that the deobfuscating engine Deobf knows how
to recover a program when a single obfuscation is applied, namely that Deobf
is able to handle O1 and O2. In the malware detection scenario we prove that,
under certain assumptions, this means that Deobf can handle also their compo-
sitions. We are interested in designing a pair of obfuscating transformations for
which the above result does not hold. If these transformations exist, it means
that both elementary obfuscations and deobfuscations may be public, while the
key for recovering the original program relies in the order in which the trans-
formations are applied. Since there is no limit on the number of times that a
transformation can be applied, this leads to a defence scheme that can be bro-
ken only “guessing” the order in which the two elementary transformations were
applied. The design of such a pair of obfuscating transformations is probably
related to the “independence” issue discussed above.

Another interesting field that commonly uses code obfuscation is the one
of “biologically inspired diversity”. In this setting, obfuscating transformations
are used to generate many different versions of the same program in order to
prevent malware infection [59, 128]. In fact, machines that execute the same
programs are likely to be vulnerable to the same attacks. Malware exploit vul-
nerabilities in order to propagate and perform their damage, meaning that all

178 7 Conclusions

the systems sharing the same configuration will be susceptible to the same mal-
ware attacks. On the other hand, different versions of the same program are less
prone to having vulnerabilities in common. This means that diverse versions of
the same program will make malware infection and propagation much harder.
In this setting, it would be interesting to see if our theoretical framework for
code obfuscation could be used to better understand and formalized the level of
security that program diversity guarantees.

References

1. L. M. Adleman. An abstract theory of computer viruses. In Proceedings of Advances in
cryptology (CRYPTO’88), volume 403 of LNCS, 1988.

2. J. Allen, A. Christie, W. Fithen, J. McHugh, J. Packel, and E. Stoner. State of the
practice in intrusion detection technologies. Technical Report 99-TR-028, ESC-99-028,
Carnegie Mellon University, Software Engineering Institute, CMU/SEI, Pittsburg, PA,
2000.

3. E. G. Amoroso. Intrusion detection: an introduction to Internet surveillance, correlation,
trace back, and response. Intrusion.net Books, 1999.

4. A. W. Appel. Deobfuscation is in NP. 2002. www.cs.princeton.edu/ ap-
pel/papers/deobfus.pdf.

5. K.R. Apt and G.D. Plotkin. Countable nondeterminism and random assignment. J. of
the ACM., 33(4):724–767, 1986.

6. G. Arboit. A method for watermarking java programs via opaque predicates. In Proc.
Int. Conf. Electronic Commerce Research (ICECR-5), 2002.

7. D. Aucsmith. Tamper resistant software: An implementation. In Proc. Information
Hiding, pages 317–333, 1996.

8. D. Aucsmith and G. Graunke. Tamper resistant methods and apparatus. US patent
5.892.899, Assignee: Intel Corporation, 1999.

9. A. Avizienis, J. Laprie, and B. Randell. Fundamental concepts of dependability. Technical
Report N01145, LAAS-CNRS, 2001.

10. S. Axelsson. Research in intrusion detection systems: A survey. Technical Report TR:98-
17, Department of Computer Engineering - University of Technology - Sweden, 1998.

11. B. Barak, O. Goldreich, R. Impagliazzo, and S. Rudich. On the (im)possibility of obfus-
cating programs. In Advances in Cryptology, Proc. of Crypto’01, volume 2139 of LNCS,
pages 1–18. Springer-Verlag, 2001.

12. J. Bergeron, M. Debbabi, J. Desharnais, M. M. Erhioui, Y. Lavoie, and N. Tawbi. Static
detection of malicious code in executable programs. In Symposium on Requirements
Engineering for Information Security, 2001.

13. L. Briesemeister, P. A. Porras, and A. Tiwari. Model checking of worm quarantine and
counter- quarantine under a group defense. Technical Report SRI-CSL-05-03, SRI Inter-
national, Computer Science Laboratory, 2005.

14. D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. Towards automatic generation
of vulnerability-based signatures. In Proceedings of the IEEE Symposium on Security and
Privacy (S & P’06), 2006.

15. J. W. Bryans, M. Koutny, L. Mazarè and P. Y. A. Ryan. Opacity Generalised to Transition
Systems. In Proceedings of the 3rd International Workshop on the Formal Aspects in
Security and Trust (FAST’05), pages 81–95,2006.

180 References

16. J. W. Bryans, M. Koutny and P. Y. A. Ryan. Modeling dynamic opacity using Petri nets
with silent actions. In Proceedings of the IFIP TC1 WG1.7 Workshop on Formal Aspects
in Security and Trust (FAST), World Computer Congress, 2004, Toulouse, France. IFIP
International Federation for Information Processing, Volume 173 pp. 159-172 Springer
Verlag 2005

17. R. Canetti. Towards realizing random oracles: Hash functions that hide all partial infor-
mation. In Proc. Advances in cryptology (CRYPTO’97), pages 455–469, 1997.

18. H. Chang and M. Atallah. Protecting software code by guards.
19. Y. Chen, R. Venkatesan, M. Cary, R. Pang, S sinha, and M. Jakubowski. Oblivious

hashing: A stealthy software integrity verification primitive, 2002.
20. D.M. Chess and S.R. White. An undetectable computer virus. In Virus Bulletin, 2000.
21. F. Choen. Operating system protection through program evolution. Computers and

security, 12(6):565–584, 1993.
22. S. Chow, Y. Gu, H. Johnson, and V. A. Zakharov. An approach to the obfuscation of

control-flow of sequential computer programs. In Proc. 4th International Information
Security Conference (ISC’01), volume 2200 of LNCS, pages 144–155, 2001.

23. M. Christodorescu and S. Jha. Static analysis of executables to detect malicious patterns.
In Proceedings of the 12th USENIX Security Symposium (Security ’03), pages 169–186,
2003.

24. M. Christodorescu and S. Jha. Testing malware detectors. In Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA ’04), pages
34–44, 2004.

25. M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant. Semantics-aware
malware detection. In Proceedings of the IEEE Symposium on Security and Privacy
(S&P’05), pages 32–46, Oakland, CA, USA, 2005.

26. F. Cohen. Computer viruses. PhD thesis, University of Southern California, 1985.
27. F. Cohen. Computer viruses: Theory and experiments. Computers and Security, 6(1):22–

35, 1987.
28. F. Cohen. Computational aspects of computer viruses. Computers and Security, 8(4):325,

1989.
29. C. Collberg and K. Heffiner. The obfuscation executive. In Proc. Information Security

Conference (ISC’04), volume 3225 of LNCS, pages 428–440, 2004.
30. C. Collberg, G. Myles, and A. H. Work. Sand mark - a tool for software protection

research. IEEE Security & Privacy, 1(4):40–49, 2003.
31. C. Collberg and C. Thomborson. Breaking abstractions and unstructural data structures.

In Proc. of the 1994 IEEE Internat. Conf. on Computer Languages (ICCL ’98), pages
28–37, 1998.

32. C. Collberg and C. Thomborson. Software watermarking: models and dynamic embed-
dings. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
programming languages (POPL ’99), pages 311–324. ACM Press, 1999.

33. C. Collberg and C. Thomborson. Watermarking, tamper-proofing, and obfuscation-tools
for software protection. IEEE Trans. Software Eng., pages 735–746, 2002.

34. C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transformations.
Technical Report 148, Dept. of Computer Science, The Univ. of Auckland, 1997.

35. C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient, and stealthy
opaque constructs. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of programming languages (POPL ’98), pages 184–196. ACM Press, 1998.

36. C. Consel and C. Danvy. Tutorial notes on partial evaluation. In Proceedings of the 20th
ACM Symp. on Principles of Programming Languages (POPL ’93), pages 493–501. ACM
Press, 1993.

37. A. Cortesi, G. Filé, R. Giacobazzi, C. Palamidessi, and F. Ranzato. Complementation in
abstract interpretation. ACM Trans. Program. Lang. Syst., 19(1):7–47, 1997.

References 181

38. P. Cousot. Méthodes itératives de construction et d’approximation de points fixes
d’opérateurs monotones sur un treillis, analyse sémantique des programmes. PhD thesis,
1978.

39. P. Cousot. Abstract interpretation. ACM Comput. Surv., 28(2):324–328, 1996.
40. P. Cousot. Constructive design of a hierarchy of semantics of a transition system by

abstract interpretation. Theoretical Computer Science, 277(1–2):47–103, 2002.
41. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Proceedings of the
4th ACM Symp. on Principles of Programming Languages (POPL ’77), pages 238–252.
ACM Press, New York, 1977.

42. P. Cousot and R. Cousot. Constructive versions of tarski’s fixed point theorem. Pacific
J. Math., 82(1):43–57, 1979.

43. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Pro-
ceedings of the 6th ACM Symp. on Principles of Programming Languages (POPL ’79),
pages 269–282. ACM Press, New York, 1979.

44. P. Cousot and R. Cousot. Systematic design of program transformation frameworks by
abstract interpretation. In Proceedings of the 20th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’02), pages 178–190, New
York, NY, 2002. ACM Press.

45. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In Proceedings of the 5th ACM Symp. on Principles of Programming Languages
(POPL’78), pages 84–97, 1978.

46. M. Dalla Preda, M. Christodorescu, S. Jha, and S. Debray. A semantics-based approach to
malware detection. In Proceedings of the 32nd ACM Symp. on Principles of Programming
Languages (POPL ’07), 2007.

47. M. Dalla Preda and R. Giacobazzi. Control code obfuscation by abstract interpretation.
In Proceedings of the 3rd IEEE International Conference on Software Engineering and
Formal Methods (SEFM’05), pages 301–310. IEEE Computer Society Press, 2005.

48. M. Dalla Preda and R. Giacobazzi. Semantic-based code obfuscation by abstract inter-
pretation. In Proc. of the 32nd International Colloquium on Automata, Languages and
Programming (ICALP ’05), volume 3580 of Lecture Notes in Computer Science, pages
1325–1336. Springer-Verlag, 2005.

49. M. Dalla Preda, M. Madou, R. Giacobazzi, and K. De Bosschere. Opaque predicate
detection by abstract interpretation. In Proc. of the 11th International Conf. on Algebraic
Methodology and Software Technology (AMAST ’06), volume 4019 of LNCS, pages 81–95.
Springer-Verlag, 2006.

50. B. A. Davey and H. A. Priestley. Introduction to lattices and order. Cambridge Press,
1990.

51. R. L. Davidson and N. Myhrvold. Method on system for generating and auditing a
signature for a computer program. US patent 5.559.884, Assignee: Microsoft Corporation,
1996.

52. T. Detristan, T. Ulenspiegel, Y. Malcom, and M.S. von Underduk. Polymorphic shellcode
engine using spectrum analysis, 2003.

53. S. Drape. Obfuscation of abstract data types. PhD thesis, The Univeristy of Oxford, 2004
54. S. Drape An obfusction for binary trees. TENCON 2006, to appear.
55. M. Driller. Metamorphism in practice. 29A Magazine, 1(6), 2002.
56. T. Escamilla. Intrusion detection: Network security beyond the firewall. John Wiley &

Sons, Inc., 1998.
57. G. Filé and F. Ranzato. Complementation of abstract domains made easy. In M. Maher,

editor, Proceedings of the 1996 Joint International Conference and Symposium on Logic
Programming (JICSLP ’96), pages 348–362. The MIT Press, Cambridge, Mass., 1996.

182 References

58. S. Forrest. A sense of self for unix processes. In Proceedings of the Symposium on Security
and Privacy (S&P’96), pages 120–128, 1996.

59. S. Forrest, A. Somyaji and D. H. Ackley. Building diverse computer systems. In Proceed-
ings of the Workshop on Hoto Topics in Operating Systems, pages 67–72, 1997.

60. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples and refinements in
abstract model-checking. In P. Cousot, editor, Proc. of The 8th International Static
Analysis Symposium, SAS’01, volume 2126 of Lecture Notes in Computer Science, pages
356–373. Springer-Verlag, 2001.

61. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations complete.
J. of the ACM., 47(2):361–416, 2000.

62. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. D. Scott. A
compendium on continuous lattices. Springer-Verlag, 1980.

63. S. Goldwasser and Y. T. Kalai. On the impossibility of obfuscation with auxiliary input.
In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’05), pages 553–562. IEEE Computer Society, 2005.

64. J. R. Gosler. Software protection: myth or reality? In Proc. Advances in cryptology
(CRYPTO’85), pages 140–157, 1985.

65. Kingpin. Attacks on and Countermeasures for USB Hardware Token Devices. In Proc.
of the Fifth Nordic Workshop on Secure IT Systems Encouraging Co-operation, pages
35–57, 2000.

66. P. Granger. Static analysis of linear congruence equality among variables of a program,
1991.

67. G. Grätzer. General lattice theory. Birkhäuser Verlag, Basel, Switzerland, 1978.
68. A. Gupta and R.Sekar. An approach for detecting self-propagating email using anomaly

detection. In Proceedings of the 6th International Symposium on Recent Advances in
Intrusion Detection (RAID’03), volume 2820 of LNCS, pages 55–72, 2003.

69. M. H. Halstead. Elements of software science. Elsevier North-Holland, 1977.
70. W. A. Harrison and K. I. Magel. A complexity measure based on nesting level. In

SIGPLAN Notices, volume 16, pages 63–74, 1981.
71. M. Hecht. Flow analysis of computer programs. Elsevier, 1977.
72. A. Herzberg and S. S. Pinter. Public protection of software. ACM transaction on computer

systems, 5(4):371–393, 1987.
73. F. Hohl. Time limited blackbox security: Protecting mobile agents from malicious hosts.

In Proceedings of the 2nd International Workshop on Mobile Agents, volume 1419 of
LNCS, 1998.

74. J. Hormkovic. Algorithmics for hard problems. Springer-Verlag, 2002.
75. S. Horwitz. Precise flow-insensitive may-alias analysis is NP-hard. ACM Transactions on

Programming Languages and Systems (TOPLAS), 19(1):1–6, 1997.
76. Intel Corporation. IA-32 Intel Architecture Software Developer’s Manual.
77. Munson J. C and T. M. Kohshgoftaar. Measurement of data structure complexity. Journal

of Systems Software, 20:217–225, 1993.
78. K. A. Jackson. Intrusion detection systems (idd) product survey. Technical Report LA-

UR-99-3883, Los Alamos National Laboratory, 1999.
79. N. Jones. An introduction to partial evaluation. ACM Comput. Surv., 28(3):480–504,

1996.
80. M. Jordan. Dealing with metamorphism. Virus Bulletin, pages 4–6, 2002.
81. L. Julus. Metamorphism. 29A Magazine, 1(5), 2000.
82. G. Kildall. A unified approach to global program optimization. In Proceedings of the 1st

ACM Symp. on Principles of Programming Languages (POPL ’73). ACM Press, 1973.
83. H.-A. Kim and B. Karp. Autograph: toward automated, distributed worm signature

detection. In Proceedings of the 13th USENIX Security Symposium, 2004.

References 183

84. J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith. Detecting malicious code by
model checking. In Proceedings of the 2nd International Conference on Intrusion and
Malware Detection and Vulnerability Assessment (DIMVA’05), volume 3548 of LNCS,
pages 174–187, 2005.

85. C. Ko, G. Fink, and K. Levitt. Automated detection of vulnerabilities in privileged
programs using execution monitoring. In Proceedings of the 10th Computer Security
Application Conference, 1994.

86. C. Ko, M. Ruschitzka, and K. Levitt. Execution monitoring of security-critical programs
in distributed systems: A specification-based approach. In Proceedings of the IEEE Sym-
posium on Security and Privacy, pages 175–187, 1997.

87. J. Z. Kolter and M. A. Maloof. Learning to detect malicious executables in the wild. In
Proceedings of the 10th ACM SIGKDD International conference on Knowledge Discovery
and Data Mining (KDD’04), pages 470–478, 2004.

88. S. Kumar. Classification and detection of computer intrusions. PhD thesis, Department
of Computer Science, Purdue University, 1995.

89. S. Kumar and E. H. Spaffored. A pattern matching model for misuse intrusion detection.
In Proceedings of the 17th National Computer Security Conference, pages 11–21, 1995.

90. Y. Lakhnech and L. Mazar. Probabilistic opacity for a passive adversary and its applica-
tion to Chaum’s voting scheme. Technical report TR-2005-4, Verimag, 2005

91. A. Lakhotia and P. K. Singh. Challenges in getting “formal” with viruses. In Virus
Bulletin, 2000.

92. W. Landi and B. G. Ryder. A safe approximate algorithm for inter-procedural pointer
aliasing. In Proceedings of the SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’92), pages 235–248, 1992.

93. W. Lee, R. A. Nimbalkar, K. K. Yee, S. B. Patil, P. H. Desai, T. T. Tran, and S. J. Stolfo.
A data mining and cidf based approach for detecting novel and distributed intrusions.
volume 1907 of LNCS, pages 49–65, 2000.

94. W. Lee and S. Stolfo. Data mining approaches for intrusion detection. In Proceedings of
the 7th USENIX Security Symposium, pages 79–93, 1998.

95. W. Lee, S. Stolfo, and K. W. Mok. A data mining framework for building intrusion
detection models. In Proceedings of the IEEE Symposium on Security and Privacy (S &
P’99), pages 120–132, 1999.

96. W. J. Li, K. Wang, S. J. Stolfo, and B. Herzog. Fileprints: Identifying file types by n-gram
analysis. In Proceedings of the 6th Annual IEEE Systems, Man and Cybernetics (SMC)
Workshop on Information Assurance (IAW’05), pages 64–71, 2005.

97. Z. Li and A. Das. Visualizing and identifying intrusion context from system call trace.
In Proceedings of the 20th Annual Computer Security Applications Conference, 2004.

98. Z. Li, A. Das, and J. Zhou. Theoretical basis for intrusion detection. In Proceedings of
the 6th IEEE Information Assurance Workshop (IAW), 2005.

99. Z. Liang and R. Sekar. Fast and automated generation of attack signatures: A basis for
building self-protecting servers. In Proceedings of the 12th ACM Conference on computer
and Communications Security (CCS’05), pages 213–222, 2005.

100. C. Linn and S. Debray. Obfuscation of executable code to improve resistance to static
disassembly. In Computer Security Symposium (CSS ’03), pages 290–299, 2003.

101. R. W. Lo, K. N. Levitt, and R. A. Olsson. MCF: A malicious code filter. Computers &
Security, 14:541–566, 1995.

102. B. Lynn, M. Prabhakaran, and A. Sahai. Positive results and techniques for obfuscation.
In Proceedings of Eurocrypt 2004, 2004. citeseer.ist.psu.edu/lynn04positive.html.

103. M. Madou, B. Anckaert, P. Moseley, S. Debray, B. De Sutter, and K. De Bosschere.
Software protection through dynamic code mutation. In Proc. Internat. Workshop on
Information Security Applications (WISA’05), volume 3786 of LNCS, pages 194–206,
2005.

184 References

104. M. Madou, B. Anckaert, B. De Sutter, and K. De Bosschere. Hybrid static-dynamic
attacks against software protection mechanisms. In Proc. 5th ACM Workshop on Digital
Rights Management (DRM’05), 2005.

105. M. Madou, L. Van Put, and K. De Bosschere. Loco: An interactive code (de)obfuscation
tool. In Proc. ACM SIGPLAN Workshop on Partial Evaluation and Program Manipula-
tion (PEPM’06), pages 140–144, 2006.

106. J. Maebe, M. Ronsse, and K. De Bosschere. Diota: Dynamic instrumentation, optimiza-
tion and transformation of applications. In Proc. 4th Workshop on Binary Translation
(WBT’02), 2002.

107. A. Majumdar and C. Thomborson. Securing mobile agents control flow using opaque
predicates. In Proc. 9th Int. Conf. Knowledge-Based Intelligent Information and Engi-
neering Systems (KES’05), 2005.

108. A. Majumdar and C. Thomborson. Manufacturing opaque predicates in distributed sys-
tems for code obfuscation. In Proc. 29th Australasian Computer Science Conference
(ACSC’06), volume 48 of CRPIT, pages 187–196, 2006.

109. J. Marciniak editor. Encyclopedia of software engineering. J. Wiley & Sons, Inc, 1994.
110. G. McGraw and G. Morrisett. Attacking malicious code: Report to the Infosec research

council. IEEE Software, 17(5):33–41, 2000.
111. J. McHugh. Intrusion and intrusion detection. International Journal of Information

Security, 1(1):14–35, 2001.
112. C. Michael, G. McGraw, M. Schatz, and C. Walton. Genetic algorithms for dynamic test

data generation. In Proc. ASE’97, pages 307–308, 1997.
113. A. Minè. The octagon abstract domain. In Proc. Analysis, Slicing and Transformation

(AST’01), pages 310–319, 2001.
114. P. Morley. Processing virus collections. In Proceedings of Virus Bulletin, pages 129–134,

Prague, Czech Republic, 2001. Virus Bulletin.
115. S. A. Moskowitz and M. Cooperman. Method for stega-cipher protection of computer

code. US patent 5.745.569, Assignee: The Dice Company, 1996.
116. G. Myles and C. Collberg. Software watermarking via opaque predicates: implementation,

analysis, and attacks. In Proc. Int. Conf. Electronic Commerce Research (ICECR-7),
2004.

117. F. Nielson, H. Nielson and C. Hankin Principles of Program Analysis. Springer Verlag,
1999.

118. C. Nachenberg. Understanding and managing polymorphic viruses. The Symantec En-
terprise Papers, XXX:1–13, 1996.

119. C. Nachenberg. Computer virus-antivirus coevolution. Communications of the ACM,
40(1):46–51, 1997.

120. J. Newsome, B. Karp, and D. Song. Polygraph: Automatically generating signatures for
polymorphic worms. In Proceedings of the IEEE Symposium on Security and Privacy (S
& P’05), pages 226–241, 2005.

121. J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analysis, and
signature generation of exploits on commodity software. In Proceedings of the 12th Annual
Network and Distributed System Security Symposium (NDSS & P’05), 2005.

122. S. Northcutt, M. Cooper, M. Fearnow, and K. Frederick. Intrusion signature and analysis.
New Riders, SANS GIAC, 2001.

123. T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji. Sftware obfuscation on a theoretical basis
and its implementation. IEEE Trans. Fundamentals, E86-A(1), 2003.

124. E. I. Oviedo. Control flow, data flow and programmers complexity. In Proc. of COMPSAC
80, pages 146–152. Chicago, IL, 1980.

125. R. Paige. Future directions in program transformations. ACM SIGPLAN Not., 32(1):94–
97, 1997.

References 185

126. J. Palsberg, S. Krishnaswamy, M. Kwon, D. Ma, Q. Shao, and Y. Zhang. Experience with
software watermarking. In Proceedings of the 16th IEEE Annual Security Applications
Conference (ACSAC ’00), pages 308–316, 2000.

127. A. Pnueli, O. Shtrichman, and M. Siegel. The code validation tool CVT: Automatic
verification of a compilation process. STTT, 2(2):192–201, 1998.

128. R. Pucella and F. B. Schneider. Independence from Obfuscation: A Semantic Framework
for Diversity. In Proceedings of the 19th IEEE Computer Security Foundation Workshop,
pages 230–241,2006.

129. Rajaat. Polymorphism. 29A Magazine, 1(3), 1999.
130. G. Ramalingam. The undecidability of aliasing. ACM Transactions on Programming

Languages and Systems (TOPLAS), 16(5):1467–1471, 1997.
131. M. J. Ranum, K. Landfield, M. Stolarchuk, M. Sienkiewicz, A. Lambeth, and E. Wall.

Implementing a generalized tool for network monitoring. In Proceedings of the 11th
Systems Administration Conference (LISA), USENIX, pages 1–8, 1997.

132. M. Samamura. Expanded threat list and virus encyclopedia. Symantec Antivirus Research
Center, chapter W95.CIH, 1998.

133. P. Samuelson. Reverse-engineering someone else’s software: Is it legal? IEEE Software,
pages 90–96, 1990.

134. B. Schwarz, S. Debray, and G. Andrews. PLTO: A link-time optimizer for the intel ia-32
architecture. In Proc. Workshop on Binary Translation (WBT’01), 2001.

135. P. Singh and A. Lakhotia. Static verification of worm and virus behaviour in binary
executables using model checking. In Proceedings of the 4th IEEE Information Assurance
Workshop, 2003.

136. S. R. Snapp, S. E. Smaha, D. M. Teak, and T. Grance. The DIDS (distributed intrusion
detection system) prototype. In USENIX Conference, pages 227–233, 1992.

137. D. Spinellis. Reliable identification of bounded-length viruses is NP-complete. IEEE
Transactions on Information Theory, 49(1):159–176, 2003.

138. P. A. Suhler, N. Bagherzadeh, M. Marlek, and N. Iscoe. Software authorization systems.
IEEE Software, 3(5):34–41, 1986.

139. Symantec Corporation. Symantec Internet security threat report: Trends for january
06–june 06. X, 2006.

140. P. Szor. The Art of Computer Virus Research and Defense. Addison-Wesley Professional,
2005.

141. P. Szor and P. Ferrie. Hunting for metamorphic. In Proceedings of the 2001 Virus Bulletin
Conference (VB2001), pages 123 – 144, 2001.

142. A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific J. Math.,
5:285–310, 1955.

143. A. M. Turing. On computable numbers, with an application to the entscheidungs problem.
In Proceedings London Math. Soc., volume 2, pages 230–265, 1936.

144. S. K. Udupa, S. Debray, and M. Madou. Deobfuscation: reverse engineering obfuscated
code. In 12th. IEEE Working Conference on Reverse Egineering (WCRE ’05), 2005.

145. H. Vaccaro and G. Liepins. Detection of anomalous computer sessions activity. In Pro-
ceedings of the Symposium on Security and Privacy (S&P’89), pages 280–289, 1989.

146. H. P. Van Vliet. Crema – the java obfuscator. 1996.
147. C. Wang. A security architecture for survivability mechanisms. PhD thesis, University of

Virginia, 2000.
148. C. Wang, J. Hill, J. Knight, and J. Davidson. Software tamper resistance: obstruct-

ing static analysis of programs. Technical report CS-2000-12, Department of Computer
Science, University of Virginia, 2000.

149. M. Ward. The closure operators of a lattice. Annals of Mathematics, 43(2):191–196, 1942.
150. M. Webster. Algebraic specification of computer viruses and their environments. In Peter

Mosses, John Power, and Monika Seisenberger, editors, Selected Papers from the First

186 References

Conference on Algebra and Coalgebra in Computer Science Young Researchers Workshop
(CALCO-jnr 2005). University of Wales Swansea Computer Science Report Series CSR
18-2005, pages 99–113, 2005.

151. H. Wee. On obfuscating point functions. In Proc. ACM STOC 2005, pages 523–532,
2005.

152. M. Weiser. Program slicing. IEEE Trans. Software Engineering SE, 10(4):352–357, 1984.
153. J. Xu, P. Ning, C. Kil, Y. Zhai, and C. Bookholt. Automatic diagnosis and response to

memory corruption vulnerabilities. In Proceedings of the 12th Conference on Computer
and Communication Security (CCS’05), pages 223–234, 2005.

154. H. Yang and Y. Sun. Reverse engineering and reusing cobol programs: A program
transformation approach. In IWFM ’97 Electronic Workshop in Computing, 1997.

155. z0mbie. Automated reverse engineering: Mistfall engine. Published online at http:

//www.madchat.org//vxdevl/papers/vxers/Z0mbie/autorev.txt,.
156. z0mbie. Real permutating engine. Published online at http://vx.netlux.org/vx.php?

id=er05 (last accessed on Sep. 29, 2006).
157. W. Zhu, C. Thomborson, and F. Wang. Obfuscate arrays by homomorphic functions.

In Special Session on Computer Security and Data Privacy in IEEE GrC 2006, pages
770–773, 2006.

Sommario

Un offuscatore trasforma programmi in modo da preservarne la funzionalità e
garantendo allo stesso tempo che i programmi trasformati risultino più com-
plessi, ovvero più difficili da capire, rispetto a quelli originali. La protezione
della proprietà intellettuale del codice e l’identificazione di programmi malein-
tezionati, chiamati nel seguito malware, rappresentano due dei maggiori campi di
applicazione dell’offuscamento di codice. L’offuscamento è infatti comunemente
usato dagli scrittori di programmi per difendere la proprietà intellettuale del
proprio lavoro da possibili attacchi. Rendere i programmi più difficili da capire
permette infatti di contrastare il malicious reverse engineering, ovvero l’analisi
di programmi a fini illeciti. D’altra parte, gli scrittori di malware, solitamente
chiamati hackers, fanno uso delle tecniche di offuscamento per impedire ai rile-
vatori di malware di identificarli. Gran parte degli algoritmi per il rilevamento
di malware si basano su aspetti puramente sintattici dei programmi, ovvero sul
modo in cui i programmi maliziosi sono scritti e non sul loro comportamento.
Chiaramente questa caratteristica dei rilevatori fa si che l’identificazione di un
malware sia fortemente sensibile anche a minime variazioni della loro sintassi.
Nell’ambito della protezione del software si è interessati allo sviluppo di tecni-
che di offuscamento sempre più sofisticate al fine di proteggere i programmi dal
maggior numero possibile di attacchi alla loro proprietà intellettuale. D’altra
parte, per quanto concerne il rilevamento di malware, è importante sviluppare
algoritmi avanzati di identificazione di codice maleintenzionato, al fine di indi-
viduarne la più vasta varietà di versioni, ovvero di offuscamenti. Chiaramente,
entrambe le tipologie di attacco descritte rappresentano un importante pericolo
per la sicurezza delle reti di computers.

In questo lavoro ci siamo interessati ad ebtrambi i problemi di sicurezza sopra
descritti. In particolare, proponiamo un approccio formale all’offuscamento di
codice basato sulla semantica dei programmi e sulla teoria dell’interpretazione
astratta. La struttura teorica che introduciamo risulta utile al fine di arginare
alcuni noti svantaggi della protezione del codice attraverso l’offuscamento, e per

188 Sommario

migliorare le esistenti tecniche di rilevamento dei malware. Uno dei maggiori
svantaggi dell’offuscamento di codice come tecnica di protezione della prorietà
intellettuale dei programmi, è dato dalla mancanza di solide base teoriche, che
rendende difficile la cerificazione dell’efficienza di questi approcci nel difendere
la proprietà dei programmi. Inorte, per poter ideare algoritmi di rilevamento
di programmi maleintenzionati che siano in grado di gestire l’offuscamento è
necessario concentrarsi sulla semantica dei programmi e non solo sul loro aspetto
sintattico.

Uno dei punti cruciali del nostro approccio formale all’offuscamento di codice
è dato dall’introduzione di una nozione di offuscamento basata sulla semantica
di programmi. In particolare, seguendo la nostra definizione, ogni trasformazione
T di programmi può essre vista come un potenziale offuscamento, dove il grado
di complessità aggiunto al programma dalla trasformazione è espresso in termini
della più concreta proprità semantica che T preserva. Ovvero, tale prorietà es-
prime ciò che la trasformazione T preserva del comportamento del programma
originale, e quindi caratterizza anche ciò che viene nascosto e che non è possibile
osservare dopo l’offuscamento. Le tecniche di offuscamento, cośı come il reverse
engineering, cominciano solitamente con un’ analisi statica del programma e pos-
sono quindi essere specificate come astrazioni della semantica dei programmi.
Questa osservzione ci porta a modellare gli attaccanti, nell’ambito della pro-
tezione del software, come astrazioni della semantica di programmi. In partico-
lare, un attaccante viene modellato dall’astrazione che esprime in modo preciso
l’informazione, ovvero le proprietà semantiche, che l’attaccante è in grado di
osservare di un programma. È quindi possibile confrontare il grado di astrazione
di un attaccante A con quello della più concreta priprietà preservata da un of-
fuscamento T e capire se la tecnica T è in grado di proteggere i programmi
dall’attacco A. Seguendo lo stesso principio, diverse techniche di offuscamento
possono essere confrontate rispetto al grado di sicurezza che garantiscono, e di-
versi attacchi rispetto alla loro efficacia nello sconfiggere una data protezione.
Per validare la nostra struttura formale, l’abbiamo applicata ad una nota tecnica
di offuscamento di controllo che trasforma il flusso di controllo del programma
originale inserendo dei predicati opachi.

Abbiamo osservato come gli offuscamenti siano delle trasformazioni di pro-
grammi che preservano un’astrazione della semantica. Infatti, diverse versioni of-
fuscate di un malware sono accomunate (almeno) dallo stesso intento malizioso,
ovvero presentano lo stesso comportamento mleintenzionato, pur esprimedolo
attraverso diverse forme sintattiche. Il nostro approccio formale al rilevamento
di programmi maleintenzionati, prevede l’utilizzo della semantica per modellare
sia i programmi che i malware e l’impiego di astrazioni semantiche per nascon-
dere i dettagli che vengono modificati in fase di offuscamento. Quindi, dato un
offuscamento T , si vuole individuare l’astrazione semantica, ovvero le proprietà
semantiche, che accomunano la semantica del malware M con la semantica del

Sommario 189

suo offuscamento T (M). È chairo che, dato un offuscamento T , l’identificazione
di una proprietà semantica con le caratteristiche sopra descitte rappresenta uno
dei punti più delicati dell’approccio proposto. A questo proposito, siamo in grado
di fornire un’astazione semantica in grado di contrastare un’interessante classe
di offuscamenti comunemente usati, e diverse strategie per dedurre l’astazione
adeguata per le trasformazioni che non appartengono a questa classe.

Si osservi che, dato un rilevatore di programmi maleintenzionati D, analiz-
zando come opera sulla semantica di programmi, è sempre possibile definirne la
controparte semantica. Traducendo, come proposto, sia i rilevatori di malware
che gli offuscamenti in operatori semantici, è possibile dimostrare quali offusca-
menti un rilevatore è in grado di gestire e confrontare l’efficienza delle diverse
tecniche di offuscamento. Quindi, la nostra struttutra semantica fornisce un am-
biente formale dove coloro che sviluppano algoritmi di rilevamento di programmi
maleintenzionati possono dimostrare l’efficienza dei loro prodotti.

