
Debora Botturi

An Optimization Approach to
Hybrid System Control

Ph.D. Thesis

31 Marzo 2005

Università degli Studi di Verona

Dipartimento di Informatica

Advisor:
prof. Paolo Fiorini

Series N◦: TD-01-05

Università di Verona
Dipartimento di Informatica
Strada le Grazie 15, 37134 Verona
Italy

i

Summary

The continuous growth of Minimally Invasive Surgery (MIS) operations is moti-
vated by the apparently conflicting goals of better patient care and lower health
care cost that MIS has been able to achieve. However, further increase in patient
care quality and cost reduction requires the development of new and more so-
phisticated surgical techniques, with attention to the reduction of variability in
surgical outcomes and to the increase of efficiency of MIS procedures. Towards
this goal, many robotic devices were developed or proposed, and some of them
are used in daily hospital practice. In the robotic assisted surgery, the procedures
are completely performed by the surgeon, and the robotic device is a mere, albeit
sophisticated, tool. Thus, in order to keep increasing care quality and reducing its
cost, it may be desirable and necessary to explore the development of algorithms
that will endow a robotic assistant with the capability of collaborating with the
surgeon while performing MIS procedures. In this context, collaboration means
that the robot is able to carry out certain small tasks autonomously, adapting to
the variability of the surgical arena, and with minimal guidance by the surgeon.
This capability would reduce the strain on the surgeon, remove variability of sur-
geons’ training levels and of procedure’s outcome, and enhance the overall system
efficiency by decreasing surgery time. In this Thesis we will examine the issues
related to the automatic execution of robotic tasks, in uncertain environments
similar to a surgical arena, and we will propose a method to compute the nominal
controls for a robot that will carry out a typical surgical task.

Safety is the paramount problem in robotic surgery, and it will be even more
important in the automatic execution of surgical tasks. It is also well-known that
current surgical robots lack force feedback, thus depriving the human operator
of a powerful way to control the robot performance. Thus, even now, a large
responsibility for the correct task execution is put on the correctness of the control
algorithms, because of the variability of the environment. In this Thesis, we push
this concept further, by investigating safety using constraints on task execution,
within an optimization approach. Variability is considered with respect to task
model and constraints, and is quantified as the distance of the current behavior
from the desired behavior of the robotic device during MIS. This approach allows
also to continuously monitor task quality and operator performance.

iv

Traditionally, autonomous task execution has been approached by simplifying
the problem using environment engineering, i.e. by adding suitable fixtures to
remove task uncertainty. The most used advanced control technique consists of pre-
programmed skills, so that different tasks can be programmed and executed using
the same set of basic capabilities. When an explicit model of the environment is not
available, skills are parameterized to allow for a certain degree of flexibility in the
task execution. If task and/or environment models are known or can be identified,
it is possible to develop an explicit control law for the task execution. In this Thesis
we develop an explicit control law using the theory of Hybrid Systems, and we
model uncertainty with appropriate sequences of states in the Hybrid System. In
particular, we use deterministic automata as task model since the surgical gestures
studied are well coded in the medical literature, and can be properly represented
as autonomous tasks.

We represent a surgical task as a hybrid automaton, whose elementary state
represents a distinct action of the task. In this way, we can compute the nominal
controls by optimizing an appropriate quality index in the subtask domain, corre-
sponding to each action of the task. In this context, the tradeoff between explicit
model knowledge and feedback compensation strongly influences system perfor-
mance. We investigate the relation between a priori knowledge, as represented
by hybrid task automaton, the number and form of constraints, and the type of
on-line feedback to provide guidelines for the design of the complete system.

We argue that integration of techniques from hybrid system theory, constrained
optimization and task constraint representation, help autonomy in uncertain envi-
ronments. To demonstrate this, we simulate the autonomous execution of a suture,
that is a common and very representative surgical gesture. The execution of this
task requires the definition of a nominal trajectory that can drive the robot to the
task successful completion. To this aim, we define an optimal strategy to compute
the nominal control trajectory off-line and an on-line compensation of the devia-
tion from the desired state trajectory. We conclude that the integration of different
methods, such as hybrid systems, optimization methods, and optimal control con-
tribute to the construction of safer autonomous executions of a realistic surgical
task.

In summary, a set of tools for the synthesis of the control of a complex system
has been proposed, investigated and evaluated in the context of autonomous surgi-
cal tasks. The methods developed provide a rich basis for the treatment of complex
task in unknown environments and expand on the state of the art of autonomous
task execution.

Acknowledgments

If I have seen further, it is by standing on the shoulders of giants.
Isaac Newton

Paolo thanks to introduce me to the robotic field and to give me the freedom
to pursue my own ideas, without you I would be a different kind of person in a
different kind of world, thanks for your shoulders!
Stefano thanks to be my friend, drawing for me and making the laboratory a
good place to work.
Andrea the matlab guy, thanks for your help! The discussions with you are always
very stimulating.
Markus you keep me down when flying is too dangerous! thanks to be my
parachute when I decide to fly anyway!
All my family grazie per aver capito cosa davvero conta per me.
Dani my dear friend and example to follow, thanks for your advice.
Lars stubborn guy, sofa and newspaper are waiting for you in my home!
Vincent, Mark, Philippus lekker ding! I will never forget the philosophical mat-
ter talk!
Nicola pasta, wine and good company you can warm up your heart in a raining
day!
Dado the singer, Puma has no secrets for him!
Isabella perfect doctorate-mate, I was lucky to find you on my way.
Biondo special summer schools mate, you know...I love Rome!
Robotic community thanks to give me the feeling to be part of a big group and
the motivations to continue in this work, especially I want to thank Prof. Henrik
Christensen to have hosted me at the very beginning, thank to the experience at
CAS I decided to start the PhD, Prof. Stefano Stramigioli, thanks for your teach-
ing and your enthusiasm, Prof. Maria Letizia Corradini, Prof. Roberto Segala,
Prof. Maria Paola Bonacina and Prof. Bruno Siciliano thank you to be in my doc-
torate committee.

Contents

1 Introduction . 1
1.1 The Challenge of Surgery Automatization . 1
1.2 The Big Picture . 3

1.2.1 Teleoperation System . 3
1.2.2 Surgical Systems . 4

1.3 Thesis Objectives . 5
1.4 Outline and Contributions . 6

2 Autonomous Task Execution . 7
2.1 Definitions and General Concepts . 7
2.2 Early Work in Autonomous Task Planning and Execution 11
2.3 Recent Work in Autonomous Task Planning and Execution 12

2.3.1 Design, Sensing and Actuation Issues . 12
2.3.2 Architectural Issues . 15

2.4 Conclusions . 18

3 Hybrid System . 19
3.1 Survey of systems and model . 19

3.1.1 Classification of Dynamic Systems . 21
3.1.2 Discrete Event Systems . 23

3.2 Hybrid Systems . 24
3.2.1 Modeling Approaches . 26

3.3 Lyapunov Stability . 31
3.3.1 Basic Definitions . 33
3.3.2 Existing stability results . 34
3.3.3 A Literature Review . 38

3.4 Conclusions . 42

4 Robotic Surgery . 43
4.1 Medical Aspects . 44
4.2 Clinical and Social Aspects . 47
4.3 Analysis and Segmentation of Surgical Task . 48
4.4 Suture . 50

VI Contents

4.4.1 Suture characteristics . 50
4.4.2 Suture Model . 51

4.5 Conclusion . 53

5 Optimal Control Design . 55
5.1 Optimum System Control . 55

5.1.1 Decision Processes . 57
5.1.2 Nominal Trajectory . 58

5.2 Hybrid Optimal Control . 62
5.3 Problem Formulation . 64
5.4 Discussion and Conclusions . 66

6 Computational Issues . 69
6.1 HOCP Solutions . 69

6.1.1 Suboptimal Solution Technique . 70
6.1.2 Branch-and-Bound . 71

6.2 TPBVP Solutions . 71
6.2.1 The Calculus of Variation and Optimal Control 72

6.3 The Algorithm . 74
6.4 Conclusions . 77

7 Computation Results and Simulations . 79
7.1 Introduction . 79
7.2 Nominal Trajectory Computation . 80
7.3 Simulation Results . 84
7.4 Conclusions . 85

8 Experimental Verification . 87
8.1 The Experimental Setup . 87
8.2 Teleoperated Task Experiments . 90
8.3 Autonomous Task Experiments . 90
8.4 Conclusions . 93

9 Summary and Recomandation for Future Research 95
9.1 Contributions . 96
9.2 Recommendations for Future Research . 96
9.3 Conclusion . 97

References . 99

1

Introduction

The process of scientific discovery is, in effect, a continual flight from wonder.
Albert Einstein

The research described in this Thesis addresses the problem of automatic ex-
ecution of a robotic task, considering uncertain environment and unmodeled dy-
namics. The objective is to develop a control methodology that can be used to
give autonomy to a robotic device during the execution of a specific task.

The problem is motivated by many application areas, such as space explo-
ration, custom-designed automation, service robotics, and robotic surgery. Each
application area is characterized by tasks that can be carried out using structured
operation sequences, which can be represented as abstract procedures. A differ-
ent problem instance will require the adaptation of the abstract procedure to the
specific problem conditions. In particular we focus on the application domain of
robotic surgery and we want to explore the possibility of adding autonomous ca-
pability to the robotic device performing the surgery, to be of help to the surgeon.
In this context, by ”task” we mean a small sequence of coded surgical gestures,
that is well described in the medical literature and that can, potentially, be de-
scribed in algorithmic form. In this Chapter we will first present the motivations
of this research in Section 1.1 and a brief overview of the scenario in Section 1.2.
In Section 1.3 we describe the problem addressed in this Thesis and in Section 1.4
the outline of this Thesis is presented.

1.1 The Challenge of Surgery Automatization

Traditionally, surgery involves making large incision to access the patient organ
that requires attention. This method is referred to as ’open surgery’. The inci-
sion and the significant dissection needed to allow the surgeon to visualize the
surgical area are the parts of the operation that contribute to delay patient re-
covery and cause most of the associated pain. Minimally Invasive Surgery (MIS)
is a cost-effective alternative to the open surgery, whereby essentially the same
operations are performed using specialized instruments designed to enter into the

2 1 Introduction

body through several tiny holes, rather than one large incision. Instead of look-
ing directly at the part of the body being treated, the physician monitors the
procedure via a special video camera inserted through one of the small holes. By
eliminating the large incision and extensive dissection, much of the recovery pain
and the length of hospital stay can be reduced [40,108].

However, compared to open surgery, MIS presents additional physical, visual,
motor, spatial, and force constraints. The MIS tools are constrained by the inci-
sion points. The surgeon must coordinate the hand motion that controls the tool
with the remote visual display of the operation being performed by the end-tool.
The limited workspace and coordination of a pair of tools further compound the
challenge.

As a direct result of these constraints, there is an extended learning curve
for the surgeon to gain the required skills and dexterity. Furthermore, there is a
great deal of operating variability even among trained surgeons, especially with
respect to the length of the operation. As demonstrated in [58], [97], [116],
[152] and [164], time-motion studies of endoscopic surgeries have indicated that
for activities such as suturing, knot tying, suture cutting, and tissue dissection, the
operation time variation among surgeons can be as large as 50%. In suturing in
particular, it was noted that the major difference lies in the proficiency at grasping
the needle and moving it to desired position and orientation, without slipping or
dropping it. The continuing growth of MIS operations depends in large part on
the reduction of variability and increase of efficiency of MIS procedures. Towards
this goal, many robotic devices have been patented or described in the technical
literature [85], [152] and [168].

One class of surgical robotic devices that has been proposed to assist in endo-
scopic surgeries is based on the concept of teleoperation. Here, a surgeon performs
the operation remotely, with a robot completely under the surgeon’s command,
operating on the patient. The robot motion is slaved, via mechanical linkages or
computer control, to the movements and control by the surgeon. The surgeon’s
view of the operation may be further enhanced by remote vision to create the
sense of virtual presence [108].

Various robotic positioners and stabilizer have also been proposed. In these
devices, similarly to teleoperation, a robot-holding surgical tool is controlled so
as to follow the surgeon’s command. The role of the robot is to filter out tremor
and disturbances of the surgeon’s hands, so as to enhance the precision and me-
chanical stability of the operation. Various specialized robotic tools have also been
proposed. For example, additional joints (like fingers) may be added to the end of
the endoscopic tool to enhance the tool dexterity without requiring motion of the
entire tool stem. This is particularly useful in cardiac operations where motion of
the tool stem is limited.

It is important to note that in the various robotic surgical assistant systems
described above, the surgical procedures are still completely performed by the
human surgeon. The human commands are mimicked by the robotic device through
computer control. The virtual presence, through visual feedback to the surgeon,
creates the sensation that the surgeon is operating the tool tip instead of the
tool handle, thus reducing one of the challenges of MIS. However, procedures that
require a high level of skill, such as suturing, legation, and precise tissue dissection,

1.2 The Big Picture 3

continue to depend on the skill of the surgeon. It is therefore desirable to have a
robotic system that can collaborate while performing endoscopic procedures with
the surgeon doing certain tasks autonomously to reduce the strain on the surgeon,
removing variability of surgeons’ training levels, and enhancing system efficiency
by decreasing the operation time.

In the following Sections we will introduce the main concepts of the technolo-
gies used in this Thesis and we will formally describe the problem that we are
addressing

1.2 The Big Picture

We envision autonomous capabilities enhancing a teleoperation system, in which
an operator is controlling the robotic device and trades and shares control with
the autonomous capabilities of the system. However, the technologies developed
in this Thesis will be of interest also to fully autonomous systems, since they will
help encoding the set of skills necessary to implement some form of autonomous
behavior.

1.2.1 Teleoperation System

Teleoperation is defined as the control over a distance of one or more robots by a
human operator. Usually it refers to a system with a master/slave configuration,
where the operator works on a joystick that is kinematically compatible with the
slave manipulator (see Figure 1.1). It has been shown that operator performance
is improved by providing force information to the human operator [68]. Force
information can be presented visually to the operator on a monitor, but the most
significant performance improvement is achieved by providing force feedback to the
operator, i.e. by generating forces directly with the motors of the master device.
In this case the operator is said to be kinesthetically coupled to the slave and the
teleoperator system is said to have bilateral control or to be force reflecting.

Fig. 1.1. Teleoperation schema.

4 1 Introduction

Teleoperation is used in cases where the environment is not directly accessible
by a human, or when it is too dangerous for on operator, or when it is necessary
to scale the force exerted on the environment. Almost all of the applications of
teleoperation involve contact with the remote environment, e.g. grasping, welding
and puncturing. In particular, robotic applications to surgery include puncturing
as one of the most usual actions.

The trade-off between stability and performance is the main consideration in
the design of a teleoperation system. In fact, teleoperation control architectures
analyzed in the literature can be classified in terms of their stability and perfor-
mance trade-off [120]. Control algorithms for ideal kinesthetic coupling [188] are
at one end of the spectrum, whereas passivity based algorithms [14] are at the
other end. Conventional algorithms such as position error based force feedback
and kinesthetic force feedback lie in the middle.

Both performance and stability are inherently dependent on the task for which
the system is designed. Thus the need to design system controllers for the specific
applications, including local and remote environments, not only in terms of param-
eter tuning, but also with respect to the overall control scheme. In this Thesis we
focus on the control of a slave manipulator. In particular, we are interested in the
interaction with soft objects. The motivation for this analysis is robotic telesurgery,
i.e. surgical operations performed by robotic instruments controlled by a surgeon
through teleoperation [40, 65, 108]. One of the goals of robotic telesurgery is to
improve dexterity and perception during minimally invasive surgery through the
use of teleoperation technology [153, 174]. Clearly, the environment in which the
slave manipulator moves is not completely known and organs are characterized by
partially known mechanical properties. Furthermore, by its very nature, surgery
requires different modes of interaction during the course of an operation: for ex-
ample free motion, contact and puncturing.

1.2.2 Surgical Systems

Robot-based surgical systems are starting to support surgeons during traditional as
well as experimental procedures. These systems usually consist of a control console
from which the surgeon issues manual or vocal commands to a robot which then
executes them at the nearby surgical arena. Images from the surgery are returned
to the console as the only sensory feedback available to the surgeon. In certain
systems, a separate display shows a graphical representation of the forces applied
by the robot to the patient body during the procedure. The lack of force feedback
directly to the surgeon’s hands is a significant drawback of today’s robotic surgical
systems and the cause of some criticism by practicing surgeons. A similar problem
is also present in simulators of laparoscopic surgery, since a computer model re-
places the patient body and therefore force feedback may not be very realistic. In
the last ten years haptic interfaces have addressed this problem, producing realistic
sensations in some of current simulators. Therefore, one of today’s main challenges
is the correct modeling of biological tissues. To determine the correct force feed-
back to the user, the simulator must compute the tissue deformation in real time.
Of course, the deformation has to be validated by biomechanical measures.

1.3 Thesis Objectives 5

An important issue of the research carried out in this work is the a priori knowl-
edge, hence studies on correct force feedback and modeling of the environment were
carried out, see Chapter 8, in order to take advantages of this research.

1.3 Thesis Objectives

Due to the complex and diverse nature of a generic surgical task, the use of a
single control law for the whole task is not feasible. Therefore, we propose to
use an approach based on Hybrid System theory, whereby a task is modeled as
a sequence of states each endowed with its own controller. The peculiarity of
hybrid systems is the interaction between continuous-time dynamics (governed by
differential or difference equation), and discrete dynamics and logic rules (described
by temporal logic, finite state machine, if-then-else conditions, discrete events, etc.)
and discrete components (on/off switches, selectors, digital circuitry, software code,
etc.) Drawbacks of this approach include the fact that the design of the controller
have to take into account the continuous part and the discrete part (jumps).

This Thesis will address the problem of controlling such a hybrid system. We
will consider the problem both from theoretical and practical perspectives. Our
theoretical work will develop a mathematical model of control computation, and
our practical work will develop techniques for the automation of complex task,
such as surgical procedures. Since our analysis will be based on hybrid systems, we
will investigate continuous and discrete system properties. Our model for control
computation will be the hybrid automaton. A hybrid automaton is a state machine
with transitions between states that are governed by a discrete logic decision. We
classify hybrid automata according to what question about their behavior can be
answered algorithmically. In particular, the class of hybrid automata that we will
use has deterministic behavior.

The properties of a control algorithm are stated in terms of satisfying stability.
However, in our case stability analysis is not enough to ensure either good perfor-
mance or task termination, so our purpose is also to determine a set of parameters
that can be used to determine the performance of the control system and whether
or not the task is likely to terminate. In other words we have to find what does
”good” and ”bad” mean in the surgical environment and use ”bad” as a warn-
ing for possible critical situations. The main difficulty of proposing a new control
method for an application such as robotic surgery, is to ensure complete and total
safety of the procedure. This imply the need to address a number of aspects, which,
in a less demanding application, may be overlooked in a first development. In fact,
this Thesis will deal with uncertain and variable environments, as represented by
the different patient anatomies, with the true complexity of a surgical operation,
without imposing unrealistic simplifications. The Thesis will also deal with the
presence and the interaction of humans to provide input to the system, and with
the difficulties of implementing the results.

6 1 Introduction

1.4 Outline and Contributions

In summary, we will develop a framework that will expand the classical theoretical
results of dynamical system control and that will be suitable for hybrid systems
control. This feature should lead eventually to the extension of several control
techniques that are currently available for non-hybrid systems to hybrid systems,
thus rendering the analysis of hybrid system easier and more reliable.

Because of the complexity of the problem that we want to address, we need to
use a number of different theories and tools. To model the system we will adopt the
framework of hybrid systems and use the hybrid automata formalism, which nicely
account for the mix of event and time driven dynamics characterizing task models.
To develop a control for such a system, we will use the formalism of optimal control.
It will allow us to use the a priori knowledge as the basis for stability analysis and
for identifying the main performance properties of the complete system. In this
work, however, we focus on the control aspects of the complete system, studying
the optimal control for each jump and iterating the algorithm on the complete
system.

The Thesis is organized as follows. After a brief explanation of the challenges
of this project from the point of view of the autonomous execution, Chapter 2, we
will present an overview of the state of the art of the technologies that will be the
building blocks of this research. We will address the main aspects of the model
and an analysis of hybrid systems in Chapter 3. In Chapter 4, together with some
specific notion on suture we present the surgical aspects that are the environment
and the motivation for this work. After these concepts have been sketched, we will
propose a possible approach to the control design in Chapter 5. In Chapter 6 we
discuss numerical solution to the optimal problems with emphasis on the solution
that we adopt in this work. Finally, in Chapter 7, we give an example of application
and in Chapter 8 we report some teleoperation experiments with the same setup
that we are going to use for autonomous task execution experiments. In Chapter 9
the summary and an indexed list of activities for the near future concludes the
Thesis.

2

Autonomous Task Execution

The question of whether computers can think is just like the question of whether
submarines can swim.

Edsger W. Dijkstra

In this Chapter we will briefly summarize the state of the art of Autonomous
Task Execution, i.e. the set of tools and techniques developed to guide a complex
task to its completion. By complex task we mean an activity that cannot be de-
scribed only in terms of reaching a set point or following a nominal trajectory, but
that requires the satisfaction of logical and algebraic conditions at the beginning,
during, and at its conclusion. The conditions on the task are derived from sensor
measurements, logical states of the variables and a priori knowledge of the task
structure. The evolution of the task must be governed by a supervisory process,
which can be made explicit in the form of a monitoring agent, or implicit in the
structure and the conditions of the task itself. The quality of the task, up to its
successful conclusion, must be ensured and monitored by the appropriate selection
of the condition set. The Chapter reviews some of the approaches developed to
address the various aspects of the problem of complex task modeling and control.
First, a few examples are given of complex task; then we present a description of
how the research has attempted to define and model the requirements of complex
tasks; finally, we review several approaches and results in the area of task model-
ing, execution and monitoring. The Chapter is concluded by a few considerations
on the lessons learnt in this area, which motivates the approach to complex task
control described in the next Chapters.

2.1 Definitions and General Concepts

To justify the difficulties in developing an infrastructure for autonomous task exe-
cution, the tasks under consideration must be extremely important and impossible
to be controlled directly by a human operator. For example, automatic task execu-
tion has been implemented for the control of space probes and telerobotic devices
operating in Earth orbit or on planet surface. Space probes in fact, are controlled

8 2 Autonomous Task Execution

by uploading a series of commands, called a sequence, which has been tested on
Earth for correctness on a probe simulator [75]. Furthermore, this application does
not support any form of interactive control and teleoperation because of the long
communication time delay between the Earth station and the remote robot. This
approach has been successfully used during the Mars Pathfinder mission and pro-
posed for next Mars exploration missions [21].

An important aspect of the tasks considered in this Thesis is that they are
complex, i.e. cannot be controlled by Automatic Control techniques alone. Classical
and Modern Control Theory, in fact, study the design of control systems whose
purpose is to ensure that a vector of nominal trajectories is closely tracked by the
controlled plant. The trajectories are continuous functions of time and the control
actions aims at reaching an equilibrium in which the error vector goes to zero.
Instead, a complex task has a structure that can be represented by the diagram
in Figure 2.1. This Figure shows the mental model developed by the operators of
complex systems, such as nuclear and power plants, to help manage the complexity
of the operations and the flow of data [124,150,151]. The task, in this case, is the
correct operation of the complete plant.

In these studies, the authors set the basis for the definition of the mental model
of a complex task, and formulate a hypothesis on how a person interacting with the
task organize the task mental representation. The hypothesis proposed is that the
the task model has a layered structure, in which each level has a different degree
of data abstraction. Each level processes a specific type of feedback, from raw
measurements to plant states, so that the amount of data remains approximately
constant at every level. With this representation, the operator can process plant
information at each level, and in particular can initiate a control action at the level
in the hierarchy whose data representation best describes the current situation and
supports the required corrective action. In this way, for instance, an alarm signal
can trigger a response action at the lowest level, without interacting with the higher
levels because its importance is recognized immediately. A drift in the state of the
plant instead, needs to be processed at a higher level in the hierarchy, because
it is characterized by the combination of several feedback signals possibly filtered
by logical operators. With such a structure, the operator adds three important
features to the plant’s mental model that improve her/his control performance:
causal connections between layers, constant data complexity, and directed focus
of attention.

Figure 2.1 as also been used as a model of the robot control paradigm plan, re-
act, execute that is currently at the heart of most robotic systems. In this paradigm,
the Automatic Control functions are confined to the bottom layer of the architec-
ture, whereas techniques of Artificial Intelligence are more appropriate for the
upper layers. The tasks considered in this Thesis, although much simpler than the
control of a power plant, require the careful integration of execution and sens-
ing functions, but also of reactions to unexpected events and planning complete
sequences of actions. Data will be a mixture of continuous and logical signals gen-
erated by sensors and by higher level cognitive functions. Typically, these tasks will
include some motion phase, some interaction with the environment, some sensor
based input, and some adaptation to an uncertain environment.

2.1 Definitions and General Concepts 9

Fig. 2.1. Mental model of a plant operator.

To accomplish all these actions, the control system considered must then in-
clude at least some components of the plan, react, execute paradigm. In fact the
architecture that is usually adopted by the robotic community to handle complex
tasks is an implementation of the conceptual structure shown in Figure 2.2.

It is evident that, in this case, the term control acquires a much broader mean-
ing, since the control architecture must include provisions for planning and reactive
components. Much research has gone into identifying the best balance among the
various components, in particular with respect to the planning or deliberative com-
ponent and the reactive or behavioral component. The role of classical control is

10 2 Autonomous Task Execution

Perception Signals

Stored
rules

Identification Decision Planning

Recognition

Actuation

Symbols

Signs

Skill level

Rule level

Knowledge
level

State

task

Fig. 2.2. General architecture of a robotic control system

well defined and delimited, since it is in charge of controlling the motion of the
robot actuators that execute the commands generated by the upper layers of the
architecture. The balance between deliberative and reactive planning elements
determine the type of action that the control layer will perform. In the case of
deliberative planning, the task is controlled in a feedforward manner, in which the
nominal controls are precomputed off-line [119] by suitable planing algorithms,
and executed at run time by the agent carrying out the task. When planning is
predominantly reactive, a predefined set of robot skills is encoded in the control
architecture. Each skill represents a behavior competing to take control of the
agent. When the task is executed, the action of the robot depends on the balance
of the various behaviors, whose output is weighted by coefficients depending on
the desired task [50]. Clearly, these two approaches represent the two opposite
ends of a spectrum of solutions, which, in general, include different percentages of
deliberative and reactive planning [140].

However, as it will become clearer during the course of this Thesis, neither
approach by itself, nor mixtures of deliberative and reactive components based
on heuristics of various type, solve completely the problem of autonomous task
execution. The reason for this inadequacy is quite simple, and it consists in the
lack of a general framework that would permit analysis, simulation, testing and
implementation of the complete architecture. In particular, analysis tools for the
reactive part of the control architecture are missing, thus requiring the verification
of the overall system performance with simulations and experiments. To overcome
this limitation, Hybrid Systems are starting to be used in the representation, vali-
dation and execution of complex tasks. The advantage of this framework, is that
it has a solid theoretical base and several analysis and execution tools have been
developed for each of the layers of the architecture of Figure 2.2. In fact, Hybrid
Systems include elements of control systems in their continuous states, of reactive
behavior in the logic states, and of deliberative planning in their structure. Hybrid
systems permit to encode the structure of a complex task with an appropriate se-
quence of continuous and discrete states; maintain the hierarchical structure of the
standard robotic control architecture by encapsulating the continuous variables in
the hybrid states; and analyses and test the overall system performance by using
formal tools derived from Computer Science and Automatic Control.

2.2 Early Work in Autonomous Task Planning and Execution 11

To show how the research in this area has evolved in the past years, in the
next Sections we will first summarize earlier work in task planning and execution,
where deliberative, reactive and executive control were kept separate and gradually
mixed together. Then we will describe in some detail more recent work in task
planning and execution, where the awareness of the capabilities of Hybrid Systems
for autonomous task execution is becoming more evident.

2.2 Early Work in Autonomous Task Planning and
Execution

Earlier formalizations and architectures developed to describe and execute complex
tasks included a variety of tools and procedures, but little emphasis is given to
structured approaches.

Some of the earlier solutions proposed address the need of intelligent data
acquisition and processing, i.e. the development of sensors capable of producing
also a logical output from the data collected. This approach was called the Logi-
cal Sensor Specification [103], in which physical devices were separated from each
other and from the central controller by software layers, where local processing of
feedback signals and actuator commands could take place. Other proposals put
more emphasis on the local reactive capabilities of the controlled system and they
used mechanical devices able to produce an implicit control similar to the Human
Reflex Action [30]. These approaches were directed to solve specific problems, and
therefore more general structures were studied based on Expert Systems [173,121]
or on Artificial Neural Networks [54,86]. The first family of solutions permits the
system to learn some of its own control procedures and the modularity of the rule
base allows for easy implementation and update. The second approach is directed
towards integrating real time performance with some strategic knowledge. Finally
an important area of research was Intelligent Control [51, 136], in which nested
control loops organized in the hierarchical structure described in Figure 2.2 super-
vise all aspects of the task evolution. Intelliget control is still a general approach,
proposed for a number of different applications and is not specific to robotics.
However, because of this fact, it is still very application dependent and cannot
easily extended to generic robotic tasks.

To address the need of higher flexibility, with specific reference to the control
and execution of robotic tasks, a new approach was proposed in the context of
the Telerobotic Testbed, described in [100], which was a telerobotics laboratory
developed at JPL-Caltech under NASA sponsorship, completely devoted to the
development of new control strategies for telerobotic tasks. During the develop-
ment of the testbed, teleoperation capabilities were enhanced with the addition of
dextrous manipulators [23], dual-arm operation [99], and automatic sequence gen-
eration and execution. This last development is relevant to the research described
in this Thesis since it represents an approach to formulate and execute a sequence
of operations in a partially structured environment. Tasks were built interactively
using a series of pre-programmed skills such as, guarded motion, move-to-push,
slide, insert, and so on [22], i.e. all actions that could be framed in the context of
classical control algorithms. Skills were parameterized, so that different operations

12 2 Autonomous Task Execution

could be programmed using the same set of basic capabilities. The execution of
the sequence was carried out by maintaining two queues of commands, one re-
quiring only feedforward commands and the other requiring some feedback from
the sensors, called Reflex Actions [24]. The execution of each skill was monitored
by defining termination conditions on each controlled variable. The description of
the complete system, with sequence input and execution, and a discussion of ro-
bustness issues during execution is presented in [25]. This approach was tested in
laboratory experiments of complex sequences: opening Orbital Replacement Unit
(ORU) door, and turning bolts were successfully completed. However it is not clear
how much engineering of the environment went into ensuring that the task, i.e. the
complete sequence of skills, completed successfully. Furthermore, the uncertainty
relative to the task is compensated by defining ranges, rather than values, of the
parameters, but without including additional states into the task model.

All the approaches presented in this Section share the common aspect of being
developed for a specific task, without a unifying framework for task analysis and
control and thus are examples of ad hoc solutions rather than instances of a formal
theory of complex system analysis and control. In the next Section we will briefly
review some of the more recent results in task control and show how the field is
evolving towards a more extensive use of the formalism of Hybrid Systems.

2.3 Recent Work in Autonomous Task Planning and
Execution

As mentioned in the previous Section, the main limitation emerged from the sum-
mary of the earlier work, is the lack of a structured approach to the analysis and
control of a complex task. In this Section we trace the more recent development,
leading to the gradual establishment of the Hybrid System methodology as the
comprehensive framework for complex task study. In particular, one of key the-
oretical element missing in the earlier work is the tight and effective integration
of deliberative and reactive planning with execution and control. In this Section
we will briefly summarize a few approaches showing how this problem is being
addressed, and will describe solutions that respond to this need with various levels
of integration. The approaches presented in this Sections are subdivided according
to the technology that they address: single sensing and control actions, or global
architectural issues.

2.3.1 Design, Sensing and Actuation Issues

Clearly, the main issues of complex task control are related to the architecture
and communication characteristics of the control system. However, also the basic
elements of the architecture, such as sensors and actuators, must be capable of
responding to the demands of the architecture. In this Section, we briefly document
some of the enhancements made to robotic devices to make them compatible with
the needs of complex task control. In particular, we first describe an example of
advanced processing at the low level of the architecture, then at the middle level,
and finally in the top layer of the architecture.

2.3 Recent Work in Autonomous Task Planning and Execution 13

The issues of integrating actuation and perception at the low level of the con-
trol architecture is addressed by the approaches summarized next. Visual servoing
is a form of trajectory control in which feedback data are produced by image
processing, thus providing a form of feedback control higher than standard signal
processing. The approach described in [115], presents a few experiments in this
area, with reference to the surgical robotics domain, in which the motion of a la-
paroscopic instrument is guided using the image of a laparoscopic camera. In these
experiments, the higher level of the reference architecture of Figure 2.2 is supplied
by the human operator, who teleoperates the surgical instruments with the help
of visual servoing. Thus, this technique can be described as a semi-autonomous
enhancement to teleoperation. To achieve the motion of the instruments, the au-
thors designed a new instrument-holder equipped with laser beams projecting a
known pattern on the internal surfaces of the patient. This pattern, once properly
identified and measured, is the basis of visual servoing, since it identifies the cur-
rent position of the instrument in the patient’s body and allows to safely move
the instrument even when it is not in the field of view of the endoscopic camera.
With this set up, the surgeon can specify the final position of the instrument tip
by indicating it on the monitor with a cursor, and bring it to a desired position
without an exact knowledge of its current position. The technology described in
the paper is an example of essential technologies for autonomous task execution,
since it provides the low level sensing and actuation necessary to give the bottom
layer of the architecture the desired processing autonomy.

The needs of the middle layer of the architecture shown in Figure 2.2, namely
the capability of adapting a planned task execution to variations of the task pa-
rameters are addressed in [39]. Here, the authors describe an example of reactive
control methods applied to a robotic surgical task. Reactive control is impemented
by means of a new device, the EndoBot, which can provide some form of shared
and traded control during a MIS procedure. The EndoBot consists of a docking
station holding two four-degree-of-freedom devices, each capable of moving a MIS
instrument along four axes, since two axis are constrained by the incision point.
The device was designed to cooperate with the surgeon, in the sense that the sur-
geon could teleoperate some of the axes and the robot can move the other axes
autonomously. The approach relevant to this Thesis is the role of the device dur-
ing a simple suture in which it compensates autonomously unexpected variations
in the environment. However no explanation is given on how the EndoBot would
autonomously execute the suture and what sensory conditions and motor controls
were used to progress from one phase to the next.

At the upper level of the reference architecture, there is a planning layer that is
in charge computing the initial nominal task trajectory. One of the main problem
arising with this configuration is the division of activities between the middle
level, i.e. the reactive planner/behavior, and the top level. In particular it must be
decided at what point the nominal task trajectory need to be completely replanned
and the local corrections applied by the middle level are no longer sufficient to
ensure task conclusion. An example of the solution to this problem is presented
in [20] in the context of the autonomous landing of an airship. The task here is
carried out using pure visual servoing, and is a complex control problem requiring
a system with a good level of autonomy. In this case the autonomy is necessary to

14 2 Autonomous Task Execution

compensate the severe disturbances of wind gusts, which require the replanning of
the landing maneuvers when the trajectory exceeds a given tolerance.

Another type of autonomy is discussed in reference [80] where an approach is
presented in which the telerobotic system improves the way the operator’s com-
mands are executed by the remote robot, by varying the ratio between the com-
manded and the executed velocities of the robot. In this way, for example, the robot
can autonomously adjust the approach velocity of the robot to a target to improve
accuracy and overall performance. This approach is demonstrated in several Fitts’
law1 [88] type experiments. When replannig is too difficult for an automatic agent,
a human operator can be called upon for help, and the control functions can be
shared between the robot controller and a human operator, as described in [84].
In this case, the operation of the robot is mostly autonomous, and the task is the
assembly of micro MEMS components. However there are situations in which the
robot cannot operate autonomously, for example when the uncertainties in the
microassembly are different from those considered when developing an assembly
plan. The robot then requires human assistance and, depending on the case, the
control can be shared between the robot and the operator, or traded, with full
control given to the human. In this research

Another aspect of complex task analysis refer to the preliminary modeling of
the task structure. A correct model is essential to express the a priori knowledge
about the task and to set up the various task evolution scenarios. An approach to
represent manipulation tasks in a formal manner is described in [29]. The paper
describes a set of grasping tasks in terms of the way humans carry them out. The
preferences of several human subjects are coded into a knowledge base, which is
then used to different grasp patterns in terms of grasping primitives. The primitives
are also classified according to the shape of the object to be grasped and the type
of robot hand. The task is represented as a set of discrete rules, that should
be used by a controller as pre and post conditions to the various phases of a
grasping task. In this example, the grasp patterns are the different instances of a
grasp task, whereas the grasp primitives represent the behavior level of the task
control. Another example of task modeling is described in [27] in the context of
manufacturing operations. In this research, an assembly task is described by means
of a graph in which nodes and edges represent the various objects involved and the
actions required. However, this method does not enter into the detail of how the
sequence of actions described should be executed and controlled by an automatic
device. In any case, the definition of a task as an oriented graph is one of the
current methods used to specify the task structure and execution flow.

Having briefly discussed the single elements and technologies concurring to
the implementation of the control of a complex task, in the next Section we will
examine the structure of the software system that must be set up to support
advanced control functions.

1 Fitts’ law is a model of human psychomotor behavior developed in 1954. According
to Fitts’ Law, the time to move and point to a target of width W at a distance A is a
logarithmic function of the spatial relative error (A/W).

2.3 Recent Work in Autonomous Task Planning and Execution 15

2.3.2 Architectural Issues

Key to the effective operation of a task-level control system is the underlying
software architecture and the mechanisms governing the exchange of functions
and duties among the different agents in the control system. This is a very active
research area which is currently being explored by a number of large projects,
both in Europe and in the US, and a small sample of the results achieved so far is
discussed next.

An effective balance of feedforward and feedback control is described in [157]
where the authors presents the analysis and implementation of the control system
for two different tasks, walking and object grasping. In this paper the authors
describes the network of actions and the logical checks that form the Task Control
Architecture used for the two tasks. It is interesting to note that the control is
based upon a rather fix task model, in which a set of concurrent control actions
are executed at different frequencies to ensure some concurrency. Although rather
powerful, this approach seems to encode the tasks in the control and may require
substantial modification to be used to control a different task. Thus the deliberative
component of planning is represented by the task tree and the a priori knowledge
by the sequence of task actions. The issue of modifying the task to adapt to a
changed environment seems not to be addressed in detail.

A different approach is described in [26] in which the authors describe an
architecture for the motion control of a group of autonomous vehicles based on
the careful tuning of various behaviors. In this paper, the task demanded to the
robots is the exploration of an area, and therefore it involves almost exclusively
the motion of robots while keeping an assigned formation. In this case, the task
is coded in terms of the robot formation and the maneuver goal. Because of the
linearity of the task it is acceptable to have a preponderance of reactive behavior
versus deliberative planning. It is questionable whether this approach is applicable
to more structured tasks, where temporal and spatial sequences of actions must
be combined to complete the task.

Another exmple of an architecture based on the behavior paradigm for plan-
ning and control is described in [9] in the context of exploring and mapping an
indoor environment. The behaviors implemented for the task of map formation,
are go to, obstacle avoidance, wall avoidance, corridor following, door passing, and
docking to reach the recharging station. However, in this case the mapping task
is specified in two forms. The actual measurements and memorization of the envi-
ronment is carried out autonomously by the robot, whereas the higher functions of
navigation and exploration patterns are not performed autonomously, but replaced
by following a human guiding the robot through the environment, thus allocating
resources according to the ability of an agent to perform the function.

An implementation of the deliberative and reactive framework in autonomous
task execution is described in [19], where the authors describe in detail the imple-
mentation of a robot control architecture consisting of three main layers: planning,
execution, and reaction. The first layer takes care of the definition of the high level
goals using the environmental map. The execution layer partitions the goals into
subgoals and activates the appropriate behaviors. Finally, the reactive layer inter-
faces the robot with sensors and actuators and modifies the plans in real time. The
architecture proved very successful in an exhibition where the robots traveled more

16 2 Autonomous Task Execution

than 3000 Km. However, tasks executed by the robots had not a fixed configura-
tion and can be rearranged depending on the various sensor input. Furthermore,
no manipulation was involved, thus constraints on task execution were somehow
simpler to model and satisfy, and the switch to the deliberative planner was only
required to compute a new navigation trajectory in the environment.

The integration of vision and grasp planning and execution is described in [114].
The authors describe the experiments carried out to verify the performance of a
vision-based tracking system combined with a grasp planner. The tracking system
is used to estimate pose and motion direction of an object, and provides these data
to the grasp planner, which then plans a stable grasps and commands a robotic
hand to execute. The integration of vision and grasping is a key element in the
development of autonomous manipulation tasks and this paper describes the ad
hoc architecture used to carry out the task.

Failure recovery and graceful degradation are important issues in the context
of complex tasks, where safety may be crucial. Since, in most cases, complex tasks
are carried by independent agents, safety depends on the correct functioning of
all the agents. However, since malfunctions do occur, it is important to identify
in which way a group of agents can gracefully alter its operation to maintain
its basic capabilities. These same considerations can be extended also to robotic
teams, as discussed in [76], where the authors examine the main causes of mal-
functions: communication failure, robot partial malfunction, and robot death. The
approach discussed is based on capitalistic market economy, a flavor of game the-
ory, in which each robot is an independent agent trying to maximize its own good.
However, since the payoff depends only on the team success, the satisfaction of
the team goal equates to maximization of each individual profit. Using this ap-
proach, the authors show the capability of the team to reconfigure its resources
as a function of detected failures and the team ability to carry out autonomously
the assigned task, even in the presence of several failures. In this example, both
deliberative and reactive planning are carried out in an implicit form, resulting
from the optimization algorithms implemented in the control software.

The main criticism one can move to the approaches presented above, and to
mainstream research in this area is the lack of a unifying method to study complex
tasks, whether during modeling, analysis and, finally, execution. A possible answer
to this lack of common theoretical background is given by the increasing use of
Hybrid System methodologies to support the description and the execution of
autonomous tasks.

A typical example of how this formalism can be used in the context of complex
task control is given in [143]. The application described in the paper refers to
the everyday action of opening a door, but it integrates different control and
sensory modalities of the type needed in the real autonomous surgical procedure,
which are the main focus of this Thesis. The paper first gives a model of the open
door task, in which each action of the task is assigned to a specific control mode
and qualified by appropriate sensor thresholds to ensure completion. The task is
described using the Hybrid System formalism and the control parameters needed
in each continuous state of the Hybrid Model are estimated on line during task
execution. The authors indicate that experiments carried out with this approach
were successful about 90% of the time, mostly due to the lack of an accurate error

2.3 Recent Work in Autonomous Task Planning and Execution 17

recovering strategy. The challenge in this case is to extend this approach to more
complex cases, such as medical procedures, where safety is paramount.

Other examples of use of the Hybrid System formalism in complex task analy-
sis and control is represented by the following papers. In [57] the authors describe
the implementation of a robot capable of autonomous installing warning sphere
on high voltage cables. In this case, the task to be carried out by the robot is well
defined and the authors do not provide much detail on how the various phases
of the task are controlled by the underlying hybrid system monitor. In [62, 63] a
hybrid automaton is used to model the cooperation of multiple mobile robots to
perform a coordinated manipulation. In [62] each robot of a team is assigned a
role and the dynamic exchange of the roles during the execution of the cooperative
manipulation of an object is governed by a hybrid automaton. A suitable utility
function determines when and to what role a robot should be assigned, and sim-
ulations show that this policy supports the execution of the task. The novelty of
the approach presented in [63] is in the composition of the hybrid automata rep-
resenting each individual robot into a single, more complex, automaton describing
the complete cooperative task. The authors point out the possibility of doing for-
mal task analysis and verification using the hybrid system methodology to identify
possible faults and deadlocks in the task execution.

Finally, another area of application of Hybrid System theory, and of great
potential impact, is the control of the navigation and interaction of autonomous
vehicles. An example is [7], in which the authors summarize their contributions
to this research area. The focus here is on intelligent multi agent systems that
eventually will replace centralized control systems, as in the case of air traffic
management, or will enhance human resources, as in the case of automatic vehicle
control. The Hybrid System framework is ideally suited for autonomous, or semi-
autonomous, agent control. In fact, at the continuous level, each agent chooses
its own optimal strategy, while discrete coordination is used to solve conflicts.
This approach has several advantages with respect to centralized control: has the
potential to yield an optimal design, it is intrinsically reliable and scalable, and
is flexible to adapt to different conditions, traffic levels, and unexpected needs. In
the context of traffic management, the Hybrid System definition of safe sets, has a
very real meaning, since it represents the state set able to guarantee, for example,
collision avoidance. In particular, a hybrid automaton can be used to represent
the different operating conditions of the autonomous vehicle, and thus frame and
represent in a consistent way the discontinuities of navigation control.

Concluding this brief summary of approaches and techniques to the architec-
tural design of complex task control systems, it appears that the methods satisfy-
ing most of the requirements on model definition, formal analysis, simulation and
execution are based on some variation of the Hybrid System methodology. This
methodology, as it is discussed in the next Chapters, is still in its infancy and
therefore it has not yet reached a unified and all encompassing structure. It is still
a collection of many similar definitions and methods, yet the techniques developed
so far are very relevant and useful to the objective of this Thesis.

18 2 Autonomous Task Execution

2.4 Conclusions

In this Chapter the main issues and developments relevant to autonomous task
execution have been briefly described. First the distinction between simple and
complex tasks has been addressed, and then some of the difficulties found in the
development of autonomous systems listed in terms of modeling, analyzing, and
executing the sequence of actions representing a complex task. To show how this
problem has been addressed by many researchers in the past twenty years, first
earlier work is summarized to show the variety of solutions proposed. Then, most
recent papers are summarized emphasizing the clear trend emerging towards the
development of a mathematical framework able to support all the needs in complex
task planning and control. The current trend is towards the adaptation of Hybrid
System methodologies to the needs of complex task execution and control. This
trend is illustrated by pointing out the results described in a few key papers in the
area. In the following Chapters, this trend will be further justified, by analyzing
the advantages offered by the Hybrid System methodology in the development of
a control strategy for a surgical suture.

3

Hybrid System

Everything should be made as simple as possible, but not simpler.
Albert Einstein

The hybrid systems of interest in this research are dynamic systems, where the
behavior of interest is determined by the interaction of continuous and discrete
dynamics.

There are several reasons for using hybrid models to represent the dynamic
behavior of a complex task. Reducing complexity is an important reason for dealing
with hybrid systems; this is accomplished by incorporating models of dynamic
processes having different levels of abstraction. For example a thermostat typically
sees a very simple model of the complex heat flow dynamics adequate for the
task in hand. Another example is the analysis of non linear systems. In order
to avoid dealing directly with the set of nonlinear equations, one may choose to
work with sets of simpler equation (e.g., linear), and switch among these simpler
models. The advent of digital machines has made hybrid systems very common
indeed. Whenever a digital device interacts with the continuous world, the behavior
involves hybrid phenomena that need to be analyzed and understood.

It is not hard to find examples of systems that motivate the need for studying
hybrid systems. Many examples can be found in the literature, for instance the
management of a fishery resource [141], computer disk system [92], motion control
systems [49], robotics (a non exhaustive list [78,83,163,184]), power systems [105],
systems in classical mechanics [48], air traffic management [172] and automated
vehicles [127].

In this chapter we will give a brief overview of the main aspects of the model
and analysis of Hybrid Systems, that will form the framework for this research.

3.1 Survey of systems and model

Construction of models (abstractions) of parts of reality (systems) and investiga-
tion of their properties are fundamental issues for all scientists. The models can
be more or less formal but all have the property that they try to link relations

20 3 Hybrid System

in the system to some kind of pattern. Loosely speaking, a model of a system is
a tool used to represent some sort of knowledge of the system without making
experiments. It is used for instance to predict the future behavior or to design a
controller. The degree of agreement between the system and the model determines
the usefulness of the model. One of the tasks of applied mathematics is to gener-
ate models for the description of systems in different disciplines. A mathematical
model formally describes the relation between different quantities and variables in
the system by a mathematical relation. Such models are commonly used in modern
engineering science, for instance control engineering and computer science, and are
the class of models studied in this Thesis.

Due to the close connection between a system and its model (see Figure 3.1) it is
common to drop the distinction and use the meaning of the terms interchangeably.
Hence, the word system is used to denote either some part of reality or its model,
which in this Thesis means a mathematical relation between different variables.
A system having state variables that change values as a function of time is called
a dynamic system, as opposed to static systems which remain in a configuration
which does not change with time.

Fig. 3.1. Mathematical model describing a physical system.

3.1 Survey of systems and model 21

3.1.1 Classification of Dynamic Systems

In [125] a useful characterization was proposed of dynamical system. Roughly
speaking, a dynamical system describes the evolution of a state over time. As a
well-known illustration we could consider the following differential equation:

ẋ(t) = f(x(t), u(t)) (3.1)

The state variables at time t in this case are given by an array x(t) (e.g. position
and velocity of a rigid body) and typically take values in X ⊆ <n and evolve over
time t ∈ T ⊆ < according to (3.1). The variable u(t) ∈ U ⊆ <m at time t denotes
either control inputs, that may be chosen as we like (e.g. commands of the user),
or disturbance (e.g. sensor error). Loosely speaking, one could say that the state
x(τ) at time τ summarizes all the information from the past (for times t ≤ τ)
of the system that is needed in order to understand the future behavior of the
state x(t) for t > τ except for the purely external effects due to the inputs and
disturbances [159]. In principle one could say that a dynamical system is defined
by a relation between the current state and an applied input or disturbance and a
state at a later time instant. For the differential equation given in (3.1) this means
that we have a map φ from the (initial) state x ∈ X, the initial time τ ∈ T , the
(final) time σ ∈ T with σ ≥ τ and a function u : [τ, σ] → U to the values of the
state array at time x(σ). Hence,

x(σ) = φ(σ, τ, x, u) (3.2)

This is an interesting way to look at systems which yields a nicely unifying way
to include also computer science models. Sontag [159] formalized the concepts as
follows.

Definition 3.1. A time set T is a subgroup of (<,+).

For any such set, T+ is the set of nonnegative elements {t ∈ T |t ≥ 0}. By notational
convention, when the time set T is understood from the context, all intervals are
assumed to be restricted to T .

For each set U and interval I, the set of all maps from I into U is denoted by

U I = {ω | ω : I → U} (3.3)

If T and k is a nonnegative integer, the set U [0,k) can be identified naturally with
the set of all sequences

ω(0), . . . , ω(k − 1)

of length k consisting of elements of U , i.e. the Cartesian product Uk. In the
particular case in which I is an empty interval , the set in (3.3) consists of just one
element, which we denote as �; this can be thought of as the “empty sequence” of
zero length.

The next definition provides the abstraction of the concept of system.

Definition 3.2. A system (or machine) Σ = (T,X,U, φ) consist of:

• a time set T

22 3 Hybrid System

• a nonempty set X called the state space of Σ
• a nonempty set U called the control-value or input-value space of Σ
• a map φ : Dφ → X called the transition map of Σ, which is defined on the

subset Dφ of

{(τ, σ, x, ω) | τ, σ ∈ T, σ ≤ τ, x ∈ X,ω : [σ, τ) → U}

such that the following properties hold:
Non-triviality: for each state x ∈ X, there is at least one pair σ < τ in

T and some ω ∈ Uσ,τ such that ω is admissible for x, that is, so that
(τ, σ, x, ω) ∈ Dφ;

Restriction: if ω ∈ U [σ,µ) is admissible for x, then for each τ ∈ [σ, µ) the
restriction ω1 = ω|[σ,τ) of ω to the subinterval [σ, τ) is also admissible for
x and the restriction ω2 = ω|[σ,µ) is admissible for φ(τ, σ, x, ω1);

Semigroup: if ω, τ, µ are any three elements of T so that σ < τ < µ, if
ω1 ∈ U [σ,τ) and ω2 ∈ U [τ,µ), and if x is a state so that

φ(τ, σ, x, ω1) = x1 and φ(τ, σ, x, ω2) = x2

then ω = ω1ω2 is also admissible for x and

φ(τ, σ, x, ω) = x2;

Identity: for each σ ∈ T and each x ∈ X, the empty sequence � ∈ U [σ,σ) is
admissible for x and

φ(τ, σ, x, �) = x.

Based on the fact that limited measurements are available, the following concept
is then natural.

Definition 3.3. A system or machine with outputs is given by a system Σ together
with

• A set Y called the measurement-value or output-value space;
• A map h : T ×X → Y called the readout or measurement map.

Elements of X are called states, elements of U are control values or input
values, and those of Y are output values or measurement values. The function
ω ∈ U [σ,τ) are called controls or inputs.

The definition of system is intended to capture the intuitive notion of a machine
that evolves in time according to the transition rules specified by φ. At each instant,
the state x summarizes all of the information needed in order to know the future
evolution of the system.

Based on state type, the following classification systems can be made:

Continuous state: the state takes values in a continuous set, e.g. <n for some
n ≥ 1.

Discrete state: the state takes values in a countable or finite discrete set {q1, q2, ·}.

Based on the set of times T over which the states evolves, dynamical systems can
be categorized in :

3.1 Survey of systems and model 23

Continuous time: T is a continuous set, e.g. a subset of <.
Discrete time: T is a discrete set, e.g. a subset of the integers Z.

Third, we distinguish systems, based on the mechanism that drives their evolution,
which can be:

Time-driven: the state of the system changes as time progresses, i.e. continu-
ously (for continuous time systems), or at every tick of the clock (for discrete
time systems). It is common to have a model described by a continuous time
continuous state system expressed by a differential equation (3.1). These sys-
tems are usually referred to as continuous systems.

Event-driven: the state of the system changes due to the occurrence of an
event. An event corresponds to the start or the end of an activity. In gen-
eral, event-driven systems are asynchronous and the event occurrence times
are not equidistant. Typical examples of event-driven systems are manufac-
turing systems, telecommunication networks, parallel processing systems, and
logistic systems. For a manufacturing system possible events are: the com-
pletion of a part on a machine, a machine breakdown, or a buffer becoming
empty.

We can also have combinations of continuous and discrete states, of continuous
and discrete time, or of time-driven and event-driven dynamics. The resulting
systems are called hybrid. In this Thesis a hybrid system essentially is a system
the evolution of which is over continuous time, but there are also discrete time
instants when “something happens” (e.g., the occurrence of an event that results
in a mode change of the system. Usually the mode is then characterized by a
discrete state variable).

3.1.2 Discrete Event Systems

Discrete Event Systems (DES) are models that arise naturally for a large class of
systems, mostly man-made and highly complex. The interest in discrete event sys-
tems in control engineering has been intensified in the last decade, and a reference
describing their properties is for example [5].

The DES mathematical models is described by asynchronous discrete-time dis-
crete state systems, where the times {tk ∈ < | k ∈ N} are not known a priori.

Automata or finite state machines are the most common models for discrete
time and discrete state (event-driven) systems, see Figure 3.2. We need some no-
tation before we can give a formal definition of automaton. For a set V we denote
the collection of all subsets of V (the power set) by P (V). Moreover, if we have two
sets V and W a partial function from V to W is a mapping that is not necessarily
defined for all values of V , but only for a subset D of V (its domain). Hence, if f
is a partial function from V to W , then there is a subset D(f) ⊆ V such that f is
a function from D(f) to W .

Definition 3.4. An Automaton is defined by the triple Σ = (Q,U, φ) with

• Q a finite or countable set of discrete states;
• U a finite or countable set of discrete inputs or the input alphabet;

24 3 Hybrid System

Fig. 3.2. State transition diagram.

• φ : Q× U → P (Q) is a partial transition function.

In case Q and U are finite, we speak of a finite automaton.
The evolution of an automaton is rather simple; given a discrete state q ∈ Q

and a discrete input symbol u ∈ U , the transition function defines the collection
of next possible states φ(q, u) ⊆ Q. Note that since φ needs not be defined for
all combinations of q and u, this means that not from all discrete states all input
symbols can be applied. On the other hand, sometimes the set of next possible
states may have more than one element. This is the so-called nondeterminism. In
case this nondeterminism is absent, i.e. φ(q, u) has zero or one element, we speak
of a deterministic automaton, which fits more or less directly in the definition of
a system as given in Definition 3.2.

3.2 Hybrid Systems

Complex systems typically posses a hierarchical structure, characterized by con-
tinuous variable dynamics at the lowest level and logical decision-making at the
highest. Virtually all control systems today perform computer-coded checks and
issue logical as well as continuous-variable control commands. Such systems are
”hybrid” systems. Traditionally the hybrid nature of these systems is suppressed
by converting them into either purely discrete or continuous entities. Motivated
by real-world problems, we introduce ”hybrid systems” as interacting collections
of dynamical systems, evolving on continuous-variable state space, and subject to
continuous control and discrete phenomena.

A look at the literature shows that there are many approaches to the modeling,
analysis and synthesis of hybrid systems. They can be characterized and described
along several dimensions. In broad terms, approaches differ with respect to the
emphasis on or the complexity of the continuous and discrete dynamics, and on
whether they emphasize analysis and synthesis results or analysis only or simula-
tion only. On one end of the spectrum there are approaches to hybrid systems that
represent extensions of system theoretic ideas for systems (with continuous-valued
variables and continuous time) that are described by ordinary differential equa-
tions to include discrete time and variables that exhibit jumps, or extend results
to switching systems. Typically these approaches are able to deal with complex

3.2 Hybrid Systems 25

continuous dynamics and emphasize stability results. On the other end of the spec-
trum there are approaches to hybrid systems that are embedded in computer sci-
ence models and methods, that represent extensions of verification methodologies
from discrete systems to hybrid systems. Typically these approaches are able to
deal with complex discrete dynamics described by finite automata and emphasize
analysis results (verification) and simulation methodologies. There are additional
methodologies spanning the rest of the spectrum that combine concepts from con-
tinuous control systems described by linear and nonlinear differential/difference
equations, and from supervisory control of discrete event system that are described
by finite automata and Petri nets to derive, with varying success, analysis and syn-
thesis results.

There are analogies between certain current approaches to hybrid control and
digital control systems methodologies. Specifically, in digital control one could
carry out the control design in the continuous time domain, then approximate or
emulate the controller by a discrete controller and implement it using an interface
consisting of sampler and a hold device. Alternatively, one could obtain first a
discrete model of the plant taken together with the interface and then carry out the
controller design in the discrete domain. In hybrid systems, in a manner analogous
to the latter case, one may obtain a discrete event model of the plant together with
the interface using automata or Petri nets; the controller is then designed using
discrete event system (DES) supervisor methodologies. The model consists of three
basic parts: continuous-time plant, finite control automaton, and interface. The
interface in turn consists of two parts, viz. an analog-to-digital (AD) converter and
digital-to-analog (DA) converter. The supervisor model is illustrated in Figure 3.3.

Fig. 3.3. Deterministic optimum control problem.

Associated to the plant are an input space U , a state space X, and an output
space Y , while the controller automaton has a (finite) input space I, a state
space Q and an output space O.

Further information on hybrid systems may be found in references [13, 16, 17,
18,94,137,145].

26 3 Hybrid System

3.2.1 Modeling Approaches

Models are the ultimate tools for obtaining and dealing with knowledge. Recently,
the modeling of hybrid system, with special emphasis on process control appli-
cation, has given rise to an abundance of research activity. There has been con-
siderable effort to develop theoretical frameworks and models for such systems,
and different directions have been pursued, depending on chosen goals. In this
research, we approach the study of modeling hybrid dynamical systems with the
aim of designing control laws. With this purpose in mind, hybrid automata are
discussed next.

Different mathematical paradigms have been used for modeling hybrid systems
reveal the diversity of the researches. Tavernini [166] used differential automata;
Nerode and Kohn [94] took an automata theoretic approach to systems composed
of interacting ODEs and finite automata; Antsaklis in the same Lecture Notes took
a discrete event dynamical systems approach; Brockett [49] combined ODEs and
discrete phenomena to describe motion systems; Back [94] provided a framework
suitable for numerical simulation. Alur [11] used hybrid automata, and an exten-
sion of timed automata is used in [12,128]; Chaochen [64] used Duration Calculus
for hybrid real-time systems, and Benveniste [38] proposed a behavioral frame-
work of hybrid systems modeling with emphasis on compositionality and use of
multiform time. Clearly, these models were developed for different purposes with
assumption arising accordingly.

The choice of a suitable framework is a trade-off between two conflicting crite-
ria: the modeling power and the decisive power. The modeling power indicates the
size of the class of systems allowing a reformulation in terms of the chosen model
description. The decisive power is the ability to prove quantitative and qualitative
properties of individual systems in the framework. A model structure that is too
broad cannot reveal specific properties of a particular element in a model class.
The size of a model class is often taken too large for analysis purpose. Even for
the easiest hybrid systems analysis and control problems are often undecidable1,
NP-complete or NP-hard2, or require a high computational load.

Although hybrid automata can be considered as one of the most descriptive
and general models for hybrid systems, analysis and control design based on these
models is often results in computationally hard problems ([5,61]). However, some

1 A problem is undecidable if there cannot exist generally applicable algorithms that
solve the problem.

2 A decision problem is a problem that has only two possible solutions: either the answer
“yes” or the answer “no”. A search problem is a problem for which we either have
to give a solution or have to establish that the problem has no solution. A search
problem (such as an optimization problem or a design problem) is called NP-hard
if the corresponding decision problem (e.g., deciding whether or not there exists an
optimal solution or an optimal design) is NP-complete. An NP-complete problem can
only be solved in polynomial time if the class P would coincide with the class NP [2].
With the present state of knowledge it is still an open question whether the class
P coincides with the class NP. However, since no NP-complete problem is known to
be solvable in polynomial time despite the efforts of many excellent researchers, it is
widely conjectured that no NP-complete problem can be solved by a polynomial time
algorithm.

3.2 Hybrid Systems 27

special classes of hybrid systems for which tractable analysis and control design
techniques are available. An overview of these kind of modeling techniques includes:

• mixed logical dynamical (MLD) systems [36,37],
• piecewise-affine (PWA) systems [160],
• linear complementarity (LC) systems [102,176],
• extended linear complementarity (ELC) systems,
• max-min-plus scaling (MMPS) systems [70],
• timed automata,
• timed Petri nets.

We would like to emphasize that this list is by no means exhaustive. We are
not going to treat all these classes here, but focus on the most well-known classes.
The common feature of all the modeling paradigms, and in fact of all hybrid
systems, is in the interaction of different dynamics. This indicates that also the
model structure should mix two modeling formalisms. Typically, one might think
of the interaction of time-driven models (governed by differential or difference
equations) on one hand, and event-driven systems (described by, e.g., temporal
logic, automata, finite state machines, etc.) or logic rules on the other. In some
way these features should be combined in a unifying model structure. One of the
nicest ways to look at hybrid systems is via hybrid automata, which can be as a
cross production of finite state machines and differential or difference equations
(depending on whether we use discrete time or continuous time formalism).

Hybrid Automata

The Hybrid Automaton (see [47, 45, 138]) model is described briefly as follows.
The discrete part of the dynamics is modeled by means of a graph whose vertices
are called locations, discrete states or modes, and whose edges are transitions.
The continuous state takes values in a vector space χ. For each mode there is
a set of trajectories, which represents the continuous dynamics of the system.
Interaction between the discrete dynamics and continuous dynamics takes place
through invariants and transition relations. Each mode has an invariant associated
to it, which describes the conditions that the continuous state has to satisfy at
this mode. Each transition has an associated transition relation, which describes
the conditions on the continuous state under which that particular transition may
take place and effect that the transition will have on the continuous state.

Various ramifications of the hybrid automaton model have been proposed in
the literature. Sometimes the notion of a transition relation is split up into two
components, namely a guard which specifies the subset of the state space where a
certain transition is enabled, and a reset map which is a (set-valued) function that
specifies how new continuous states are related to previous continuous states for a
particular transition. We opt here for the following description of hybrid automata.

Definition 3.5. A hybrid automaton H is a collection H = (Q,X, f, Init, Inv,E,G,R)
with

• Q = {q1, · · · , qN} is a finite set of discrete states;

28 3 Hybrid System

• X = <n is a set of continuous states;
• f : Q×X → X is a vector field;
• Init ⊆ Q×X is a set of initial states;
• Inv : Q→ P (X) describe the invariants;
• E ⊆ Q×Q is a set of edges;
• G : E → P (X) is a guard condition;
• R : E → P (X ×X) is a reset map.

Note that P (X) is a power set of X, i.e., the collection of all subset of X. Hence,
note that the guard condition G gives for each mode a subset of X. The (hybrid)
state variable of the system H is given by (q, x) ∈ Q × X. The evolution of this
dynamical system behaves as shown in Figure 3.4. The initial hybrid state (q0, x0)
of trajectories of a hybrid automaton lies in the initial set Init. From this hybrid
state the continuous state x evolves according to the differential equation

ẋ = f(q0, x) with x(0) = x0

and the discrete state q remains constant q(t) = q0. The continuous evolution can
go on as long as x stays in Inv(q0). If at some point the continuous state x reaches
the guard G(q0, q1), we say that the transition is enabled. The discrete state may
then change to q1, and the continuous state jumps from the current value x− to
the new value x+ with (x−, x+) ∈ R(q0, q1). After this transition, the continuous
evolution resumes and the whole process is repeated.

This framework indicates the behavior of a hybrid system: continuous phases
separated by events at which (maybe multiple) discrete actions (re-initialization
of the continuous state x and discrete state q) take place. It is obvious that these
systems switch between many operating modes where each mode is governed by
its own characteristic dynamical laws. Mode transitions are triggered by variables
crossing specific thresholds (state events) and by the elapse of certain time periods
(time events) due to the invariants and guards. With a change of mode, discon-
tinuities in the time-continuous variable may occur as given by the reset map.
Extension of this formalism are possible, so as to include also external inputs
(inputs events) as triggering a mode change, as defined in [44].

A description format (e.g. differential equations or finite state machines) for a
class of dynamical systems only specifies a collection of trajectories if one provides a
notion of solution. Formally speaking, description formats are a matter of syntax:
they specify what is a well-formed expression. The notion of solution provides
semantics: to each well-formed expression it associates a collection of functions of
time (called the behavior of the system in [182]).

Hybrid Time Trajectories

Definition 3.6. A hybrid time trajectory τ is a finite or infinite sequence of in-
tervals τ = {Ii}Ni=0 such that

• Ii = [τi, τ ′i] for i < N, and, if N <∞, IN = [τN , τ ′N)
• τi ≤ τ ′i = τi+1 for i ≥ 0

3.2 Hybrid Systems 29

Fig. 3.4. Example of a general hybrid system: a finite number of discrete states are inter-
connected by edges representing events/guards. Each discrete state contains a continuous
dynamical system with corresponding differential equation.

A hybrid time trajectory is a sequence of intervals of the real line, whose end points
overlap. The interpretation is that the end points of the intervals are the times
at which discrete transitions take place. Note that τi = τ ′i is allowed, therefore
multiple discrete transitions may take place at the same time.

Hybrid time trajectories can extend to infinity if τ is an infinite sequence or if
it is a finite sequence ending with an interval of the form [τN ,∞). We denote by
T the set of all hybrid time trajectories and use t ∈ τ as shorthand notation for
that there exists i such that t ∈ Ii with Ii ∈ τ .

We use q and x to also denote the time evolution of the discrete and continuous
state, respectively. For each i ∈ {1, . . . , N}, they will be defined as functions from
the interval Ii to Q and <n, respectively. We use q : τ → Q and x : τ → <n as
short hand notations for the maps assigning values from Q and <n to each t ∈ τ .
Note q and x are not functions on the real line, as they assign multiple values to
the same t ∈ < at t = τ ′i = τi+1 for all i ≥ 0.

Each τ ∈ T is fully ordered by the relation ≺ defined by t1 ≺ t2 for t1 ∈ [τi, τ ′i]
and t ∈ [τj , τ ′j] if i < j, or if i = j and t1 < t2.

30 3 Hybrid System

Executions

Next we introduce a concept similar to a solution of a continuous dynamical sys-
tems for hybrid automata. This concept is, however, richer the regular solutions,
so to distinguish them we introduce the notion of executions of hybrid automata.

Definition 3.7. An execution χ of a hybrid automaton H is a collection χ = (τ, q, x)
with τ ∈ T , q : τ → Q, and x : τ → <n, satisfying

Initial condition: (q(τ0), x(τ0)) ∈ Init;
Continuous evolution: for all i with τi < τ ′i , q(·) is constant and x(·) is a

solution to the differential equation ẋ = f(q(t), x(t)) over [τi, τ ′i] and for all
t ∈ [τi, τ ′i), (q(t), x(t)) ∈ Inv;

Discrete evolution: for all i, (q(τi+1), x(τi+1)) ∈ R(q(τ ′i), x(τ
′
i)).

Figure 3.5 illustrates an execution. We say a hybrid automaton accepts an exe-

Fig. 3.5. Example of an execution.

cution χ or not. The execution time τ∞(χ) is defined as τ∞(χ) =
∑N
i=0(τ

′
i − τi),

where N +1 is the number of intervals in the hybrid time trajectory. An execution
is finite if τ is a finite sequence ending with a compact interval, it is called infinite
if τ is either an infinite sequence or if τ∞(χ) = ∞, and it is called Zeno if it is
infinite but τ∞(χ) <∞. The execution time of a Zeno execution is also called the
Zeno time.

We use εH(q0, x0) to denote the set of all executions of H with initial condi-
tion (q0, x0) ∈ Init, εMH (q0, x0) to denote the set of all maximal executions, and
ε∞H (q0, x0) to denote the set of all infinite executions.

3.3 Lyapunov Stability 31

Given the previous definitions, we can formalize the following property of hy-
brid automata.

Definition 3.8. A hybrid automaton H is deterministic if εMH (q0, x0) contains at
most one element for all (q0, x0) ∈ Init

With this in mind we model for example a suture task with a deterministic
finite hybrid automaton, using well know subdivision coming from a surgeon “a
priori” knowledge of the task, as shown in Figure 4.2. This model will be discussed
in Section 4.4.

Fig. 3.6. Example of a hybrid automaton for the suture task.

3.3 Lyapunov Stability

Stability is one of the central properties of system theory and engineering. From a
controlling point of view, one of the most important properties that a closed-loop
system must satisfy is that it has to be stable, since the system is otherwise use-
less and potentially dangerous. Loosely speaking, a stable operating (equilibrium)
point means that a trajectory starting somewhere near this point will stay near
it for all future time. A formal definition of stable equilibrium points in hybrid
systems together with stability conditions verifying this property are given in this
section.

32 3 Hybrid System

Consider a dynamical system which satisfies

ẋ = f(x, t) x(t0) = x0 x ∈ <n (3.4)

We assume that f(x, t) satisfies the standard conditions for the existence and
uniqueness of solutions. Such conditions are, for instance, that f(x, t) is Lipschitz
continuous with respect to x, uniformly in t, and piecewise continuous in t. A point
x ∈ <n is an equilibrium point of (3.4) if f(x∗, t) ≡ 0. By shifting the origin of the
system, we may assume that the equilibrium point of interest occurs at x∗ = 0.
Intuitively, we say an equilibrium point is locally stable if all solutions which start
near x∗ (meaning that the initial conditions are in a neighborhood of x∗) remain
near x∗ for all time. The equilibrium point x∗ is said to be locally asymptotically
stable if x∗ is locally stable and, furthermore, all solutions starting near x∗ tend
towards x∗ as t→∞.

The most general and useful approach for studying stability of nonlinear sys-
tems is the theory introduced in the late 19th century by the Russian mathemati-
cian A. M. Lyapunov [89].

The stability in the sense of Lyapunov is defined as following:

Definition 3.9. The equilibrium point x∗ = 0 of (3.4) is stable (in the sense of
Lyapunov) at t = t0 if for any ε > 0 there exists a δ(t0, ε) > 0 such that

| x(t0) |< δ =⇒| x(t) |< ε, ∀t ≥ t0

The theory proposed by Lyapunov showing stability for nonlinear systems now
carries his name. Many refinements of Lyapunov’s methods have been developed
since then.

The indirect method of Lyapunov uses the linearization of a system to deter-
mine the local stability of the original system. If it is assumed that the nonlinear
vector field is continuously differentiable, then the nonlinear system possesses the
same stability properties as the system that is linearized around the origin. Un-
fortunately, the analysis only implies local properties.

On the other hand, more global stability properties can be concluded by ap-
plying Lyapunov’s direct method (also called the second method of Lyapunov).
Applying this method for nonlinear systems, stability can be shown by verify-
ing the existence of a scalar auxiliary function satisfying certain conditions [4, 6]
without explicitly integrating the differential equation. Such a function is called
a Lyapunov function and plays the role of a measure of the system’s (abstract)
energy. The method is a generalization of the idea that if there is some measure
of energy in a system, then we can study the rate of change of the energy of the
system to ascertain stability.

The geometrical implications of stability, instability, asymptotic stability and
exponential stability in the sense of Lyapunov for a continuous equilibrium point
of an autonomous hybrid system are shown in Figure 3.7. The concept of expo-
nential stability is used here with the purpose of knowing an explicit bound on the
trajectory state at any time.

The stability analysis of hybrid systems using Lyapunov functions is compli-
cated by the fact that there are switches of the discrete states and hence the vector
fields describing the continuous evolution in a hybrid system.

3.3 Lyapunov Stability 33

2

1

3

4

Trajectory 1 - stable

Trajectory 2 - unstable

Trajectory 3 - asymptotically stable

Trajectory 4 - exponentially stable

Fig. 3.7. Concepts of stability.

In this Thesis, Lyapunov’s theory is applied to autonomous hybrid systems.
Lyapunov functions are considered as dynamic constraints in the optimization
problem. Due to the results explained in the following sections a stability condi-
tion for an hybrid system is computed and added to the formulation of the problem
treated in this work. We obtain the optimum control law under the stability as-
suntions, whose are necessary but not sufficient for a safe system behavior.

3.3.1 Basic Definitions

This section introduces stability for hybrid automata. By generalizing some classi-
cal concepts from continuous dynamical systems, we are able to derive a Lyapunov
stability theorem for hybrid automata.

Definition 3.10. The continuous state x∗ = 0 ∈ <n is an equilibrium point of
an hybrid automaton H if there exists a non-empty set Q̄ ⊂ Q such that for
all q ∈ Q̄

• (q′, z′3) ∈ Jump4(q, 0) implies that z′ = 0 and q′ ∈ Q̄
• f(q, 0) = 0

If Jump(q, 0) 6= ∅, then we require that the vector field should vanish in the origin
for all reachable discrete states.

An equilibrium point x∗ = 0 together with Q̄ define an invariant set in the
following sense.
3 We refer to a point (q, z) ∈ Q×<n where z is the evaluation of x as the state of H
4 A set-valued function Jump : Q × <n → P (Q × <n) is called the jump condition. It

specified if a jump from one discrete mode to another is possible and what new value
should be assigned to the continuous variable after the jump.

34 3 Hybrid System

Definition 3.11. A set M ⊂ Init is called invariant if for all (q0, x0) ∈ M ,
(τ, q, x) ∈ εH(q0, x0), and t ∈ τ , it holds that (q(t), x(t)) ∈M .

We can now define the notion of stability and enunciate the Lyapunov’s Stability
Theorem for Hybrid Automata.

Definition 3.12. Assume x∗ = 0 is an equilibrium point of a hybrid automaton
H. It is called stable, if for all ε > 0 there exists δ > 0 such that for all executions
χ = (τ, x, q) ∈ εH(q0, x0) with ‖x0‖ < δ it holds that ‖x(t)‖ < ε for all t ∈ τ .

The equilibrium point x∗ = 0 is asymptotically stable if it is stable and
δ < 0 can be chosen such that for all executions χ = (τ, x, q) ∈ ε∞H (q0, x0) with
‖x0‖ < δ it holds that limt→τ∞‖x(t)‖ = 0.

Note that in the definition of stability , the discrete state of hybrid automata
are not taken into account. This means that an equilibrium point of a hybrid
automaton is considered asymptotically stable, although the discrete evolution
not converge.

Theorem 3.13. Consider a hybrid automaton H, such that (q, z) ∈ Q × <n and
(q′, z′) ∈ Jump(q, z) imply that z′ = z. Assume there exists an open set Ω ⊂
Q × <n, such that (q, 0) ∈ Ω for some q ∈ Q and that x∗ = 0 is an equilibrium
point of H. Let V : Ω → < be a continuously differentiable function in its second
argument such that for all q ∈ Q

• V (q, 0) = 0
• V (q, x) > 0,∀x, (q, x) ∈ Ω\0
• ∂V

∂x f(q, x) ≤ 0,∀x, (q, x) ∈ Ω

If for all χ = (τ, q, x) ∈ εH(q0, x0) with (q0, x0) ∈ Init ∩Ω and for all q̂ ∈ Q, the
sequence {V (q(τi), x(τi)) : q(τi) = q̂} is non-increasing (or empty), then x∗ = 0 is
stable.

Theorem 3.13 gives sufficient conditions for the stability of the origin of a
system. It does not, however, give a prescription for determining the Lyapunov
function V (q, x). Since the theorem only gives sufficient conditions, the search for a
Lyapunov function establishing stability of an equilibrium point could be arduous.
However, it is a remarkable fact that the converse of Theorem 3.13 also exists: if
an equilibrium point is stable, then there exists a function V (q, x) satisfying the
conditions of the theorem. However, the utility of this and other converse theorems
is limited by the lack of a computable technique for generating Lyapunov functions.
Theorem 3.13 also stops short of giving explicit rates of convergence of solutions
to the equilibrium. It may be modified to do so in the case of exponentially stable
equilibria.

3.3.2 Existing stability results

There exist several results in the literature using Lyapunov theory to show stability
for hybrid systems and to illustrate that stability of hybrid systems in general
depends on the switchings of discrete states and corresponding vector fields. The
purpose of this section is to present some of these.

3.3 Lyapunov Stability 35

Peletis-DeCarlo An early theorem guaranteeing (asymptotic) stability of linear
hybrid systems is proposed in [142] by Peletis and DeCarlo. It is assumed
that the time between vector field switchings is bounded above and below by
some constant, implying that an infinite number of switching cannot occur in
finite time but there will be an infinite number of switching when time goes to
infinity. By introducing multiple Lyapunov functions, one Lyapunov function
Vi for each linear vector field fi, which are positive definite and continuously
differentiable (and hence continuous), (asymptotic) stability is guaranteed by
requiring the energy at the consecutive times (just before switching) to be a
decreasing sequence, as shown in Figure 3.8. When there are switchings to
another linear vector field at the times t1, t2 and so on, the values of the
corresponding Lyapunov function just before the switchings are marked by
filled circles. The sequence of consecutive values marked by the circles must
be (strictly) decreasing according to the (asymptotic) stability result.

V

tt0 t1 t2 t3 t4 t5 t6

V1

V2

V1

V3

V2 V3

V1

Fig. 3.8. Illustration of the decrease of energy in the (asymptotic) stability result of
Peleties-DeCarlo.

Dogruel-Özgüner Another proposed (asymptotic) stability result for hybrid sys-
tems is the theorem presented in [78] by Dogruel and Özgüner. It is applied
to hybrid systems with nonlinear vector fields, where possible sliding modes
have been replaced by an equivalent continuous dynamics in such a way that
the system spends equal time in each of the discrete states involved in the
switchings. It is assumed that the origin is an equilibrium point for all vector
fields. By introducing a common Lyapunov function which is positive definite
and continuously differentiable (and hence continuous), (asymptotic) stabil-
ity is guaranteed by requiring the energy to be decreasing all the time for all
vector fields that are possible in a certain region, as shown in Figure 3.9.

36 3 Hybrid System

V

tt0 t1 t2 t3 t4 t5 t6

Fig. 3.9. Illustration of the decrease of energy in the stability result of Dogruel and
Özgüner

Branicky The stability result proposed by Branicky in [46] is applicable to hybrid
systems with nonlinear vector fields, each assumed to be globally Lipschitz5

and having the origin as an equilibrium point. It is assumed that there are a
finite number of vector field switching in finite time. By introducing multiple
Lyapunov functions, one Lyapunov function Vi for each vector field fi which
are positive definite and continuously differentiable (and hence continuous),
stability is guaranteed by requiring the energy not to increase when no vector
field switchings occur and to be a non-increasing sequence at the consecu-
tive times obtained when switching to the different vector fields, as shown in
Figure 3.10.

Ye-Michel-Hou The proposed stability result in [186, 187] by Ye, Michel and
Hou is very general in the sense that it can be applied to different types of
systems, for instance continuous differential equations together with difference
equations, or differential equations together with discrete event systems. A
continuous Lyapunov function is introduced which guarantees stability if the
sequence of values of the Lyapunov function at consecutive switching times is
non-increasing and the energy between these times is bounded by a contin-
uous function which is zero in the origin. Asymptotic stability is guaranteed
by requiring the sequence of values of the Lyapunov function at consecutive
switching times to be decreasing (it is assumed that there are an infinite num-
ber of switches), as shown in Figure3.11. Multiple Lyapunov functions are
introduced, one Lyapunov function for each vector field, which are positive
definite. The requirement that the energy is not allowed to increase when no
vector field switchings occur in Branicky’s result is weakened by the condition
that the energy only has to be bounded by a continuous function which is zero
at the origin.

5 A function F is globally Lipschitz continuous if there exist L > 0 (indipendent of r)
such that ‖F (z)− F (y)‖ ≤ L‖z − y‖ for all ‖z‖, ‖y‖ < r for any r > 0

3.3 Lyapunov Stability 37

V

tt0 t1 t2 t3 t4 t5 t6

V1

V2

V1

V3

V2 V3

V1

Fig. 3.10. Illustration of the decrease of energy in the stability result of Branicky.

V

tt0 t1 t2 t3 t4 t5 t6

Fig. 3.11. Illustration of the decrease of energy in the stability result of Ye-Michel-Hou.

We can do some consideration on the results presented from the literature. The
above stability results are restricted to hybrid systems of a certain structure and
model. All results assume that the origin is an equilibrium point for all vector fields.
However, the vector fields in hybrid systems do not satisfy this property in general.
Furthermore, all results, except the one proposed by Dogruel and Özgüner, assume
that there are a finite number of vector field switchings in finite time, restricting
the direct application of the stability results to hybrid systems without sliding
motions. In the same work, the stability conditions proposed by the authors are
only sufficient conditions for stability. It is not hard to construct hybrid examples
which are stable but do not have a common Lyapunov function.

In this work we assume as a model a deterministic automaton, where the
number of switching is finite. Hence, we assure the stability in the synthesis of

38 3 Hybrid System

the control law, introducing constraints, i.e. convergence to an equilibrium point
in the last subsystems of the trajectory execution, as explained in Chapter 7,
ensuring the stability result.

3.3.3 A Literature Review

Research into hybrid systems may be broken down into four broad categories:

• Modeling: formulating precise models that capture the rich behavior of hybrid
systems.

• Analysis: developing tools for the simulation, analysis, and verification of
hybrid systems.

• Synthesis: synthesizing hybrid controllers, which issue continuous control and
make discrete decisions, that achieve certain prescribed safety and performance
goal for hybrid systems.

• Simulation: conceiving new tools that lead to easier modeling, verification,
and control of hybrid systems.

This section summarizes a few key papers, ranging from system theoretic results
to verification and simulation.

Modeling and Analysis

A starting point for understanding the properties of Hybrid Systems is the def-
inition of an appropriate model, or range of models, expressive enough for the
properties under investigation. The work in [186], [46], [107], [144], [176], [112],
[95], [131], [162], and [170] is mostly concerned with modeling and analysis related
to system stability.

A model suitable for qualitative analysis of hybrid dynamical systems is pre-
sented in Ye [186]. An invariant set (e.g. an equilibrium set) is defined using
(Lyapunov-like) stability concepts. Sufficient conditions for uniform stability, uni-
form boundedness of motion, uniform asymptotic stability, exponential stability
and instability are established. Converse necessary conditions for some stabil-
ity type are also defined. Examples are presented from control theory, including
sampled-data feedback control systems, systems with impulse effects, and switched
systems.

Multiple Lyapunov functions are used for stability analyses of switched systems
and iterated function systems are used for Lagrange stability in Branicky [46], see
in the following for more details.

Stability analysis of nonlinear and hybrid systems is addressed in Johansson
and Rantzer [107] by searching for piecewise quadratic Lyapunov functions as a
convex optimization problem using linear matrix inequalities.

Stability and robustness issues are also addressed using Lyapunov theory in
Pettersson and Lennartson [144]. The applicability of the results is discussed, and
strong conditions for stability are formulated to compute Lyapunov functions as
solutions of an Linear Matrix Inequalities (LMI) problem.

The paper by Van de Schaft and Schumacher [176] is concerned with the study
of the well-posedness (existence and uniqueness of solutions) of complementarity

3.3 Lyapunov Stability 39

systems, special hybrid systems that are related to the linear complementary prob-
lem of mathematical programming. Complementarity modeling is presented first,
and well-posedness is defined. The paper, then establishes sufficient conditions for
the uniqueness of smooth continuations of complementary systems of arbitrary
number of discrete states.

Feedback stabilization of a class on nonlinear systems using hybrid feedback
controllers is addressed by Kolmanovsky and McClamroch [112]. The authors
study the general structure of systems represented as a cascade of a linear time
invariant and a nonlinear system. The controller is constructed to induce a slow
and a fast dynamics, and feedback control linearizes the original nonlinear system
at the two different time scales.

The domain of attraction of a nonlinear control systems is expanded by Guck-
enheimer [95] and McClarmroch [131] using switching. The resulting nonlinear
control system admits a family of equilibria corresponding to constant control in-
puts. Switching occurs at discrete times from one control input to another so that
the system gradually progresses from one equilibrium point to another towards a
final equilibrium.

A Discrete Event System (DES) automaton is used in Stiver [162] to describe a
continuous plant, its discrete event controller, and the interface and the complete
system is analyzed as a hybrid control system. The system is proved to be a
deterministic and controllable hybrid system for which a controller design method
is proposed. To extend this approach, invariant based methods for control design
are also presented. This method is based on the natural invariants of the continuous
part and has appeared in [161].

The control design of a class of hybrid systems with continuous dynamic de-
scribed by pure integrators is studied by Tittus and Egardt in [170]. This class
includes a small set of hybrid systems, but it models the important class of con-
trol batch processes. The notion of controllability for this class is proposed and a
controllability analysis formulated as a backward reachability problem is derived.
The analysis is based on a hybrid automaton model, which includes a hybrid plant
and a hybrid controller that interact in a feedback loop.

Synthesis

The design of controllers suitable for hybrid systems, or based on hybrid system
theory, is address in papers [149], [67], [56], [139], [126], [123].

The paper by Raisch and O’Young [149] addresses the problem of a continuous
plant controlled via symbolic feedback. The hybrid problem is first translated
into a purely discrete problem by approximating the continuous plant model by a
non deterministic finite state machine. Past measurements and control symbols are
used to improve approximation accuracy and adjusted it to required specifications.
An optimal controller enforcing the specifications is then computed by applying
supervisory control theory.

Supervisory control for a class of continuous-time hybrid systems is studied
by Cury [67]. The supervisor is allowed to switch the discrete-valued input signal
when threshold events are observed. The objective of the control is to synthesize a
nonblocking supervisor that keeps the set of possible control sequences and thresh-
old events for the closed-loop system between given upper and lower bounds in the

40 3 Hybrid System

sense of set containment. The paper shows that this problem can be converted into
a supervisor synthesis problem for a DES. A finite representation may not exist
for the exact DES model of the hybrid system, however. The algorithm bypasses
this difficulty by constructing finite-state Muller automata that accept outer ap-
proximations to the exact controlled threshold-event language is presented. The
paper shows that supervisors synthesized for the approximating automata are able
to achieve the original specifications when applied to the true hybrid system.

Hierarchical hybrid control systems are defined by Caines and Wei [56] using
the notion of dynamic consistency. This notion is extended to hybrid systems by
defining a set of dynamically consistent hybrid partition machines, with between-
block and in-block controllability properties. The hybrid partition machines are
organized in a lattice structure, whose properties are investigated.

Nerode and Kohn [139] propose a Multiple Agent Hybrid Control Architec-
ture to implement a real-time distributed software controller. The architecture is
based on principles of declarative control, concurrent programming and dynami-
cal hybrid systems. Each agent computes its control action by solving a relaxed
convex optimization problem. An evolution of this approach is proposed in (Kohn
et al., 1998) by finding an unbiased estimate of the plant state given dynamic and
noisy measurements represented in a multiplicity of forms, without converting all
data to a common representation. The paper defines the Multiple Agent Hybrid
Estimation Architecture to allow hetereogenous data to flow between individual
agents in the network and to improve their individual capability of estimating the
current plant state.

Hybrid control of large scale, multiagent systems based on optimal control and
game theory is addressed by Lygeros, Godbole and Sastry [126]. The hybrid design
is seen as a game between two players: the control, which is chosen by the designer,
and noise including the actions of other agents, and unmodeled environmental
disturbances. The two players compete over cost functions that encode properties
that the closed loop hybrid system needs to satisfy, e.g. safety. The control ”wins”
the game if it can keep the system safe for any allowable disturbance. The game
theoretical methodology is used to compute the continuous controllers as well as
the sets of safe states where the control ”wins” the game. The sets of safe states
are used to construct an interface to the discrete domain that guarantees the safe
operation of the combined hybrid system. This approach has been used in air
traffic management [172] and in control of automated highway systems [127].

The integration of timed automata and robust control methods for the control
of complex dynamical systems is analyzed by Lemmon and Antsaklis [123]. Recent
results from computer science and robust control are presented and integration
guidelines are given to study stability and boundedness conditions of switched
systems. Robust control methods have also been used for hybrid control [16,17].

Simulation

Papers on simulation and performance verification are the final group of this brief
summary of theoretical aspects of Hybrid Systems, and include [12], [16], [104], [73].
Here a most relevant distinction is that between using timed automata and hybrid
automata.

3.3 Lyapunov Stability 41

Timed automata are proposed by Alur and Dill [12] to model the behavior or
real-time systems over time. Their performance is studied from the perspective
of formal language theory (closure properties, decision problems, and subclasses).
The theory is applied to automatic verification of real-time requirements of finite
state machines.

Hybrid automata are introduced as a model and specification language for hy-
brid systems by Alur et al. [10]. Hybrid automata can be viewed as a generalization
of timed automata, in which the behavior of variables is governed in each state by
a set of differential equations. This paper shows that the reachability problem is
undecidable even for very restricted classes of hybrid automata. Two semidecision
procedures are presented for verifying safety properties of piecewise-linear hybrid
automata, in which all variables change at constant rates.

Puri and Varaiya [16] present two methods for verification of hybrid systems.
The authors model these systems with hybrid automata. Verification is based on
abstracting the continuous dynamics in the hybrid system. The methodology is
presented using a train-gate-controller example. In [13], Puri, Borkar and Varaiya
present a method to compute an arbitrarily close approximation of the reach set
of a Lipschitz differential inclusion. Deshpande and Varaiya [74] use nondetermin-
istic finite automata to model the discrete behavior and differential inclusions to
model the continuous behavior of hybrid systems. Safety and fairness properties
over the system’s state trajectories are expressed using the concept of viability, i.e.
the system ability to perform an infinite number of discrete transitions. To ensure
viability, the system’s evolution must be restricted so that the discrete transitions
occur within specific subsets of their enabling conditions which are called viabil-
ity kernel. Results pertaining to continuity properties of the viability kernel are
given and conditions under which it can be computed in a finite number of steps
are established. Finally, a hybrid controller that yields all viable trajectories is
synthesized.

The methodology used by Henzinger et al. [104] to algorithmically analyze non-
linear hybrid systems consists of first translating them to linear hybrid automata,
and then using automated model-checking tools. Two translation methods are
presented. The first is called clock translation, and it replaces, when possible,
constraints on nonlinear variables with constraints on variables with constant uni-
tary derivative. This method is efficient but has limited applicability. The second
method, linear phase-portrait approximation, conservatively over-approximates
the phase-portrait of a nonlinear hybrid system using piecewise-constant poly-
hedral differential inclusions.

Numerous simulation tools have been proposed for the simulation, verification
and implementation of hybrid systems. SHIFT is proposed by Deshpande [73] and
consists of a programming language for describing dynamic networks of hybrid
automata. The SHIFT models offers the proper level of abstraction for describing
complex applications such as automated highway systems whose operation can-
not be captured easily by conventional systems. Henzinger and Ho [16] proposed
HYTECH as an automatic tool for analyzing hybrid systems. Daws et al. [13] de-
veloped KRONOS as a verification platform for complex real-time systems. Taylor
and Kebede [167] developed Matlab tools for modeling and simulation of hybrid
systems. Bemporad et al. [147] proposed HYSDEL which models the system as a

42 3 Hybrid System

discrete hybrid automaton (DHA) using the high level modeling language HYSDEL
(HYbrid System DEscription Language). Such a model can be later translated
into Mixed Integer Dynamical (MLD) modeling framework. Other computer sim-
ulation and verification tools that are (also) used for hybrid systems are BaSiP,
Modelica, Chi, 20-sim, UPPAAL, and many others. Simulation models can rep-
resent the plant with a high degree of detail, providing a close correspondence
between simulated behavior and real plant behavior. This approach is, for any
large system, computationally very demanding, and moreover it is difficult to un-
derstand from a simulation how the behavior depends on model parameters. This
difficulty is even more pronounced in the case of large hybrid systems which con-
sist of many interacting modules. Fast simulation techniques based on variance
reduction, and perturbation analysis techniques [5] have been developed in order
to partially overcome these limitations.

3.4 Conclusions

In this chapter an overview on hybrid system framework is presented. Because
the literature on hybrid systems is broad and covers many areas in engineering
and computer science, here we present only some aspects strictly related to this
research. We define a hybrid automaton, that is the model that we choose to
describe our task. We summarized the state of the art on the analysis of hybrid
systems with emphasis on the stability results and some consideration on synthesis
and simulation. We use the concepts and definitions summarized here as the base
to set up the approach presented in the following chapters.

4

Robotic Surgery

The more a machine is developed the more it disappears.
José Maria Galvan

Surgical theaters are changing rapidly. Also surgical techniques are changing.
Minimally Invasive Surgery (MIS) has already been introduced some time ago.
After the introduction of MIS, computers and computer controlled surgical tools
were more and more integrated into the surgical theater. The next step was to
introduce the robot for surgical purposes. In the future surgeons will not even
have to touch the patient while operating.

To understand the problems that arise when the new robotic techniques is
introduced, an introduction to medical robotics is given in this Section. The terms
’minimally invasive surgery’ and ’microsurgery’ are introduced. Their advantages,
disadvantages and shortcomings are discussed. The most important advantages are
fast recovery and less pain for the patient. The most important disadvantages are
the less ergonomic situation for the surgeon and the bad visibility of the operation
area. A difference is made between ’robotic surgery’ and ’computer aided surgery’
(CAS). CAS system is powered by the surgeon, while a medical robot is not.
Medical robots can be divided in four groups, (i) passive robots, (ii) active robots,
(iii) synergistic systems and (iv) master-slave systems. Especially master-slave
systems seem to be very promising to use on large scale, because they are able to
handle soft tissues and can be used for a large range of operations.

As stated, robots seem to be very promising for use during surgery. However,
a lot of aspects have to be improved to increase their performance, not only with
respect to mechanical design, but also with respect to control and sensing. Besides
these technical aspects also clinical and social aspects play a role. Questions such
as: ’Is the result of robotic surgery really better than the result of conventional
surgery? Is such a big investment worthwhile? Are there any surgeons who are
able and willing to handle such a robot?’ arise.

Many studies were carried out in order to introduce new robotic techniques or
simply to improve the existing ones. In the literature studies on decomposition of
complex task, especially surgical task, have the objective to develop simulators for
evaluating surgical skill. Few works address the problem of automatic execution

44 4 Robotic Surgery

of surgical task, which requires the identification of an underlying mental model
to derive a possible task control sequence. The model aims at analyzing and seg-
menting the task in simpler sub-tasks. As an example of surgical task at the end
of this Chapter we consider suture, which is well defined and parametric in nature.
This approach generates a model, hybrid automaton, where the states are basic
skills and the transitions between states are governed by knowledge of the task
and issues of good performance with respect to a given task.

In this Chapter we will summarize the main aspects of the research area to
which this Thesis contributes. In Section 4.1 some definitions of medical aspects
are presented, in Section 4.2 attention is given to clinical and social aspects of
robot surgery. In Section 4.3, we introduce segmentation as a technique widely
used to subdivide and analyze task. In Section 4.4 we describe the surgical task
that we have been using in this work, as representative task of the spectrum of
surgical procedures.

4.1 Medical Aspects

Minimally Invasive Surgery

As long as operations exist, procedures are developed to decrease the size of the
surgical incision. Smaller incisions lead to less trauma and less pain for the patient.
This results in a faster recovery of the patient. Patients can return earlier to their
homes and freeing place for other patients. Beside the advantages for the patients
care, a fast recovery of the patient has also several economical advantages, e.g.
lower medical costs and the patient is able to return earlier to work. The search
for smaller incisions has led to minimally invasive surgery. The small incisions of
MIS are used to introduce special instruments with a long rod transmission mecha-
nism through a cannula into the body of the patient. By using a small camera, the
surgeon is able to follow the progress of the operation on a screen. The term min-
imally invasive surgery covers all surgery with small incisions and endoscopes like
thorascopy (chest cavity), arthroscopy (joints), laparoscopy (abdominal cavity),
pelviscopy (pelvis) and angioscopy (bloodvessels).

Although MIS fastens the rehabilitation of the patients, it also has some dis-
advantages. In open surgery the surgeon has more space and freedom to move in
a large operation area. With MIS, the operation area is smaller and the freedom
to move the operation tool decreases with the use of an endoscope. Laparoscopic
tools are long and have only four degrees of freedom. These four degrees of free-
dom include rotation around and translation along the axis perpendicular to the
incision surface, and rotation around the two axes on the incision surface, as shown
in Figure 4.1. Because of the long instruments the operative situation is less er-
gonomic for the surgeon. It takes more energy to use the laparoscopic tools because
of the rod transmission between the surgeons hands and the tip of the instruments.
Furthermore, the surgeon has to concentrate on the reverse motion direction of
his hands and the tip of the instrument. For example, a motion to the right of
the surgeon is followed by a motion to the left of the instrument tip. The surgeon
has to develop more skills to perform the same operation than without MIS tech-
niques. Another disadvantage of MIS is the interaction between the surgeon and

4.1 Medical Aspects 45

Fig. 4.1. The four degree of freedom of a laparoscopic instrument

the operative area. There is a loss of visibility for surgeons, because they have to
follow his own movements on a 2-dimensional screen with a limited angle of view.
There is also a loss of tactile sensation and the contact sensation with the long
endoscopic tools is totally different than in open surgery. This makes it hard to
recognize or to distinguish different tissues or structures, see [71] for more details.

Microsurgery

With microsurgery the technology scales down the surgeons’ motions and forces
and scales up the field of view, allowing surgeons to skillfully operate on micro-
scopic anatomy with relative ease. The technology enables surgeons to have a more
accurate view and a better control of motion and forces, than it is possible with
their own eyes and hands. Human perception is not lost, which enables opportuni-
ties for new micro-surgical procedures and an improved performance. The disorder,
e.g. a tumor, can be approached and removed more accurately without damaging
surrounding tissues. The small forces and motions used in microsurgery cannot be
achieved with conventional hand-held surgical tools.

Computer aided surgery and medical robotics

Although Computer Aided Surgery (CAS) and Medical or Surgical Robotics are
often confused, they differ significantly. The main difference between the terms
’robotic’ and ’computer aided’ surgery is how they are powered. Robots are pow-
ered by an actuated system, while a CAS system is generally powered by the
surgeon [69, 169, 174]. A robot can assist the surgeon in two ways. The robot can
position the surgical tools or perform operative tasks very accurately. The position
can be a predefined location or a predefined complex path. The target area has

46 4 Robotic Surgery

to be defined very accurately, because the robot has to be programmed for its
surgical task. The target operation area is defined during the pre-operative phase.
Both operations with medical robotics or with CAS systems use a pre-operative
phase. With CAS systems the pre-operative phase is only used for simulating and
planning the operative procedure, programming of instruments is not necessary.
Unexpected situations can be avoided and the operation time can be decreased.
However, robots are able to provide a greater accuracy than CAS systems. Another
reason why robots are superior to CAS systems is the ability to constrain the mo-
tions of the system. A robotic system has a predefined safety concept, which does
not change during operation. The movements of a CAS system are established by
the decisions of surgeons, who can change the operation plan every moment they
want. They can neglect warnings or cut into unsafe regions.

Robotic systems

Robots are used to improve the outcome of operations. Different kinds of surgical
robots exists. It is possible to divide them in groups related to their operative func-
tion or in groups related to the way they function. There exist (i) passive robots,
(ii) active robots, (iii) synergistic systems and (iv) master-slave systems [69].

Passive robots are used as tool-holders and do not have an operative task. Their
advantage is, that they do not get tired and keep tools accurately in position for a
long time. An active robot must be able to carry out more complex motions then
passive robots. They have an operative task, which they perform autonomously.
That is why most active robots are developed for one specific task within the
total operation procedure. The safety demands are high for active robots. Some
examples of active robots are laparoscopic cameras or robots used for arthroscopy.
Because arthroscopy (joints) deals with bones, the modeling and calibration phase
are easier than to deal with soft tissue.

The third group of medical robots contains the synergistic systems. Synergistic
systems are controlled by both the surgeon and a computer. The surgeon is able
to use the machine within a predefined motion and force region. Oppositely to
active robots, synergistic systems do not work autonomously. The operational
task is performed by the surgeon, but the synergistic robot system constrains the
surgeon. This reduces the risk of failures without loosing the surgeons skills and
judgment.

The fourth group consists of the master-slave systems, also called teleopera-
tion systems. Master-slave systems are also non-autonomous. At the master side
there are the surgeon, the master robot and visual and haptic displays. The master
robot is controlled by the surgeon. At the slave side there are the patient, the slave
robot, haptic sensors and cameras. The slave robot is in contact with the patient
and follows the instructions of the master robot. In this way the slave robot per-
forms the actual operation. The surgeon controls the master robot on the basis of
visual feedback and, if present, haptic feedback from the operation area. Visual
feedback can either be two or three dimensional and is established with cameras
at the operation area. The cameras are a part of the slave robot and, accordingly
can be controlled with the master robot. The slave robot can use instruments for
conventional surgery, instruments for MIS, instruments for microsurgery or a com-
bination of them. The big advantages of master- slave systems above active robots

4.2 Clinical and Social Aspects 47

is that they can handle with soft tissue and be used for several operative tasks,
because the surgeon is in control of the master robot. The ergonomic situation
of the surgeon improves when master-slave systems are used. They can perform
the operation sitting at the console and does not have to hold the instruments for
a long time at the same position. The master and the slave robot can be decou-
pled. While the master robot is moved, the slave robot keeps holding its position.
Although the distance between master and slave robot normally is a few meters,
master-slave systems have the potential to be used in long distance tele-surgery. In
that case the data transmission has to be fast because of time delays between the
master and the slave side. Master-slave systems have the potential to use motion
and force scaling. Motion scaling has the advantage that the surgical tools can be
positioned very accurately. Also tremor of the surgeons hands can be filtered out.
Force scaling can only be used if haptic feedback is present. Forces can be scaled
upward from slave to master to let the surgeon have better notice of properties of
the operation area. However, commercial systems at this moment lack the presence
of total haptic feedback.

A special group of master-slave systems are the surgical simulators. Surgical
simulators are not used for surgical intervention, but as training facility for trainees
or as operation planning facility. A surgical simulator has the same structure as
the master-slave system. Instead of a real patient and a real slave robot, a virtual
patient and a virtual slave robot are introduced by a computer. The computer
produces images of the operative area and computes force feedback for the master
robot of the contact forces between organs and surgical instruments. The mo-
tion images and contact forces are reproduced and displayed as they are in real
situations.

The main benefits of using robots for surgical applications are improved pre-
cision, stability and dexterity. To take the patients and surgeons advantage of
these benefits, improvements have to be made in mechanical design, sensing and
control [65,106].

4.2 Clinical and Social Aspects

The reason why robots integrate slower into the surgical theater than in industrial
environments is not only due to technical aspects. The most important social as-
pect is safety. The safety requirements for medical robots are a lot more stringent
than industrial robots. Safety of a system can be achieved by active and passive
safety mechanisms in the mechanical design of the system. Passive mechanisms
include the materials used and passive joints. An example of an active mechanism
is a switch that turns off the instrument when force or motion limits are exceeded.
Safety concepts can also be programmed into the software of the robot. Another
possibility to ensure safety is to keep the robot under supervision of the surgeon.
Synergistic robots are good examples of this possibility. Another way is super-
vision of the progress of the operation by surgeons on a screen, while they are
able to stop the robot in an easy way. The startup times of most medical robots,
especially master-slave systems, is quite long, sometimes up to fifteen minutes.
Every time the system is stopped for safety reasons, it takes another quarter of an

48 4 Robotic Surgery

hour to continue the operation. Robots will only be used for operations when their
advantages in outcome above conventional techniques are proven. This can take
some time. For example the advantage of hip replacement by use of a robot can
only be proved after several years [148]. Another example is the use of master-slave
systems. Master-slave systems have the potential to perform the same endoscopic
operations than conventional endoscopic operations and even more sophisticated
ones. However, with the current master-slave systems the operating and anasto-
mosis time are not decreased. Improvements of the instrument and manipulator
design have the ability to perform operations that are not possible with conven-
tional endoscopic techniques and to decrease the operating time [59,117,165]. The
cost of a medical robot is high with respect to conventional instruments. When
the benefits of a robot are not really clear, this might set up a threshold to invest
in medical robots. Furthermore, acceptance by patients, who may not be used to
robots, as well as acceptance by surgeons, who have to get familiar with working
with robots, are important aspects for the introduction of robots into the surgical
theater.

4.3 Analysis and Segmentation of Surgical Task

The analysis of complex task could help improving the performance during task
execution, knowledge of the task state could add important features in the robotics
systems, i.e. safety and autonomy. Especially teleoperation data are studies with
the purpose of evaluating, testing and training surgical skills.

During task execution it is advisable that a supervisory algorithm analyses the
teleoperation data as an additional safety measure. This algorithm should have the
ability to monitor the system by using feedback signals. Because of the variability
of complex teleoperation tasks (a sequence of simpler but different sub-tasks) the
knowledge of the task state could help improving performance. For example, a
single control algorithm may not be the most appropriate choice for every sub-
task. A better choice could be to use a different control strategy for every sub-
task, in this way each controller can be made more precise. To identify the various
sub-tasks of a teleoperation, it is necessary to segment the teleoperation data in
order to recognize the changes in the task state and to mark them as jumps from a
sub-task to another. The segmentation gives informations on the system behavior
identifying the changes of the model states.

In the literature the problem of data segmentation has been addressed in dif-
ferent ways. In [97] a Hidden Markov Model (HMM) is used to carry out the
task segmentation with a number of states equal to the teleoperation sub-tasks.
The state transition is computed using the Viterbi algorithm, which returns the
more probable state sequence of the HMM, and the parameters of the HMM are
computed using the Baum-Welch algorithm or, equivalently, the Expectation Max-
imization method (EM). However this approach returns the segmentation only in
off-line analysis. In [87] a partially Recurrent Neural Network (RNN) with fixed
feedback is trained in order to segment the task on-line. This approach produced
good results but the use of a neural network hides the use of prior information
about the task. In [81,82] auto-regressive models are presented where the segmen-
tation or the jump between a state and the next is obtained using the Sequential

4.3 Analysis and Segmentation of Surgical Task 49

Likelihood Ratio Test (SLRT) technique [28]. This technique is based on work
on failure detection [183] and speech segmentation [15]. The teleoperation task
and the signals produced during a teleoperation task are very unpredictable. They
strongly depend on the operator and they are also quite variable when the same
operator executes the same task. For these reason in [60] HMM model, where the
emission probability distribution are computed using a Support Vector Machine
(SVM) Classifier, is used and a surgical task model is developed as input for pos-
sible teleoperation control algorithm, and as basis for automatic task execution.

Simulators for evaluating surgical skills and testing of dexterity in MIS can be
roughly divided into three categories: (i) training box including physical objects or
latex organ packs (ii) virtual reality simulator including graphical representation
of virtual objects or virtual anatomy, and (iii) virtual reality simulator with a force
feedback device (haptic display) for simulating forces and torques generated as a
result of interaction between the virtual objects or organs and the surgical tools.

One of the most used surgical simulator is the laparoscopic trainer box covered
by an opaque membrane through which different trocars are placed at different
working angles. The trainee is required to complete several structured laparo-
scopic tasks which are scored for both precision and speed of performance. Several
studies [72,134] have found the laparoscopic training box a valuable teaching tool
for training and evaluation of basic laparoscopic skills.

A virtual reality simulator for laparoscopic surgery models the movements
needed to perform MIS and can generate a score for various aspects of psychomo-
tor skill. The use of virtual reality models for teaching complex surgical skills while
simulating realistic human/tool and tool/tissue interaction has been a long-term
goal of numerous investigators [41,155] et al..

Although the haptic devices providing force feedback to the surgical tool while
interacting with the virtual tissue/organ are commercially available, simulating a
realistic force feedback based on biomechanical models of soft tissue is still under
active research. The complexity of these biomechanical models is due to the vis-
coelasticity and non-linear characteristics of soft tissues. Moreover, the F/T data
measured in-vivo [108, 152] is crucial for designing and evaluating haptic devices
force-feedback telerobotic systems and virtual reality simulators.

The methodology developed in the current studies was based on the Hidden
Markov Modeling (HMM) and the goal was to define the learning curve of MIS
based on new quantitative knowledge of the F/T applied by surgeons on their in-
struments, and the types of tool/tissue interactions used during the course of MIS
surgery. This goal was pursued through several steps: (i) developing instrumented
endoscopic tools which contain embedded sensors capable of measuring and record-
ing F/T information (ii) creating a database of F/T signals acquired during actual
operating conditions on experimental animals, (iii) performing a task decomposi-
tion in terms of tool/tissue interactions existed in MIS based on video analysis
(iv) developing statistical models (HMM) for evaluating an objective laparoscopic
skill level. These studies were not intended to test knowledge of the procedure, but
whether the surgeon-subjects could technically perform the procedure.

50 4 Robotic Surgery

4.4 Suture

4.4.1 Suture characteristics

With respect to other surgical procedures, sutures have the advantage that can
be described by a set of well defined rules and characteristics. For example, they
should be manufactured to assure:

• Sterility
• Uniform diameter and size
• Pliability for ease of handling and knot security
• Uniform tensile strength by suture type and size
• Freedom from irritants or impurities that would elicit tissue reaction

Also the suture material is described by well defined characteristics, some of which
are essential in the development of an automatic procedure, such as:

• Breaking strength, i.e. limit of tensile strength at which suture failure occurs
• Elasticity, i.e. measure of the ability of the material to regain its original form

and length after deformation
• Knot-pull tensile strength
• Breaking strength of knotted suture material (10-40% weaker after deformation

by knot placement)
• Knot strength, i.e. amount of force necessary to cause a knot to slip (related

to the coefficient of static friction and plasticity of a given material)
• Memory, i.e. inherent capability of suture to return to or maintain its original

gross shape (related to elasticity, plasticity, and diameter)
• Straight-pull tensile strength, i.e. linear breaking strength of suture material
• Suture pullout value, i.e. the application of force to a loop of suture located

where tissue failure occurs, which measures the strength of a particular tissue;
variable depending on anatomic site and histologic composition (fat, 0.2 kg;
muscle, 1.27 kg; skin, 1.82 kg; fascia, 3.77 kg)

• Tensile strength, i.e. measure of a material or tissue’s ability to resist deforma-
tion and breakage

• Wound breaking strength, i.e. limit of tensile strength of a healing wound at
which separation of the wound edges occurs

The United States Pharmacopeia classification system was established in 1937
for standardization and comparison of suture materials, corresponding to metric
measures. The three classes of sutures are collagen, synthetic absorbable, and
non-absorbable. Size refers to the diameter of the suture strand and is denoted
as zeroes. The more zeroes characterizing a suture size, the smaller the resultant
strand diameter (e.g., 4-0 or 0000 is larger than 5-0 or 00000). The smaller the
suture, the less tensile strength of the strand.

Sutures were originally manufactured ranging from #1 to #6. (To give an idea
about these numbers, a #4 suture would be more or less the diameter of a tennis
racket string.) The manufacturing techniques, derived at the beginning from the
production of musical strings, did not allow thinner diameters. As the procedures
improved, #0 was added to the suture diameters, and later, thinner and thinner
threads were manufactured, which were identified as #2/0 to #6/0. The body of

4.4 Suture 51

the needle is available also in different makes, like circular, with edge on the outer
side, with edge on the inner side, and others [175].

We can estimate the parameter of a mathematical model with a good level of
accuracy, using the approach that we formalize in the following section.

4.4.2 Suture Model

We classify the suture pattern into two categories: the first is a discontinuous
pattern, in which each loop is fixed with a knot (possibly of different types); and
a continuous pattern where there are many loops whose number is related to the
length of the cut. Each phase of a suture is described in few steps:

1. reach the tissue
2. penetrate the tissue
3. recover the needle on the other side

It is possible to execute a suture step from different positions and with different
orientations and a classification of the different combinations is available in the
surgical literature. We consider here the simplest case described in the literature
called ”classical suture step”. Thanks to the repeatability of this surgical gesture,
it is possible to represent the single step with an algorithm, and iterate it to form
the complete suture pattern.

Fig. 4.2. The automaton representing a suture.

With this in mind, we model a suture with a deterministic finite hybrid automa-
ton, using the phase subdivision given by the a priori knowledge of the surgical

52 4 Robotic Surgery

task, as shown in Figure 4.2. This figure describes the elementary step of the
”simple continuous” suture pattern as shown in simplified form in Figure 4.3.

Fig. 4.3. Steps of the simple continuous suture.

The off-line computation of the control function will be determined by estimat-
ing the parameters of the cut and of the surgical tool, at each phase of the suture.
In particular, we will use a trajectory tracking to set the robotic end effector at
the beginning of the suture. In this case, the guard, i.e. the logical flag determin-
ing the state change will be the needle position. During the penetration and the
extraction of the needle form the tissue, we will use a force measure as the state
guard. At each jump between states we will reset the parameters, to start the new
execution of the control law in the new state.

In a dynamic system, the problem complexity is due to the uncertain environ-
ment and the unmodeled dynamics of the elements involved in the task execution,
i.e. the environment and the surgical manipulator. A surgical task is an example of
a complex dynamic system where the environment can not be precisely classified.
The uncertainty is compensated by sensors, such as a force sensor or a camera,
that in real time capture the interaction of the robot with the environment. This
behavior can be coded to obtain the correct action of the robotic device, for ex-
ample jump to the next state of the task automaton. Using a task model derived
from a priori knowledge and sensor feedback, a robotic device can perform surgi-
cal tasks by teleoperation or, in the case of simple actions, autonomously. Force
feedback and autonomous execution can introduce stability and safety problems
into the compete surgical system. We encode system safety properties into the
requirement that state trajectories remain within certain safe subsets of the state
space and we design all the states of our system following the safe property, i.e.
constraints in the control computation. We also account for the possibility to reach

4.5 Conclusion 53

the manual state from each state. We guarantee the continuous evolution (invari-
ant set property) and the stability of the complete system by enforcing constraints
on the control laws. As an example, we consider the positioning state, the first
state of the suture automaton, and the jump to the following state, i.e. contact
with the tissue. In the first state we use a control law based on the knowledge of
the exact position and orientation that the needle should have to bite the tissue.
The constraints that we take into account are: needle shape, grasp position of the
manipulator end effector with respect to the needle, tissue position, and tissue
properties. The jump guard is the force, i.e. when the needle contacts the tissue,
a force value is acquired from the force sensor. The state transition constraints
that we use to preserve stability and safety are: bounded control, this is to ensure
bounded output, and requires the knowledge of the tissue viscosity; small device
movements, so that the kinematic constraints are satisfied during the movement
to the contact. In the second state, i.e. tissue perforation, a control law based on
the property of the tissue is used. The manual mode is always reachable when an
event is triggered by the supervisory software or by the surgeon monitoring the
operation. We consider an index weighted on the safety of the task, i.e. how far is
the current execution from the nominal task performance. The higher this index
the lower the probability that the task will be safely completed.

4.5 Conclusion

In this chapter we have described the state of the art in robotic surgery, with
emphasis on teleoperation and segmentation. The classification is used mainly for
safety or training or evaluation issues as described in this Chapter. In the last
Section we describe a suture in terms of a deterministic automaton. We base our
algorithm on the parameters determined from suture analysis, and we consider the
safety of the execution as a model property.

5

Optimal Control Design

Insofar as the laws of mathematics are certain, they do not refer to reality; and insofar
as they refer to reality, they are not certain.

Albert Einstein

In this Chapter we will present the approach we propose to control the au-
tonomous execution of a complex task. The task that we consider is a surgical
suture, using the model developed in Chapter 4. This task, although simple, has
the characteristics of a complex task, since it require different control modes and
involves various logical conditions. To guarantee the correct task execution we
first compute off-line the nominal trajectory of the state variables, using optimiza-
tion techniques. At execution time, uncertainties are compensated by a regulator.
Roughly speaking, the computation of the nominal trajectory is an instance of
optimal control problem, i.e. to drive the system to a desirable state while min-
imizing a cost function that depends on the path followed. It typically involves
a terminal cost (depending on the terminal state), an integral cost accumulated
along continuous evolution, and a series of jump cost associated with discrete tran-
sitions. This is a classical problem for continuous systems, extended more recently
to discrete systems [156], and a class of hybrid systems with simple continuous
dynamics. The approach has been extended to general hybrid systems using a
dynamic programming formulation [44], and a variational formulation, extending
Pontryagin Maximum Principle [93]. In this Chapter we introduce the optimum
system control in Section 5.1 and its mathematical background in Section 5.1.2.
We explore the optimum control from hybrid system point of view in Section 5.2.
In Section 5.3 we present the formulation of the problem addressed in this Thesis
and in Section 5.4 we give an explanation of the choices carried out.

5.1 Optimum System Control

The fundamental problem of optimization theory may be subdivided into four
interrelated parts:

• Definition of a goal.

56 5 Optimal Control Design

• Knowledge of our current position with respect to the goal.
• Knowledge of all environmental factors influencing the past, present, and future

of the process.
• Determination of the best policy to define a goal, to know current state and

environment.

To solve an optimization problem, we must first define a goal (the cost function)
for the process we are attempting to optimize. This requires an adequate definition
of the problem in physical terms and a translation of this physical description into
mathematical terms.To effectively control a process, we must know the current
state of the process (state estimation). Also, we must be able to characterize
the process by an effective model which will depend upon various environmental
factors (system identification). With a knowledge of the cost function, and the
system states and parameters, we then determine the best control which minimize
(or maximize) the cost function. Thus we may define five problems, which are
again interrelated, and which we must solve in order to determine the best, or
optimum, system solution:

• The control problem (Figure 5.1).

Known
plant

u(t)

Control State

x(t)

Fig. 5.1. Deterministic optimum control problem.

• The state estimation problem (Figure 5.2).

Measurement
device

x(t)

System state Observed state

z(t)Known
plant

w(t)

Plant noise

v(t)
Measurement
noise

Fig. 5.2. State estimation problem.

• The stochastic control problem (Figure 5.3). We desire to determine a control
u(t) such that the output state x(t) is changed in accordance with some desired
objective.

• The parameter estimation problem (Figure 5.4). We desire to determine the
best estimate of certain plant parameters based upon a knowledge of a de-
terministic input u(t), the measured output z(t), and possibly some a priori
knowledge of the system plant structure.

• The adaptive control problem. We desire to determine a control u(t) to best
accomplish some desired objective in terms of the measurement noise and plant
noise as well as the uncertainty in system dynamics.

5.1 Optimum System Control 57

Measurement
device

x(t)

System state Observed state

z(t)Known
plant

u(t)

Control

w(t) v(t)
Plant
noise

Measurement
noise

Fig. 5.3. Stochastic control problem.

Measurement
device

x(t)

System state Observed state

z(t)Unknown
plant

u(t)

Control

w(t) v(t)
Plant
noise

Measurement
noise

Fig. 5.4. Parameter estimation problem.

In this work we focalize our attention on the control problem, without consid-
ering state estimation and stochastic control. A parameter estimation comes from
the modeling framework presented in Chapter 4 and from the literature [97, 152,
148, 58, 158, 129, 111], where surgical environment is explored and measured. We
use optimization techniques for determining the nominal control u∗(t). Measure-
ment noise and plant noise as well as the uncertainty in the systems dynamics are
determined as a function of the measured output, and therefore we have a closed-
loop adaptive system. In the following Sections notions of calculus of extrema,
variational calculus and maximum principle are briefly reviewed.

5.1.1 Decision Processes

Many problems in modern system theory may be simply stated as extreme value
problems. These can be resolved via the calculus of extrema which is the natural
solution method whenever one desires to find parameter values which minimize
or maximize a quantity dependent upon them. In this Section, the method of
Lagrange multipliers is introduced to solve constrained extrema problems for single
stage decision processes. Multistage decision processes, which can also be treated
by the calculus of extrema, are reserved for a variational treatment which results
in a discrete maximum principle. We introduce the subject of variational calculus
through a derivation of the Euler-Lagrange equations and associated transversality
conditions. The existence and boundness of the integrals defining the cost function
is assumed.

We now consider the problem of selecting a continuously differentiable function
x : [t0, tf] → < to minimize the cost function

J(x) =
∫ tf

t0

L[x(t), ẋ(t), t]dt (5.1)

with respect to the set of real-valued, continuously differentiable functions u on
the interval [t0, tf]. Such functions will be referred to as admissible trajectories.

58 5 Optimal Control Design

Throughout this Section, we assume that L is continuous in x, ẋ, and t and has
continuous partial derivatives with respect to x and ẋ. It is of interest to note that
the cost function presented in (5.1) called the Lagrange form, is equivalent under
certain smoothness assumptions to several other useful cost function descriptions,
two of which are the Bolza form

J(x) = θ[x(tf), tf] +
∫ tf

t0

φ[x(t), ẋ(t), t]dt

and the Mayer form
J(x) = σ[x(tf), tf]

Both the Mayer and Lagrange forms are special cases of the Bolza form.

5.1.2 Nominal Trajectory

The computation of the nominal trajectory can be formulated mathematically
as an optimization problem in the following way. Find the control u(t) ∈ U in
t0 ≤ t ≤ tf that minimizes the performance index J :

J = θ[x(tf), tf] +
∫ tf

t0

φ[x(t),u(t), t]dt (5.2)

subject to:

• kinematic constraints:
– initial manifold:

Γ [x(t0), t0] = 0 (5.3)

– terminal manifold:
Ω[x(tf), tf] = 0 (5.4)

• dynamic constraints:
– systems dynamics:

ẋ = f [x(t),u(t), t] (5.5)

– admissible controls:

u(t) ∈ f, t ∈ [t0, tf], f ⊂ <m

g[u, t] ≥ 0 (5.6)

– state constraints:
x(t) ∈ X, t ∈ [t0, tf], X ⊂ <n

h[x(t), t] ≥ 0 (5.7)

5.1 Optimum System Control 59

We consider the problem of determining an admissible control function u in
order to minimize the criterion function of (5.2) subject to these constraints where
each component of h is assumed to be continuously differentiable in state space.
We assume also that the terminal manifold equation is a function of terminal
time, and the terminal time is unspecified. The initial time and the initial state
vector are specified. Therefore the problem becomes one of minimizing the cost
function (5.2) for the system described by (5.5) with x(t0) = x0 where, at the
unspecified terminal time t = tf , the terminal manifold equation (5.4) and the
control and state constraints are satisfied.

We may convert this inequality constraint (5.6), where g : <m+1 → <r, into
an equality constraint by writing for each component of g

yi
2 = gi[u(t), t] i = 1, 2,, r (5.8)

We adjoin, via Lagrange multipliers, constraints (5.4), (5.5), which is embedded
in the Hamiltonian, and (5.8) to the cost function (5.2) to obtain

J = θ[x(tf), tf] + νTΩ[x(tf), tf] +∫ tf

t0

{H[x(t),u(t), λ(t), t)]− λT (t)ẋ− γT (t){g[u(t), t]− y2}}dt (5.9)

where H is the Hamilton’s equations defined as

H[x(t),u(t), λ(t), t)] = φ[x(t),u(t), t] + λT f [x(t),u(t), t] (5.10)

There are several methods whereby we may convert the inequality constraint
represented by the s−vector equation (5.7) to an equality constraint. We choose
to define a new variable xn+1 by

ẋn+1 = fn+1 = [h1(x, t)]2H(h1) + [h2(x, t)]2H(h2) + ·+ [hs(x, t)]2H(hs) (5.11)

where H[hs(x, t)] is a modified Heaviside step defined such that

H[hs(x, t)] =
{

0 if hs(x, t) ≥ 0
Ks if hs(x, t) < 0 Ks > 0 s = 1, 2, ..., s (5.12)

and where the initial condition is

xn+1 = 0

Thus we see that xn+1(tf) is a direct measure of penetration of the state variable
inequality constraint

xn+1(tf) =
∫ tf

t0

ẋn+1(t)dt =∫ tf

t0

{[h1(x, t)]2H(h1) + [h2(x, t)]2H(h2) + ·+ [hs(x, t)]2H(hs)}dt (5.13)

We require that the final value of xn+1(tf) is zero

60 5 Optimal Control Design

xn+1(tf) = 0

which imposes the restriction that the solution does not violate the inequality
constraint. This approach is a modification by McGill [132] of a similar procedure
by Kelley [110] which converts the s-inequality constraints to s equality constraints
of the form

ẋn+1 = [h1(x, t)]2H(h1) xn+1(t0) = 0
ẋn+2 = [h2(x, t)]2H(h2) xn+2(t0) = 0

...
...

...
ẋn+s = [hs(x, t)]2H(hs) xn+s(t0) = 0

(5.14)

which are then added to the cost function to obtain

Jmodified = Joriginal +
s∑
j=1

xn+j(tf) (5.15)

The multipliers Ks are thus the penalty functions, and Jmodified is minimized
such that the constraint region is entered only slightly, if at all. If we require
xn+j(tf) = 0 for j = 1, 2, ..., s the constraint is, of course, not exceeded at all.

The dynamic optimization presented in this work is based on the necessary
conditions of optimality derived from Pontryagin’s Maximum Principle [122]:

Theorem 5.1. Given a dynamical system governed by the state equations:

dxj
dt

= fj(x1, x2, .., xn, u1, u2, .., um)j = 1, 2, .., n

where u ∈ U and U ⊂ Em, independent of x and t, with the performance index
defined as:

J =
∫ tf

t0

L(x(t),u(t))dt

from a given initial manifold Γ at time t0 to a given terminal manifold Ω at time
tf , with tf not prescribed, and defining

H(Λ,x,u) = L(x(t),u(t)) + Λ · f(x,u)

where Λ is a vector of Lagrange multiplier functions, then:
if u∗(t), t0 ≤ t ≤ tf , is an optimal control, then there exists a nonzero continuous
vector function Λ(t) ∈ <n+1, satisfying the co-state equations:

dΛj
dt

= −
n∑
i=0

∂fi(x,u∗(t))
∂xj

∣∣∣∣
x=x∗(t)

Λi j = 0, 1, . . . , n

with x0 defined by dx0
dt = L(x,u), such that:

minu∈UH(Λ(t),x∗(t),u) = H(Λ(t),x∗(t),u∗(t))
H(Λ(t),x∗(t),u∗(t)) = 0
Λ0(t) = constant ≥ 0

 t ∈ [t0, tf]

Λ1(t), Λ2(t), . . . , Λn(t) is normal to the end manifolds Γ and Ω at t = t0 and
t = tf , respectively.

5.1 Optimum System Control 61

We now apply the Euler-Lagrange equations to the cost function (5.15) in
order to obtain the necessary conditions for a minimum, due to McShane [133]
and Pontryagin [146], and others. It is thus convenient to define a scalar function
Φ, the Lagrangian for no inequality state constraint, as

Φ[x(t), ẋ(t),u(t), λ(t), γ(t),y(t), t] =
H[x(t),u(t), λ(t), t)]− λT (t)ẋ− γT (t){g[u(t), t]− y2} (5.16)

From (5.16) it follows that the Lagrangian for the problem at hand is

Φ̃ = Φ + λn+1[fn+1 − ẋn+1] (5.17)

We write the Euler-Lagrange equations as

d

dt

∂Φ
∂ẋ

− ∂Φ
∂x

− ∂fn+1

∂x
λn+1 = 0

d

dt

∂Φ
∂u

= 0

d

dt

∂Φ
∂y

= 0

(5.18)

We call each piecewise continuously differentiable solution of the Euler-Lagrange
equations (5.18) extremal trajectory of the associated variational problem. The
transversality conditions for this problem are

Ω[x(tf), tf] = 0

x(t0) = x0

∂θ

∂tf
+
∂ΩT

∂tf
ν +H = 0 fort = tf

∂θ

∂x
+
∂ΩT

∂x
ν − λ = 0 fort = tf

xn+1(t0) = xn+1(tf) = 0 (5.19)

The optimization problem given by equations (5.18) and (5.19) is essentially a
Multi Point Boundary Value Problem, since its solution must satisfy the terminal
manifold Ω, the state and co-state constraints. The optimal solution u∗i (t) for the i-
subtask is reached when the above necessary conditions of optimality, derived from
Pontryagin’s Maximum Principle, are satisfied. We compute the global optimal
solution, i.e. nominal trajectory of the complete task

u∗(t) =
n∑
i=1

N∑
t=0

u∗i (t)

The optimality of the u∗ is assured by null jump cost θi for all i. These conditions
(5.19) can be used to check the i optimal solution because we know for each subtask
i the terminal configuration manifold Ω.

62 5 Optimal Control Design

In particular, they must be satisfied by the trajectory computed by the nu-
merical method. It will be shown in Chapter 6, that a steepest descent algorithm
computes a solution satisfying the necessary conditions and, therefore, converges
to a target behavior. In Chapter 6 an overview on the computational approach for
a Two Point Boundary Value Problem (TPBVP) is presented. The development
carried out for the TPVVP can be easily extended to the Multi Point Boundary
Value Problem (MPBVP).

5.2 Hybrid Optimal Control

In the context of Hybrid Systems, the computation of the optimal solution involves
the selection of a path among the possible states of the hybrid system and the
computation of the optimal times to jumps from one state to the next.

Controlling the switching times, when possible, and choosing among several
possible states, whenever such choices are available, gives rise to a rich class of
optimal control problems. This has motivated efforts to extend classical optimal
control principles [44] and to apply dynamic programming techniques [185, 101].
While in principle this is possible, the computational complexity of this compu-
tation becomes prohibitive: not only does one have to deal with the well-known
curse of dimensionality in such problems, but there are at least two additional
sources of complexity to deal with, i.e., the presence of switching events causing
transitions from one state to another (which introduces a combinatorial element
into the control), and the presence of event-driven dynamics for the switching
times (which introduce non differentiability). Therefore, key to the successful de-
velopment of optimal control methods for hybrid systems is the identification of
structural properties that allow the decomposition of such systems into simpler
components, and making use of efficient numerical techniques. Along these lines,
progress has been reported for classes of hybrid systems whose structure may be
exploited. For example, in [35] a Mixed Logical Dynamical (MDL) system frame-
work is proposed, which allows the use of efficient methods developed for piecewise
affine systems, and in [96] optimal controllers are presented for the class of au-
tonomous switched linear systems.

The problem statement defined in Section 5.1.2 must be modified for the case of
Hybrid Systems. The Hybrid Optimal Control Problem (HOCP) is to find optimal
hybrid (i.e., continuous u and discrete v) control trajectories such that an integral
cost index, typically an integral of a function of the hybrid system state and control
input, is minimized subject to the system dynamics, initial, terminal, and further
equality or inequality constraints.

The Hybrid Optimal Control Problem is defined as the minimization of the
real valued, hybrid cost index J :

min
u,v

J(u,v) = θ[x(t+0), . . . ,x(t−N);q(t+0), . . . ,q(t−N); t0, . . . , tN]+
∫ tf

t0

φ[x,u,q,v, t]dt

(5.20)
subject to:

• kinematic constraints:

5.2 Hybrid Optimal Control 63

– initial manifold:
Γ [x(t0),q(t0)] = 0 (5.21)

– terminal manifold:
Ω[x(tf),q(tf)] = 0 (5.22)

• dynamic constraints:
– systems dynamics:

ẋ = f [x,u,q,v, t] if Rj(x,u,q,v, t) 6= 0 j = 1, . . . , ns (5.23)

[
x(t+i)
q(t+i)

]
= Gj(x,u,q,v, t−i) if Rj(x,u,q,v, t−i) = 0 j = 1, . . . , ns

(5.24)
– admissible controls:

u(t) ∈ f, f ⊂ <nu , v(t) ∈ V, t ∈ [t0, tf], V ⊂ Znv

g[u,v, t] ≥ 0 t ∈ [t0, tf] (5.25)

– state constraints:

x(t) ∈ X, X ⊂ <nx , q(t) ∈ Q, t ∈ [t0, tf], Q ⊂ Znq

h[x,q, t] ≥ 0 t ∈ [t0, tf] (5.26)

where the initial and final times, t0, tf , are free or fixed, Rj are the ns switching
functions and Gj denotes the explicit phase transition conditions occurring at the
zeros of the one of the switching functions. θ is a general function of the phase
transition time ti, i = 1, . . . , N and of the continuous x(t−i), x(t+i) and discrete
states q(t−i), q(t+i) just before and just after the N − 1 interior transition events
and at the beginning and final times respectively. The number of phases N may be
given or free. The integrand ψ is a real-valued function of the continuous/discrete
state and control variables and of time.

The solutions of the HOCPs described in the previous equations are deter-
ministic open-loop trajectories. As in conventional optimal control this class of
problems can be generalized to a stochastic setting or to treat issues like opti-
mal closed-loop feedback control. The numerical solution of closed-loop hybrid
feedback control problems, however, is at even a much earlier stage and the pri-
marily finite-element based solution strategies that have been presented for their
solution [101, 171] cannot readily handle nonlinear systems of more than three
dimensions due to the well-known curse of dimensionality. A framework for mod-
eling and (optimally) controlling mixed logical dynamical systems described by
linear dynamic equations subject to linear inequalities involving real and integer
variables has been proposed by [37]. The on-line optimization problems resulting
from a predictive control scheme are solved numerically by application of a mixed-
integer quadratic programming branch-and-bound method. However, the approach
is not applicable to our class of HOCPs with nonlinear dynamics equations sub-
ject to nonlinear constraints. For these reasons we adopt Pontryagin’s Maximum
Principle to the specific requirements of Hybrid Systems

64 5 Optimal Control Design

5.3 Problem Formulation

The control problem is cast in a form compatible with Pontryagin’s Principle
with state-dependent control constraints. We consider the case where the terminal
manifold equation is a function of the terminal time, and the terminal time is
unspecified, as shown in Figure 5.5

t

x(t)

c(t)f

Fig. 5.5. Illustration of variable terminal time problem where x(tf) = c(tf)

The optimal control is computed minimizing the cost of a performance index
function of the continuous state and of the jumps necessary to reach the subsequent
state in the optimal configuration respect to the subtask. We iterate this concept
for each subtask. By collecting the nominal trajectories computed for each state,
we obtain the optimal control law for the complete task.

Remark 5.2. The continuous evolution is assured by the kinematic constraints, i.e.
the configuration at time tf belongs to the intersection of the terminal configura-
tion manifold Ω[x(tf)] of state i−1 and the initial configuration manifold Γ [x(t0)]
of state i.

We use the variational approach where the terminal time is not fixed and where
the control and state vectors are smooth functions.

Remark 5.3. Among state constraints we include Lyapunov functions which ensure
that state trajectories are smooth.

From a practical point of view, we are given a system with known relation between
states and control input, and we desire to find the control which changes the state
x so as to accomplish some desirable objective.

Since our problem is to find an optimal controller for hybrid system, modeled
with hybrid automaton, we use the cost function (5.9), to calculate the optimal
control for a continuous state and the following jump computation to minimize
the cost of the jump.

5.3 Problem Formulation 65

Definition 5.4. We define the cost of the jump as the distance between the initial
position on manifold Γ [x(t0)] of the state i and the final position of terminal
manifold Ω[x(tf)] of the state i − 1. We instantiate the function θ[x(tf), tf] as
such distance function.

Remark 5.5. θ is an indicator of successful completion of the task: the bigger θ the
lower the probability to complete the task.

We define:

Definition 5.6. Safety in a task execution is the property of completing the task
without uncontrolled behaviors.

Thus we can state the following:

Remark 5.7. The distance θ is inversely proportional to the safety of the complete
system execution.

For our problem the function θ[x(tf), tf] is the distance between two points on
the same manifold because we assume that:

Remark 5.8. The final configuration manifold Ω[x(tf)] of state i−1 and the initial
configuration manifold Γ [x(t0)] of state i intersect at tf = t0. The final point of
the trajectory of the state i− 1 and the initial point of the trajectory of the state
i are on this manifold.

To define the concept of the jump cost we introduce the following definitions.

Definition 5.9. A metric is a nonnegative function g(x, y) describing the ”dis-
tance” between neighboring points for a given set. A metric satisfies the triangle
inequality

g(x, y) + g(y, z) ≥ g(x, z)

and is symmetric, so
g(x, x) = 0

and
g(x, y) = 0 implies x = y

Definition 5.10. The distance between two points is the length of the path con-
necting them. In the plane, the distance between points (x1, y1) and (x2, y2) is given
by the Pythagorean theorem. In general, the distance between points x and y in a
Euclidean space <n is given by

d = |x− y| =

√√√√ n∑
i=1

|xi − yi|2

Definition 5.11. Suppose for every point x in a manifold M , an inner product
〈·, ·〉 is defined on a tangent space TxM of M at x. Then the collection of all these
inner products is called the Riemannian metric.

66 5 Optimal Control Design

For curved or more complicated surfaces, the metric used to compute the distance
between two points is an integration. With distance we mean the shortest distance
between two points computed on the surface, i.e. the geodesic. The geodesics in a
space depend on the Riemannian metric, which affects the notions of distance and
acceleration, see [77].

Definition 5.12. Let δ(s) be a smooth curve on a manifold M from a to b with
δ(0) = a and δ(1) = b. Then δ′(s) ∈ Tδ(s) where Ta is the tangent space of M at
a. The curve length of δ with respect to the Riemannian structure is given by∫ 1

0

| δ′(s) |δ(s)ds (5.27)

and the distance d(a, b) between a and b is the shortest distance between a and b
given by

d(a, b) = inf
δ:a→b

∫ 1

0

| δ′(s) |δ(s)ds (5.28)

Thus, we can describe the θ function as a geodesic, where M[x(tf)] = 01 is
the manifold representing a subset of the configuration space, considering (5.8).
Following (5.28), we can write

θ[x(tf)] = inf
δ:a→b

∫ 1

0

| δ′(s) |δ(s)ds (5.29)

where
δ =| Γi[x(t0)]−Ωi−1[x(tf)] | with tf = t0 (5.30)

For example for a surface given parametrically by x(u, v), y(u, v), and z(u, v),
the geodesic can be found by minimizing the arc length

L =
∫
ds =

∫ √
dx2 + dy2 + dz2

where

dx =
∂x

∂u
du+

∂x

∂v
dv

dx2 = (
∂x

∂u
)2(du)2 + 2

∂x

∂u

∂x

∂v
dudv + (

∂x

∂v
)2(dv)2

5.4 Discussion and Conclusions

In summary, the problem addressed in this work can be subdivided in the following
steps:

• Task modeling, described in Chapter 4.
• Formalization as an optimal control problem, presented in Section 5.1.2.

1 M is not explicitly dependent on time as Γ and Ω in this case

5.4 Discussion and Conclusions 67

• Off-line computation of the nominal trajectory satisfying task constraints, de-
scribed in Chapter 6.

• On-line simulation of the real system and calculation of the distance function
θ, carried out in this Section.

In this Chapter we focus on the various approaches to optimal trajectory com-
putation for different kind of dynamical systems. We define the theoretical frame-
work used in this research and motivate the various choices made.

In particular we use a deterministic behavior to describe task evolution (see
Chapter 4), i.e. the optimal trajectory accounts for a single switch at each jump
condition. Hence, we compute the nominal trajectory as explained in Section 5.1.2,
by transforming the discrete part of the hybrid system in a set of constraints for
the continuous optimal trajectory computation. This choice of task representation
is motivated by the nature of the task we are studying.

With respect to the computation of the optimal solution we do not follow
the general HOCP approach making the optimal choice among many switching
possibilities. Rather, we use a priori knowledge in the switching selection to choose
among jump alternatives to emphasize good performance in each subtask and
safety of the complete execution. This is accomplished by optimizing a performance
index based on the the knowledge of the task. We compute the nominal trajectory
implementing the desired task behavior. In the on-line implementation a weight,
a.k.a the distance θ is used as index of good performance. We use Pontryagin
Maximum Principle because the constraints of the problem at hand can be mapped
directly into this formulation.

With the approach proposed in this Thesis we want to assure safety, good per-
formance and efficiency. In our approach a priory knowledge plays a big role in
the definition of the task model and in the computation of the optimal solution,
however this is not a limitation to the solution of more general hybrid control
problems because of the large number of situations where the optimal execution is
well defined and structured. In fact, it is more appropriate to indicate the approach
proposed as the solution to an optimal control problem rather for an hybrid op-
timal control problem because we have used the hybrid systems model mostly as
modeling and solution framework. The results of this approach are demonstrated
in Chapter 7 with appropriate examples.

6

Computational Issues

You might wish to follow the advice of your authors as notorious computer gunslingers:
We always shoot first, and only then relax.

[3]

Theoretical work on controllability properties of nonlinear hybrid dynamical
systems is still in its early stages and to date only a few problems with low state and
control dimensionability can be throughly understood [177]. Nevertheless, there
has been a strong interest in numerical methods for determining controllers for
these systems, inspired from the success of such approaches in conventional non-
linear optimal control problems. Nonlinear optimal control plays a key role in
modern mechatronics and robotics, in particular in the area of path, trajectory,
and action planning. To mention some of the many applications: walking pattern
and trajectory planning [98], mobile robot path planning [113], optimal payload
(weight) lifting, and acrobatics [8, 130], etc.. Numerical algorithms designed for
hybrid optimal control problems (HOCPs) with variable structure and nonlinear
differential equations have recently been published [55,101,171]. The key to numer-
ically solving HOCPs seems to be the combination of efficient numerical solvers,
such as direct collocation, for optimal control problems together with (heuristic)
approaches to reduce the combinatorial complexity of the discrete event aspect in
HOCPs [55,180].

The organization of this Chapter is as follows: in Section 6.1 a broad class
of HOCPs is defined and numerical strategies to obtain suboptimal solutions on
interior point constraints on grids are summarized, Section 6.1.1, and a branch-
and-bound strategy, Section 6.1.2, is proposed. The approach of this work is pre-
sented in Section 6.2 and in particular in Section 6.3 the algorithm implemented
is discussed, that relies on an efficient numerical tool developed in Matlab [53].

6.1 HOCP Solutions

A set of several different numerical strategies is presented here to compute the solu-
tion to the HOCP. Two alternatives HOCP solution strategies will be described: (i)

70 6 Computational Issues

suboptimal solution with interior event time and state constraints fixed on a grid
combined with graph search, and (ii) transformation to a mixed-binary-optimal
control problem and its subsequent solution using a branch-and-bound algorithm.

6.1.1 Suboptimal Solution Technique

Suboptimal solutions may be obtained by assigning interior point time instants
and states to predefined values on a (fine) grid. Between grid points, a standard
optimal control problem with fixed boundary conditions is solved. Finally, the
suboptimal solution to the HOCP is obtained by a graph search with each grid
point forming the nodes of the graph and the optimal cost weighing the vertices of
the graph. This solution strategy is applied to solve cooperative multi-arm trans-
port problem [55]. Disadvantages of this approach are the possibly high number of
multi-point boundary value problems to be solved and the inherent suboptimality
of the solution obtained. On the other hand, an appealing advantage is that by
problem understanding one often has good insight as to how the grid needs to be
specified, and a useful solution usually can be obtained easily.

Sparse Direct Collocation

The basis for the suboptimal solution strategies is the highly efficient direct collo-
cation method implemented in the software package Dircol [179] to approximately
solve optimal control problems using solutions to (sparse) nonlinear programming.

The numerical method of sparse direct collocation implemented in Dircol can
efficiently solve multi-phase optimal control problems with a fixed discrete state
trajectory. The state x is approximated by cubic Hermite polynomials x̃ =

∑
j αj x̂

and the control vector u by piecewise linear functions ũ =
∑
k αkx̂ on a discretized

grid in each phase. The state differential equations are pointwise fulfilled at the
grid points and grid midpoints, resulting in a set of nonlinear program (NLP)
equality constraints. The control or state inequality constraints are to be satis-
fied at the grid points resulting in a set of nonlinear NLP inequality constraints.
The transcription of the optimal control problem to an NLP is made by Dircol, the
NLP is solved efficiently with the advanced SQP-based (Sequential Quadratic Pro-
gramming) sparse nonlinear program solver SNOPT [91], and subsequently Dircol
processes the solution to provide state and control trajectories, error estimates
and output that may be used to verify the optimality of the solution. Important
features of the method are:

• As the grid becomes finer, the discretized solution converges to a solution of the
Euler-Lagrange differential equations (EL-DEQs) according to the Maximum
Principle.

• Reliable estimates of the adjoint variable trajectories λ along the discretization
grid may be derived from the Lagrange multipliers of the NLP. They enable
a verification of the optimality conditions of the discretized solution without
solving explicitly the EL-DEQs.

• Local optimality error estimates can be derived which enable efficient strategies
for successively refining a first solution on a coarse grid.

6.2 TPBVP Solutions 71

• Computation is fast because ODE simulation and control optimization are
performed simultaneously (unlike shooting methods).

• The method is also applicable to systems described by differential-algebraic
equations of differential index 1. In this case, the algebraic state variables are
discretized analogously to the control variables by piecewise linear functions.

6.1.2 Branch-and-Bound

The solution method for mixed-binary optimal control problems (MBOCP) using a
combination of sparse direct collocation and branch-and-bound was first presented
in [178] and further investigated in [180,55]. Given certain assumptions (finite and
known number of phases, constant state and control variables), the HOCP may be
transformed into a MBOCP with a simple transformation of its discrete variables.

The solution of the MBOCP yields the optimal (open loop) trajectories, the
optimal phase transition times, the possibly free final time and the optimal binary
control vector.

Remark 6.1. The nature of the binary control vector appearing in the MBOCP is
twofold. On the one hand it represents the discrete control variable v that controls
the order and types of phase transitions, on the other hand it also represents the
discrete state q in each phase.

A branch-and-bound strategy in combination with a binary search tree is em-
ployed. The subproblems solved provide approximate upper and lower bounds to
the MBOCP performance index. If the lower bound at a node is greater than
the global upper bound, that branch is discarded. The comparison of subproblem
solutions is additionally aided by the use of the optimality error estimate (confi-
dence interval). The MBOCP is thus reduced to a continuous multi-phase optimal
control problem, that is a relaxation method (see definition in the following).

6.2 TPBVP Solutions

Unless system equations, performance index, and constraints are quite simple, we
must employ numerical methods to solve optimal programming and control prob-
lems. Optimal programming and control problems are at least two point boundary
value problems (TPBVP) and, in some cases, multi point boundary value prob-
lems (MPBVP), e.g. when there are interior point constraints or state variable
inequality constraints.

Finding solutions to these nonlinear two-point boundary-value problem is, in
many cases, not a trivial extension of finding solutions to initial-value (one-point
boundary-value) problems. The crucial distinction between initial value problems
and TPBVP is that in the former case we are able to start an acceptable solution
at its beginning (initial values) and just march along it by numerical integration
to its end (final values). In the present case, instead the boundary conditions at
the starting point do not determine a unique solution to start with, and a random
choice among the solutions which satisfy these (incomplete) starting boundary
conditions is almost certain not to satisfy the boundary conditions at the other

72 6 Computational Issues

specified points. Iteration is generally required to mold these spatially scattered
boundary conditions into a single global solution of the differential equations. For
this reason, TPBVP require considerably more effort to solve than do initial value
problems.

The nonlinear two-point boundary value problem can be defined as

Definition 6.2. Find the n state variables, x(t), the n influence functions, λ(t)
and the m control variables, u(t) to satisfy, simultaneously, the n system differen-
tial equations (involving x, u), the n influence (adjoint, Euler-Lagrange) differen-
tial equations (involving λ, x, u), the m optimality conditions (involving λ, x, u)
and the initial and final boundary conditions (involving λ, x)

There are two distinct classes of numerical methods for solving TPBVPs. In the
shooting (or direct) method we choose values for all of the dependent variables at
one boundary. These values must be consistent with any boundary conditions for
that boundary, but otherwise are arranged to depend on arbitrary free parameters
whose values we initially ’randomly’ guess. We then integrate the ODEs by initial
value methods, arriving to the other boundary (and/or interior points with bound-
ary conditions specified). The shooting method provides a systematic approach to
taking a set of ’ranging’ shots that allow us to improve our aim systematically.
In all shooting methods, trial solutions satisfy the differential equations ’exactly’,
but the trial solutions come to satisfy the required boundary conditions only after
the iterations are finished.

In the relaxation (or indirect) methods differential equations are replaced by
finite difference equations on a mesh of points that cover the range of the inte-
gration. The iteration, called relaxation, consists of adjusting all the values on the
mesh so as to bring them into successively closer agreement with the finite dif-
ference equations and, simultaneously, with the boundary conditions. Good initial
guesses are the secret of efficient relaxation methods.

Relaxation works best when the solution is smooth and not highly oscillatory,
such oscillations would require many grid points for accurate representation. The
number and position of required points may not be known a priori. Shooting meth-
ods are usually preferred in such cases, because their variable step-size integrations
adjust naturally to a solution’s peculiarities.

6.2.1 The Calculus of Variation and Optimal Control

The extrema-finding techniques, although quite sufficient for many different situ-
ations, will not, in general, yield the solution to many problems associated with
control systems. Whereas the previously discussed techniques deal with methods
for extremizing functions of one or several independent variables, in control sys-
tem design we are typically concerned with extremizing certain types of functions
whose independent variables are actually other functions. This type of function is
called a functional. Although, as we might expect, many of the basic approaches for
extremizing functionals are similar to those for extremizing functions, the results
are sometimes quite different. The body of mathematics developed for extremiz-
ing functionals is variational calculus. Variational principles have been applied to
physical problems, such as wave propagation. The Hamiltonian formulation of the

6.2 TPBVP Solutions 73

variational problem has existed since the early nineteenth century in the works of
Hamilton, Jacobi, and others. The most significant contribution in recent times
was made by L.S. Pontryagin. The work of Pontryagin [146] extended the varia-
tional method to include problems wherein the available control and state vector
is bounded, as we have seen in Chapter 5.

We formalize the optimum control problem as MPBVP using variational calcu-
lus. This set of differential equation may not be solved in a straightforward manner
because of the occurrence of state conditions together with terminal conditions.
We use direct methods to change the variational problem into a problem of or-
dinary maxima and minima. The techniques commonly used for this purpose are
the Rayleigh-Ritz and the finite elements methods (FEM) [66, 109, 90]; discrete
dynamic programming [79,32,33] and gradient method or method of steepest de-
scend [110,53].

The Ritz and FEM methods [66, 109, 90] are based on finding a sequence of
functions which give successively smaller values to the functional to be minimized.
In the Ritz method, for example, the trajectory and the control are expanded in
terms of a weighted sum of a suitable set of functions, and a minimizing set of
coefficients for these functions is found. These methods apparently have not been
too popular due to the difficulties in finding a suitable set of basis functions and
in determining the number of terms to use in the expansion.

Another direct method is that of discrete dynamic programming [79,31,32,33].
Discrete dynamic programming is, in effect, the repeated, sequential, stage-by-
stage application of the Hamilton-Jacobi equations or the optimality principle
of Bellman. Discrete dynamic programming has an advantage of actually being
simplified by the addition of control and state-space constraints. Its biggest dis-
advantage is the requirement for a truly fantastic amount of computer memory
for any but very low order problems. The polynomial approximation method of
Bellman [33] and the state increment method of Larson [118] are two methods
for the reduction of the memory requirements in the computational solution of
optimal control problems by discrete dynamic programming.

A third and significantly different type of direct method is the gradient method
or method of steepest descent. The gradient method consists of searching for an
optimum by making each new iteration move in the direction of the gradient which
points locally in the direction of the maximum decrease (or increase) of the cost
function. The method was developed and applied to optimal control problems
by Kelly [110], and Bryson and Denham [52]. Various modifications to include
penalty functions and other methods of treating equality and inequality constraints
have been presented [53]. We use the approach of Bryson [53]. These gradient
methods have the ability to generate successively improved trajectory with very
poor starting values. However they tend to converge slowly and often require the
selection and adjustment of several convergence parameter. The gradient method
is a first-order method since it is based on finding first-order effects of control
upon terminal constraints and the cost function. To improve the convergence of
the gradient method near the optimal trajectory, second-order term can be added.
Due to the similarity of these terms to the terms present in the second variation,
these methods are know as methods based on second variations [135, 53]. They

74 6 Computational Issues

do accelerate convergence of the gradient method but they require good initial
estimates of the initial control and trajectory for convergence.

The method of quasilinearization for the resolution of boundary-value problems
arising in the solution of nonlinear differential equation has been widely developed
and applied by Bellman and Kalaba in various works [34]. This method generates
a monotone iteration scheme whose iterates converge quadratically to a unique
solution of the problem at hand. This overview does not aim at reviewing the entire
literature of the two-point boundary value problem. A more complete summary
you can find in [154].

To compute the nominal control function, we use a modified gradient method
because we do not fix a target function, a.k.a. the control law, and we do not
compute with the gradient method only a set of parameters but also a control
function u(t) that respects the behavioral constraints imposed by the subtask
analysis. In Chapter 7 we present an application of this methods to the simulation
of a robot task touching and breaking a compliant surface. In Section 6.3 we
describe the algorithm that we use in this work for the generation of the subtask
nominal trajectory.

6.3 The Algorithm

We describe in this Section the procedure used to resolve the multi-point boundary-
value problem. We transform the variational problem into a minimization problem
with constraints. We minimize a functional and the output of the minimization is
the control law.

The mathematical background for this kind of problem is well defined but
very few implementation results are present in the literature for such kind of
minimization, where we do not have an objective function to minimize, neither we
are checking for optimal parameters of this function but we compute a functional.
We adapt Brayson’s algorithm [53] to our problem formulation. The algorithm
gives the possibility to choose between a fixed time with interval 0 < t < T and
open final time, where t is variable. In the second case the optimization algorithm
returns an optimal control law, with 0 < t < T where T is determined from the
problem constrains. We resolve a dynamic optimization problem with open final
time, with state and control constraints. The inequality in the state and control
constrains are added to the problem as shown in Equations (6.1), (6.2) and (6.3).
Consider an optimization problem with only one control variable u(t), where u is
bounded between umin and umax. We first introduce a change of control variables
from u to u1 where

u =
(umax + umin)

2
+ u1

(umax − umin)
2

(6.1)

Using the new control variable u1, we have

−1 ≤ u1 ≤ 1 (6.2)

To handle this constraint, we next introduce a slack control variable u2 where

6.3 The Algorithm 75

u1 = cos (u2) (6.3)

Numerical solutions using u2 as control are then relatively straightforward using
the gradient projection algorithm seqopt. However, if the exact solution contains
abrupt switches from u1 = 1 to u1 = −1 or vice-versa, the solution using u2 will
have rapid but not abrupt changes, so it is an approximate solution. By increasing
the number of integration steps, one can come as close as desired to the exact
solution. If the inequality constraint involves only the state variables, we have to
introduce one or more slack state variables as well as a slack control variable.

Necessary Condition for a Stationary Solution

We state the problem as to find the control vector sequence u(i), i = 0, . . . , N − 1
and the time step ∆ to minimize

J = φ[x(N),∆] (6.4)

where the number of steps N is specified and

N∆ = tf (6.5)

subject to the constraints

x(i+ 1) = f [x(i), u(i),∆], x(0) = x0 (6.6)
ψ[x(N),∆] = 0 (6.7)

The new element depends on the performance index, terminal constraints, and
dynamic equations on the time step ∆. Differential changes in the performance
index and the terminal constraints are given by

dφ = φ∆d∆+
N−1∑
i=0

[Hu
φ(i)du(i) +H∆

φ(i)d∆] (6.8)

dψ = ψ∆d∆+
N−1∑
i=0

[Hu
ψ(i)du(i) +H∆

ψ(i)d∆] (6.9)

where Hu and H∆ are computed by backward sequencing the adjoint equation for
the performance index

(Hu
φ(i))T = fu

Tλφ(i+ 1), λφ(N) = φx
T (6.10)

H∆
φ(i) = f∆

Tλφ(i+ 1) (6.11)
λφ(i) = fx

Tλφ(i+ 1) (6.12)

and the adjoint equations for the terminal constraints

(Hu
ψ(i))T = fu

Tλψ(i+ 1), λψ(N) = ψx
T (6.13)

H∆
ψ(i) = f∆

Tλψ(i+ 1) (6.14)
λψ(i) = fx

Tλψ(i+ 1) (6.15)

76 6 Computational Issues

Note that ψ and hence Hu
ψ and H∆

ψ are q-vectors, and λψ is an n × q matrix.
To simplify the notation, we define

φ̄∆
4
= φ∆ +

N−1∑
i=0

H∆
φ(i) (6.16)

ψ̄∆
4
= ψ∆ +

N−1∑
i=0

H∆
ψ(i) (6.17)

We adjoin the terminal constraint changes to the performance index changes with
constant Lagrange multipliers ν

dΦ = dφ+ νT dψ

= (φ̄∆ + νT ψ̄∆)d∆+
N−1∑
i=0

[Hu
φ(i) + νTHu

ψ(i)]du(i) (6.18)

For dΦ = 0 for arbitrary d∆ and du(i), with dψ = 0, it is necessary that

Φ∆
4
= φ̄∆ + νT ψ̄∆ = 0 (6.19)

and that
Hu(i)

4
= Hu

φ(i) + νTHu
ψ(i) = 0 (6.20)

for i = 0, . . . , N − 1, where ν is chosen to satisfy ψ = 0.

Remark 6.3. 6.20 is the same condition also with fixed final time.

Remark 6.4. 6.19 is the transversality condition. It is the additional condition that
determines the optimal time step ∆.

Numerical Solution with Gradient Methods

Using a guess for the optimal u(i) and optimal ∆, we may calculate the gradients
in (6.19) and (6.20). In general, they will not be zero, so we construct improved
estimates by making differential changes in the negative direction of these gradi-
ents:

d∆ = −k∆Φ∆ (6.21)
du(i) = −kuHu(i), i = 0, . . . , N − 1 (6.22)

Substituting (6.21)-(6.22) into (6.18) gives

dΦ = −k∆(Φ∆)2 − ku

N−1∑
i=0

[Hu(i)Hu
T (6.23)

which is non-positive if k∆ and ku are chosen positive.
Substituting (6.21)-(6.22) into (6.9) gives q linear equations for the q-vector ν:

6.4 Conclusions 77

ν = −(k∆ψ̄∆ψ̄T∆ + kuQ)
−1

(dψ + k∆φ̄∆ψ̄∆ + kug) (6.24)

and

Q =
N−1∑
i=0

[Hu
ψ(i)[Hu

ψ(i)]
T

(6.25)

g =
N−1∑
i=0

[Hu
φ(i)[Hu

ψ(i)]
T

(6.26)

Remark 6.5. (k∆ψ̄∆ψ̄T∆ + kuQ) is non-singular.

A Matlab code for Problems with Open final Time

A Matlab code for solving open final time problems, called seqopt, is an iterative
algorithm and it follows these summarized steps:

• Compute an initial ∆, tf is divided by N , the number of elements of the control
vector, that is the function to be minimized.

• Initialize states of the systems.
• Compute the entire state sequence.
• Compute the partial derivative for the dynamics, the objective function and

the constraints respect to the states the control and the time.
• Compute the new control in the gradient direction given in the previous step.

Also a new tf is given.
• Iteratively perform the algorithm from the initialization step till a maximum

number of steps (fixed) or the difference between the solution of one steps and
the following is less than a threshold.

6.4 Conclusions

In this chapter an overview on numerical algorithms to resolve the optimal control
problem is given. Some specific methods are proposed in the literature to resolve
the Hybrid Optimal Control Problem. The focus of this algorithms is on the dis-
crete evolution, with a search along the graph of the discrete states they compute
an optimal time trajectory. Instead, we focus on the continuous part and we mini-
mize dynamic parameters strictly correlated to the optimal task execution criteria.
We constrain the continuous trajectory in each subtask in order to minimize the
cost and have a null jump cost. The discrete part is considered only at the final step
where the partial results coming from the computation of the nominal trajectory
are putted together to obtain the optimal trajectory for the hybrid system.

7

Computation Results and Simulations

‘Testing can show the presence of bugs, but not their absence.
Edsger W. Dijkstra

The simulation of technical processes by scientific computing has become an
important tool for the development of new technologies. In many applications,
the required theoretical validation and experimental research can be replaced in
part by numerical computations. In this Chapter, we focus on the simulation of
the hybrid system optimization described in the previous Chapter and on the
presentation and discussion of the computation results.

7.1 Introduction

Several recently developed efficient numerical methods have been presented in
Chapter 6. Their impact in engineering is demonstrated by their application to
three different classes of problems, namely trajectory optimization, parameter es-
timation and design optimization.

The application of numerical optimization methods to trajectory optimization
for industrial robots has shown that large improvements are possible compared
with traditional path planning methods (e.g. [181]). But the use of sophisticated
numerical optimization methods requires several necessities as, e.g., the proper
description of the dynamic behavior of the robot as an n-body system (in minimal
coordinates, e.g., the relative angles between successive joints q = (q1, . . . , qn)T of
the robot)

M(q(t)q̈(t) = u(t) + χ(q̇(t), q(t)), t ∈ [0, tf] (7.1)

where u = (u1(t), · · · , un(t))T is the torque control, M is the positive definite
and symmetric (n × n)-matrix of moments of inertia and χ are the moments
resulting from centrifugal, coriolis, gravitational and frictional forces. Thus the
first basic problem is the modeling of the dynamic system (7.1) of the robot.
The identification of unknown dynamic parameters of the specific robot (as, e.g.,
moments of inertia or friction parameters) is a second must, see Chapter 8.

80 7 Computation Results and Simulations

Once the dynamic equations have been modeled and determined in a proper
way, the optimization of trajectories can be investigated. Different robot tasks re-
quire different objectives for optimal trajectories evolution, e.g., in welding optimal
tracking of the prescribed path might be required. For example if only the initial
and the final position of the robot are prescribed a fast point-to-point movement
might be requested.

Remark 7.1. The fastest point-to-point motion is calculated with this objective
function: tf → min

Remark 7.2. Time minimization in a robotics task exhibits quite often a surpris-
ingly result, impacts enormous stress on manipulator links and can even often not
be realized in practice.

Remark 7.3. Fast minimum energy motions has
∫ tf
0

∑n
i=1 ui

2(t)dt → min as ob-
jective function.

Remark 7.4. Energy minimization in a robotics task offers a compromise between
time and stress, [181].

The robot trajectories execution also have to satisfy several constraints as,
e.,g., constraints on the controls, the angles and the angular velocities (dynamical
constraints). Further constraints result from the geometrical design of the robot’s
workspace and require an efficient modeling of collision avoidance (kinematic con-
straints).

In this Chapter the concepts presented in this Thesis are explained. In Sec-
tion 7.2 computation results of the algorithm explained in the Section 6.3 for a
1-DOF manipulator puncturing a membrane are proposed. In Section 7.3 we use
these results, i.e. the nominal control law, as a reference in the closed-loop sys-
tem simulation, where a feedback control law is introduced to compensate the
disturbances of the model use for the nominal trajectory computation.

7.2 Nominal Trajectory Computation

In this Section we study a simple robotic switching task, whose hybrid model is
shown in Figure 7.1. This diagram represent a simplified surgical action, i.e. the
initial steps of a suture as describes in Section 4.4. The first state represents the
subtask of positioning the end effector of the manipulator in contact with a com-
pliant surface; in the second state an elastic force is opposing the tool tip until
the force applied by robot breaks the surface. At the breaking point there is a
transition to the third state in which the end effector of the manipulator moves
through the surface and stop as soon as possible. For the sake of simplicity, we
consider a 1-DOF manipulator in order to have simple dynamics and simplified
constraints. Given the cost function (5.2) and the dynamic and kinematic con-
straint, we instantiate them for each state in the automaton (Figure 7.1). In the
first positioning state we want to minimize the dissipated energy, i.e. φ[u(t)] = u2

while satisfying the dynamic of our system, i.e. for the 1DOF manipulator:

7.2 Nominal Trajectory Computation 81

contact

stoppositioning

F=0F>0

Fig. 7.1. State transition diagram.

ẋ1 = x2

ẋ2 =
τ1

ml1 l1
2 + Il1

(7.2)

The control bounds are due to the standard range of joint torque, i.e. −10Nm <
u < 10Nm. The state constraints take into account the stability of our system, see
Section 3.3. In the more general case when an infinite number of switching occurs
we need constraints on each Lyapunov function of the system (non-increasing).
In our system instead we force the jumps, therefore we have a finite number of
switch and we assure the convergence with a restriction on the states of the ’stop’
subtask. Thus, only in the last subtask computation we take into account state
constraints for stability purpose.

The kinematic constraints are related to the terminal manifold, since the initial
manifold is given. In the first state we have

x2(tf) = 0
x1(tf) = c (7.3)

where c is the desired initial position for the contact state, that should be the
final position for the first state. Figure 7.2 shows the results of the computation
algorithm. In the position plot is shown that a predefined position is reached
smoothly, i.e. without spending too much effort. The velocity profile shows the
that the manipulator start and arrive at the target with zero velocity. The control,
third plot, change direction in correspondence of the point where the velocity starts
to decrease.

In the second state we consider φ[u(t)] = u2 and the constraints due to the
interaction with a compliant surface. The computation has to take into account
the external force applied by the membrane (F). The dynamics of the system is

ẋ1 = x2

ẋ2 =
τ1 − F

ml1 l1
2 + Il1

(7.4)

We bound the velocity, (7.5), in order to have a smoother behavior during the
contact and a better performance in the following stop state.

x2(t) < vmax

x2(t) > vmin (7.5)

82 7 Computation Results and Simulations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1
Position

P
os

iti
on

. (
ra

d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5
Velocity

V
el

oc
ity

. (
ra

d/
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5

0

5
Control

Time (s)

C
on

tro
l (

N
m

)

Fig. 7.2. Positioning subtask: position, velocity and control function

The results of the simulation are shown in Figure 7.3. It is possible to recognize the

0 0.05 0.15 0.2
0

0.005

0.01
Extern Force

Fo
rc

e
(N

)

0 0.05 0.15 0.2
0.7

0.75

0.8
Position

P
os

iti
on

 (r
ad

)

0 0.05 0.15 0.2
0

0.5

1
Velocity

V
el

oc
ity

 (r
ad

/s
)

0 0.05 0.15 0.2
4.6

4.65

4.7
Control

Time (s)

C
on

tro
l (

N
m

)

Fig. 7.3. Contact subtask: position, velocity and control function

breaking point (final point in the plot) where the force F is zero. In this subtask
position, control and velocity profile increase according to the subtask behavior,
i.e. the manipulator does not stop at the end of this subtask.

7.2 Nominal Trajectory Computation 83

For the third state we consider a different cost function because we want to
minimize the time to stop after the membrane breaking, i.e. we use φ = 1. We have
the kinematic constraint x2(tf) = 0 because the desired behavior for this subtask
is to arrive at tf with zero velocity and we have dynamic constraints due to system
dynamics (7.2) and the stability constraint (7.7). We impose the convergence of
the Lyapunov function (7.6) to the equilibrium point, i.e. zero.

V (x) =
1
2
x2

2 + (1 +m cosx1) (7.6)

u ≤ m sinx1 (7.7)

wherem is a multiplicative factor. The results are shown in Figure 7.4. The position

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.5

1

1.5
Position

P
os

iti
on

 (r
ad

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−1

0

1

2
Velocity

V
el

oc
ity

 (r
ad

/s
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−10

−5

0

5

10
Control

Time (s)

C
on

tro
l (

N
m

)

Fig. 7.4. Stop subtask

increases, the velocity instead is still influenced by conditions of the end of the
previous state, and it shows an initial increase, after which it goes to zero. The
control decreases from the initial time of the subtask, as we expect. In the final
part of the state the velocity is controlled so it starts to decrease still maintaining
a negative value.

The control function of the complete task is shown in Figure 7.5. In the posi-
tion plot we notice the contact with the membrane because the position increases
slowly. The velocity profile is not linear because of the constraints that are imple-
mented in this state of the system. In fact the velocity describes better than other
state variable the behavior of the subtask, because of the clear separation between
subtasks. Also the control profile is not linear due to the different subtask. We
can recognize the first subtask where the profile decreases, the second where the
increase is less evident in this plot scale, and the third subtask where we have an
oscillatory behavior.

84 7 Computation Results and Simulations

0 0.5 1 1.5
0

0.5

1

1.5
Position

P
os

iti
on

 (r
ad

)

0 0.5 1 1.5
−1

0

1

2
Velocity

V
el

oc
ity

 (r
ad

/s
)

0 0.5 1 1.5
−10

−5

0

5

10
Control

Time (s)

C
on

tro
l (

N
m

)

Fig. 7.5. Control function

Remark 7.5. The complete plot shows that the switching among different perfor-
mance indices is effective in computing the optimal controls for a complex task.

7.3 Simulation Results

After the calculation of the off-line nominal trajectory is performed, on-line feed-
back must be used to correct the error due to environment and model uncertainties.
Figure 7.6 shows how is modified the automaton of the puncturing task to take

contact

stoppositioning

F=0F>0

Fig. 7.6. Model of the task with feedback.

into account the on-line execution. The feedback is represented with a loop on
each state, because it regulates the state behavior until the distance θ among the
manifolds Ω′ and the target Ω is zero.

Simulations of the task evolution with noise measurements and a constant noise
in the dynamics are carried out. The off-line optimal trajectory is used as reference

7.4 Conclusions 85

signal in a feedback control loop. A regulator corrects the error see Figure 7.7, of
the system performing the puncturing task. In Figure 7.7 on the right is shown

0 5000 10000 15000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Position

P
os

iti
on

 (r
ad

)

0 5000 10000 15000
−0.5

0

0.5

1

1.5

2
Velocity

V
el

oc
ity

 (r
ad

/s
)

0 5000 10000 15000
0

0.2

0.4

0.6

0.8

1
x 10−4 Position Error

P
os

iti
on

 (r
ad

)
0 5000 10000 15000

0

2

4

6

8
x 10−4 Velocity Error

V
el

oc
ity

 (r
ad

/s
)

Fig. 7.7. Off-line and on-line position and velocity trajectory of the overall system with
the error between the two trajectories (on the left)

the error of the simulated trajectory and the nominal trajectory. We can notice
that the error is compensated by the regulator as shown in Figure 7.7 on the left.

7.4 Conclusions

An hybrid system model of a compliant task is analyzed in order to design the con-
trol law. The execution of this task requires the definition of a nominal trajectory
that can drive the robot to the task successful completion. To this aim, we define
an optimal strategy to compute the nominal trajectory off-line in the Section 6.3
and in this Chapter an example of the computational methods to implement this
approach in presented together with some results. To obtain an online solution we
use a feedback on each subtask to ensure that uncertainties and disturbances dur-
ing task execution will be properly compensated. We use the distance function θ as
cost of the jump, because it gives the correctness of the execution. This simulation
results indicate the feasibility of the approach proposed. In the next Chapter are
shown some experimental results.

8

Experimental Verification

Hope is not the conviction that something will turn out well, but the certainty that
something makes sense, no matter how it turns out.

Vaclav Havel

In this Chapter we present experimental results of an autonomous task ex-
ecution by a robot in a teleoperation system whose slave end effector comes in
contact with a compliant surface. These experiments are carried out in a teleop-
eration system to identify the salient features of the task and as a test based for
the experiments on autonomous execution of the same task, carried out using the
slave manipulator alone.

The Chapter is divided into two parts. In the first part a task is carried out in
teleoperation to extract and verify the model of the manipulator and tune its con-
trol algorithms. In the second part of the Chapter, we describe the experiments of
autonomous task execution implementing the simulations of the previous Chapter
(to be done).

A salient feature of the teleoperation experiments is the comparison of different
control schemes: a single regulator PID, impedance control and hybrid system
approach. The performance of the various schemes is compared on a contact and
puncturing task of an elastic membrane, shown in Figure 8.1, to determine the
best controllers for the autonomous.

The performance measures that we use to evaluate the controllers include ap-
proach to the membrane, puncturing, and position overshoot.

The autonomous task executions are carried out with the same setup, but in
this case the commands are not generated by an operator but by the optimization
procedure described in the previous Chapters. A comparison and discussion of
the task execution in teleoperation and autonomously validates the quality of the
nominal trajectory computed by the optimization procedure.

8.1 The Experimental Setup

Since we are mostly concerned with the part of the teleoperation system interacting
with the environment, we will only describe the robot and the environment. A

88 8 Experimental Verification

Fig. 8.1. The experimental setup. PUMA robot with a force/torque sensor is pushing
against an elastic membrane.

description of the complete teleoperation system can be found in [14, 40, 43, 65,
108,120,188,153,174]

The Slave Robot

To carry out the experiments we use as slave robot a PUMA 560 manipulator
shown in Figure 8.1. As a dynamical model for the optimization we use a model
obtained with identification techniques, instead of considering the complete ma-
nipulator dynamics. The identification is carried out using the MatLab System
Identification Toolbox [1] with the robot in a fixed position and moving only the
first joint in a configuration similar to the simulations of the Chapter 7. The con-
trol input is the torque τ applied by the motor, and the measured output is the
angular position on the manipulator, Φ.

Efficient methods for the solution of parameter identification problems are
based on multiple shooting in combination with generalized Gauss-Newton- or
adapted SQP-methods [42]. These identification algorithms only require some
functions of the states and no derivatives to be measured in order to identify
the unknown parameters.

The identification process computes matrices A,B,C,D,K of the classical
state-space model in the form:

ẋ = Ax +Bu +Ke,

y = Cx +Du + e; (8.1)

8.1 The Experimental Setup 89

where u is the system input vector, y the system output vector and e is white
noise. Matrices A,B,C,D,K are computed so that the training input samples u
match the output training samples y.

The moving joint is modeled as two masses connected by a spring-damper.
The states of the system are position and velocity of the motor, and position and
velocity of the robot arm.

With these state variables the manipulator model is:

A =

0 1 0 0

− k
M1

−D1+d
M1

k
M1

d
M1

0 0 0 1
k
M2

d
M2

− k
M2

−D2+d
M2

B =

0
1
M1

0
0

 CT =

1
0
0
0

 (8.2)

where k, d are spring and damper coefficients, respectively; bi is friction of mass i
and Mi is the inertia of mass i, and e is a noise term, considered equal to zero.

The identified model produced the results plotted in figure 8.2. To validate this
result we tested the model using several input data sets that produced an RMS
error of about 1.29 degrees with respect to the true system output.

Fig. 8.2. Identification results.

90 8 Experimental Verification

Environment

In general, every environment posses a certain amount of flexibility. Whether an en-
vironment is flexible or rigid is completely dependent on its mechanical impedance.
However, if an environment posses comparable or lower mechanical impedance
than that of the robot, it is considered as a flexible environment. Soft springs and
soft tissues are flexible environments.

The type of environment considered in the various tests described in this Chap-
ter consists of a planar compliant surface of medium stiffness, with an estimated
contact stiffness in the order of 32 kg/m for translational displacements. This
choice is motivated by the desire of simulating the mechanical properties of a soft
biological tissue to simulate a surgical suture. The interaction with the environ-
ment encompasses an unplanned transition from non-contact to contact at non
negligible end-effector speed and must take into account that the sensor in highly
stiffness.

8.2 Teleoperated Task Experiments

The experimental setup available in the laboratory includes the industrial robot
Unimation Puma 560 with a control unit equipped with a force/torque sensor ATI
FT 30/10 and a six degree of freedom master device. An open control architecture
has been implemented which allows testing of advanced model-based control algo-
rithms on a conventional industrial robot. For the experiments we use the elastic
membrane attached to a rigid structure shown in Figure 8.1.

Figure 8.3 shows experiment results of teleoperating a contact with the mem-
brane. The position difference between master and slave during the contact with
the membrane is proportional to the force feedback to the operator, who adjusts
the control input.

The performance used are:

• Contact time: time needed to reach the membrane.
• Puncturing time: time needed to puncture the membrane.
• Position overshoot: overshoot after puncturing the membrane.

In Figure 8.3 we see the interaction of the robot with the environment, the
difference in position between master and slave and the force applied by the slave
to the membrane. We note that in certain points the operator adjusts his/her
command input to account for his/her view of the task, thus changing the nominal
control of the task.

8.3 Autonomous Task Experiments

We use the experimental setup described in the previous Section to carry out exper-
iments using as input the nominal trajectory computed off-line with the steepest
descent algorithm described in Section 6.3. The input is corrected by a feedback
control loop that take into account the error due to measurements noise, environ-
ment and model uncertainties introduced with the real execution. We constrain

8.3 Autonomous Task Experiments 91

(a) (b)

(c)

Fig. 8.3. Experiment data for teleoperated membrane puncturing for three types of
robot controller. Each figure shows Master, Slave position and Force measured. Vertical
lines divide the task in: idle region (when operator does not move the joystick), move
region, contact region (during membrane contact), puncturing region.

the system following the performance results of the teleoperated execution, tak-
ing into account position, velocity and force constraints in the nominal trajectory
computation. Thus the results (shown in Figure 8.4) verify the feasibility of this
approach to the autonomous execution of a puncturing task.

A qualitative analysis on this results compared to the teleoperated results (Fig-
ure 8.5) can encourage the prosecution of the work. We obtain better performance
respect to the teleoperated task in contact time and puncturing time because the
manipulator goes without uncertanty through the membrane, and especially in
position overshoot we have an improvement due the fast reaction of the algorithm
respect to the human operator.

92 8 Experimental Verification

0 0.5 1 1.5
0

1000

2000

3000
Position (step)

0 0.5 1 1.5
−10

0

10

20
Velocity (step/s)

0 0.5 1 1.5
−2

0

2
Control (Volt)

0 0.5 1 1.5
−1

0

1

2
Force (Kg)

Time (s)

(a)

0 0.5 1 1.5
0

1000

2000

3000
Position (step)

0 0.5 1 1.5
−50

0

50

100
Velocity (step/s)

0 0.5 1 1.5
−2

0

2
Control (Volt)

0 0.5 1 1.5
−1

0

1

2
Force (Kg)

Time (s)

(b)

0 0.5 1 1.5
0

1000

2000

3000
Position (step)

0 0.5 1 1.5
−20

0

20

40
Velocity (step/s)

0 0.5 1 1.5
−2

0

2
Control (Volt)

0 0.5 1 1.5
−1

0

1

2
Force (Kg)

Time (s)

(c)

Fig. 8.4. Experiment data for autonomous membrane puncturing.

0 2000 4000 6000 8000 10000 12000
−5000

0

5000
Position (step)

Master
Slave

0 2000 4000 6000 8000 10000 12000
−100

0

100

200
Velocity (step/s)

Master
Slave

0 2000 4000 6000 8000 10000 12000
−2000

−1000

0

1000
Force

(a)

0 0.5 1 1.5
0

1000

2000

3000
Position (step)

0 0.5 1 1.5
−10

0

10

20
Velocity (step/s)

0 0.5 1 1.5
−2

0

2
Control (Volt)

0 0.5 1 1.5
−1

0

1

2
Force (Kg)

Time (s)

(b)

Fig. 8.5. (a) Experiment data for teleoperated membrane puncturing (b)Autonomous
task execution.

8.4 Conclusions 93

8.4 Conclusions

In this Chapter we have presented experiments task of puncturing a membrane as
a representative surgical task. The experiments were first carried out by humans
to tune the system and to generate a performance baseline against which evaluate
the autonomous execution. To this goal we defined a set of performance measures
and identified a range of ’good’ values of human performance.

Autonomous execution was carried out using the nominal controls computed
off-line following the algorithm presented in Chapter 6. According to the perfor-
mance measure selected, the autonomous controller and the teleoperated task are
similar in the executions and the autonomous execution has better performance.

9

Summary and Recomandation for Future
Research

The most exciting phrase to hear in science, the one that heralds new discoveries, is not
’Eureka!’ (I found it!) but ’That’s funny....

Isaac Asimov

In this Thesis we have developed a novel approach for the modellization, anal-
ysis and execution of complex tasks, based on the formalism of Hybrid System
Theory. The approach has been used to model, simulate and experimentally verify
a simple surgical task, a suture, which includes, in a small context, most of the
difficulties of autonomous task execution. To our knowledge, the enhancement of
teleoperation using hybrid automaton has not been done so far, and the results
of the experiments show the significance of the enhancements supported by this
approach, since it provides a unified framework for modeling, formal verification,
and testing of the execution of sequences of elementary tasks.

A new quality measure of task execution is introduced to monitor the progress
of the task. Performance is evaluated only at discrete jumps between task phases,
which summarize the history of the continuous portion of the hybrid system.

Dynamic Optimization has been adapted to the computation of the nominal
controls for the task execution, and a direct numerical method has been used
to compute the nominal trajectory that satisfies the dynamics of the robot and
satisfies the constraints of task environment.

The combination of Hybrid System formalism and of the Dynamic Optimiza-
tion has lead to an algorithm for the computation of the safe execution of a complex
task. First, the model of the task is structured, based on a priori knowledge of the
task, and task requirements are represented as constraints on the hybrid model,
either on the continuous or on the discrete states. Then an optimal trajectory, sat-
isfying task constraints is computed using the Dynamic Optimization. Task quality
is measured at each discrete state, providing for warning in case of performance
degradation either in the case of autonomous or in the case of human assisted
execution.

The approach is first validated in computer simulations, which indicate the
feasibility of this approach.

96 9 Summary and Recomandation for Future Research

The experimental verification of the proposed approach is based on the teleop-
eration equipment available in the Altair robotics laboratory and it consists in a
6-DOF manipulator and a 1-DOF force feedback joystick and an open architecture
Corba based.

9.1 Contributions

The major contributions of this Thesis can be summarized as follows.

• The problem of the autonomous execution of a complex task has been for-
mulated as a Hybrid Automaton optimization, with applications to the robot
assisted execution of surgical procedures.

• An in depth review of the state of the art of autonomous task execution has
been produced.

• A method to formalize a complex task using hybrid system tools has been
outlined, yielding a representation of task phases, environment constraints,
and quality measures.

• The concepts of Safety and Stability for complex task has been introduced,
which is considered in the optimal control design.

• Pontryagin’s Maximum Principle has been adapted to the computation of op-
timal hybrid trajectories, and the relative necessary conditions have been de-
rived.

• Autonomous task execution has been formulated as the computation of the
optimal trajectory in space state of a hybrid automaton, and subject to state
dependent constraints.

• The numerical gradient procedure for computing the time optimal solution has
been adapted to the hybrid system formalism, and implemented.

• This approach has combined hybrid system analysis with dynamic optimiza-
tion.

9.2 Recommendations for Future Research

The following subjects are suggested for further research:

1. Hybrid System:
• The development of automatic procedures for the automatic representation

of a task model, given a task execution, for example, by a skilled operator.
• Development of more complex and structured task quality measures, that

can provide real time warnings on the insurgence of critical situations.
• The development and analysis or different real time execution environments

and control suitable for HS.
• Lesser reliance on a priori knowledge.

2. Dynamic Optimization:
• The numerical computation of optimal trajectories is an important issue.

It should be made fast enough so that it could be integrated into a real
time execution system. Furthermore, different numerical algorithms should

9.3 Conclusion 97

be investigated to determine the most appropriate method for this specific
optimization problem.

3. Complete Algorithm:
• Fault Recognition and Fault Recovery should be investigated and imple-

mented in the algorithm.
• More complex automa should be considered.

4. Validation and Verification:
• Application of Formal Methods to verify and validate the model, i.e. model

checking techniques.

9.3 Conclusion

This Thesis has developed three main aspects of autonomous execution of complex
tasks: the formalization of a task as a hybrid automaton, the adaptation of neces-
sary optimality conditions to the case of hybrid automaton, and the development
of a numerical procedure for the computation of the nominal task trajectory.

The Hybrid System Formalism is very suitable and powerful to represent the
structure and the constraints of a complex task. Certain features of Hybrid Sys-
tems, e.g. safe sets, can be interpreted in the context of autonomous tasks, and
allow high level analysis of task properties and quality. The use of a priori knowl-
edge of the task allows to avoid the curse of dimensionality of hybrid system
analysis and to compute the optimal solution in short time. When initial analysis
and simulation verification is needed, the off-line computation of the optimal tra-
jectory yields a nominal trajectory that can be used to verify task sequence and
organization. When the task is to be executed on a hardware system, the addi-
tion of a simple feedback controller, allows the easy transition from simulation to
experimental verification.

Dynamic optimization is well suited to solve a Hybrid System planning and
execution problem, and to explore the effects of the various constraints on the
final solution. The selection of the parameters in the numerical optimization is a
tool that can be used to examine the relative weight of the task constraints. The
careful adjustment of the parameters allows the computation of different solutions
that give a better understanding of the underlying solution space.

Finally, by combining Hybrid System formalism with Dynamic Optimization
methods, the result is the computation of a feasible optimal trajectory that can be
directly validated in simulation and tested with experiments. The lack of accurate
models in certain phases of the task is compensated by the dynamic optimization.
Similarly, the use of feedback control during task experiments, compensates for
some of the uncertainties not accounted for in the optimization algorithm. Al-
though still in its infancy, the combination of fast heuristics hybrid system mod-
eling and dynamic optimization has demonstrated its power in computing the
controls and the sensory conditions for the autonomous execution of a complex
surgical task.

References

1. Matlab identification toolbox. The Mathworks Inc. http:
www.mathworks.com.

2. Computers and Intractability: A Guide to the Theory of NPCompleteness. San
Francisco, 1979.

3. Numerical Recipes in C. Press Syndicate, 1988.
4. Applied Nonlinear Control. Prentice-Hall, 1991.
5. Discrete Event Systems, Modeling and Performance Analysis. Richard D. Irwin,

Inc. The Aksen Associates Series in Electrical and Computer Engineering, Illinois,
burr ridge edition, 1993.

6. Nonlinear Systems. Prentice-Hall, 1996.
7. Air traffic automation: a case study in distributed decentralized control. Springer,

1998.
8. J. Albro and J. Bobrow. Optimal motion primitives for a 5 dof experimental hopper.

Seoul, Korea, 2001. IEEE International Conference on Robotics and Automation.
9. P. Althaus and H. Christensen. Automatic map acquisition for navigating in domes-

tic environments. In IEEE International Conference on Robotics and Automation,
pages 1551–1556, Taipei, Taiwan, September 14-19 2003.

10. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P-H. Ho, X. Nicollin,
A. Oliviero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical and Computer Science, 138:3–34, 1995.

11. R. Alur, C. Courcoubetis, T.A. Henzinger, and P-H Ho. Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In
Lecture Notes in Computer Science [94].

12. R. Alur and D. Dill. The theory of timed automata. In Theoretical and Computer
Scisnce, volume 126, 1994.

13. R. Alur, T.A. Henzinger, and Sontag. Hybrid systems iii, verification and control.
In Lecture Notes in Computer Science, volume 1066. Springer, 1996.

14. R.J. Anderson and W Spong. Asymptotic stability for force reflecting teleoperators
with time delay. Journal of Robotics Research, 11(2):135–148, April 1992.

15. R. Andre-Obrecht. A new statistical approach for the automatic segmentation
of continuous speeech signals. IEEE Transactions on Acustics Speech and Signal
Processing, 36(1), 1988.

16. P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry. Hybrid systems ii. In Lecture
Notes in Computer Science. Springer, 1995.

17. P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry. Hybrid systems iv. In Lecture
Notes in Computer Science. Springer, 1997.

100 References

18. P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry. Hybrid systems v. In Lecture
Notes in Computer Science. Springer, 1998.

19. K. Arras, R. Philippsen, N. Tomatis, M. de Battista, M. Schilt, and R. Siegwart. A
navigation framework for multiple mobile robots and its applicaiton at the Expo02
Exhibition. In IEEE International Conference on Robotics and Automation, pages
1992–1997, Taipei, Taiwan, September 14-19 2003.

20. J. Azinheira, P. Rives, J. Carvalho, G. Silveira, E. de Paiva, and S. Bueno. Vi-
sual control for the hovering of an outdoor robotic airship. In IEEE International
Conference on Robotics and Automation, pages 2787–2792, Washington, DC, May
2002.

21. G. Backes, P. Rabideau, K. Tao, and S. Chien. Automated planning and scheduling
for planetary rover distributed operations. In IEEE Int. Conf. on Robotics and
Automation, pages 1096–1101, Detroit,MI, May 1999.

22. P. Backes, J. Beahan, and B. Bon. Interactive command building and sequencing
for supervisory autonomy. In IEEE Int. Conf. on Robotics and Automation, pages
795–801, 1993.

23. P. Backes and M. Long. Merging concurrent behaviors on a redundant manipulator.
In IEEE Int. Conf. on Robotics and Automation, pages 638–645, 1993.

24. P. Backes, M. Long, and R. Steele. The modular telerobot task eecution system for
space telerobotics. In IEEE Int. Conf. on Robotics and Automation, pages 524–329,
1993.

25. P. Backes and K. Tao. Umi: An interactive supervisory and shared control system
for telerobotics. In IEEE Int. Conf. on Robotics and Automation, pages 1096–1101,
1990.

26. T. Balch and R. Arkin. Behavior-based formation control for multirobot teams.
IEEE Transactions of Robotics and Automation, 14(6):926–939, December 1998.

27. A. Banerjee, P. Banerjee, T. DeFanti, A. Hudson, B. Dodds, and J. Curtis. A
behavioral layer architecture for telecollaborative virtual manufacturing operations.
IEEE Transactions of Robotics and Automation, 16(3):218–227, June 2000.

28. M. Basseville. Detecting chages in signals and systems - a survey. Automatica,
24(3), 1988.

29. G. Bekey, H. Liu, R. Tomovich, and W. Karplus. Knowledge based control of grasp-
ing in robot hands using heuristics from human motor skills. IEEE Transactions of
Robotics and Automation, 9(6):709–722, December 1993.

30. G. Bekey and R. Tomovich. Robot control by reflex action. In IEEE International
Conference on Robotics and Automation, pages 240–247, San Francisco, CA, April
7-10 1986.

31. R. Bellman. Dynamic Programming. Princeton University Press, New Jersy, 1957.
32. R. Bellman. Adaptive Control Processes, A Giuded Tour. Princeton University

Press, New Jersy, 1961.
33. R. Bellman and G. Leitman. On the Determination of Optimal Trajectories Via Dy-

namic Programming. Academic Press, New York, optimization techniques edition,
1962.

34. R. E. Bellman, H. H. Kagiwada, R. E. Kalaba, and R. Vasudevan. Numerical analy-
sis: Quasilinearization and the estimation of differential operators from eigenvalues.
Commun. ACM, 11(4):255–256, 1968.

35. A. Bemporad, F. Borelli, and M. Morari. Optimal controllers for hybrid systems:
Stability and piecewise linear explicit form. In 39th IEEE Conf. On Decision and
Control, pages 1810–1815, Dec. 2000.

36. A. Bemporad, G. Ferrari-Trecate, and M. Morari. Observability and controllability
of piecewise af ne and hybrid systems. IEEE Transactions on Automatic Control,
45(10):1864–1876, 2000.

References 101

37. A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and
constraints. Automatica, 35(3):407–427, 1999.

38. A Benveniste. Compositional and uniform modeling of hybrid systems. IEEE Trans-
actions on automatic control, Special Issue on Hybrid Systems, 1998.

39. C. Bernard, H. Kang, S. Singh, and J. Wen. Robotic system for collaborative
control of minimally invasive surgery. Industrial Robot: an International Journal,
26(6):476–484, 1999.

40. C. Bernard, H. Kang, S.K. Singh, and Wen J.T. Robotic system for collaborative
control in minimally invasivesurgery. Industrial Robot:An international Journal,
26(6):476–484, 1999.

41. A. et al. Bicchi. A sensorized minimally invasive surgery tool for detecting tissue
elastic properties. In 1996 IEEE International Conference on Robotics and Automa-
tion:, 1996.

42. H.G. Bock, E. Eich, and J.P. Schlöder. Numerical solution of constrained least
squares boundary value problems in differential-algebraic equations. In K. Strehmel,
editor, Numerical Treatment of Differential Equations.

43. D. Botturi, A. Castellani, D. Moschini, and P. Fiorini. Performance evaluation of
task control in teleoperation. In International Conference on robotics and Automa-
tion, New Orleans, 2004.

44. M. S. Branicky, V. S. Borkar, and S. K. Mitter. A unified framework for hybrid
control: Model and optimal optimal control theory. IEEE Transaction on Automatic
Control, 43(1):31–45, April 1998.

45. M.S. Branicky. Topology of hybrid systems. In 32nd IEEE CDC, pages 2309–2314,
San Antonio,TX, december 1993.

46. M.S. Branicky. Multiple lyapunov functions and other analysis tools for switched
and hybrid systems. IEEE TRansaction on Automatic Control, 43(4), 1998.

47. M.S. Braniky. Universal computation and other capabilities of hybrid and contin-
uous dynamical systems. Theoretical Computer Science, 138(1):67–100, 1995.

48. R. Brockett. Hybrid systems in classical mechanics. In 13th IFAC, pages 473–476,
1996.

49. R.W. Brockett. Hybrid models for motion control systems. In H.L. Tentleman and
J.C. Willems, editors, Essays on Control: Perspectives in Theory and its Applica-
tions, Boston, 1993. Birkhäuser.

50. R. Brooks. A robust layered control system for a mobile robot. IEEE Transactions
of Robotics and Automation, 2(1), 1986.

51. R. Brooks. A hardware retargetable distribuited layered architecture for mobile
robot control. In IEEE International Conference on Robotics and Automation,
pages 240–247, Raleigh, NC, March 31 - April 3 1987.

52. A.E. Bryson and W.F. Denham. A steepest ascent method for solving optimum
programming problems. J.Applied Machanics, (29):247–57, 1962.

53. A.E. Bryson and Yu-Chi Ho. Applied Optimal Control. Hemisphere Publishing
Corporation, 1975.

54. D. Bullock and S. Grossberg. A neural network architecture for automatic tra-
jectory formation and coordination of multiple effectors during variable-speed arm
movements. In IEEE International Conference on Neural Network, pages 559–566,
San Diego, CA, June 1987.

55. M. Buss, O. Von Stryk, R. Bulirsch, and G. Schmidt. Towards hybrid optimal
control. Technical report, University of Berlin, 2000.

56. P.E. Caines and Y-J. Wei. Hierarchical hybrid control systems: A lattice formula-
tion. Transactions on Automatic Control, Special Issue on Hybrid Systems, 1998.

57. M. Campos, G. Pereira, S. Vale, A. Bracarense, G. Pinheiro, and M. Oliveira. A
mobile manipulator fo rinstallation and removal of aircraft warning spheres on aerial

102 References

power transmission lines. In IEEE International Conference on Robotics and Au-
tomation, pages 3559–3564, Washington, DC, May 2002.

58. C. Cao, C. MacKenzie, and S. Payandeh. Task and motion analyses in endoscopic
surgery. In ASME IMECE Conference: 5th Annual Symposium on Haptic Interface
for Virtual Environment and Teleoperator Systems, pages 583–590, Atlanta,GA,
1996.

59. C. Casadei, S. Martelli, and P. Fiorini. A workcell for the development of robot-
assisted surgical procedures. Journal of Intelligent and Robotic Systems, (28):301–
324, 2000.

60. A. Castellani, D. Botturi, M. Bicego, and P. Fiorini. Hybrid hmm/svm model for the
analysis and segmentation of teleoperation tasks. In IEEE International Conference
on Robotics and Automation, New Orleans,LA, 2004.

61. M. C. Cavusoglu, J. Yan, and S. S. Sastry. A hybrid system approch to contact
stability and force control in robotic manipulator. In 12th IEEE International
Symposium on Intelligent Control, pages 143–148, July 1997.

62. L. Chaimowicz, M. Campos, and V. Kumar. Dynamic role assigment for cooperative
robots. In IEEE International Conference on Robotics and Automation, pages 293–
298, Washington, DC, May 2002.

63. L. Chaimowicz, M. Campos, and V. Kumar. Hybrid systems modeling of cooperative
robots. In IEEE International Conference on Robotics and Automation, pages 4086–
4091, Taipei, Taiwan, September 2003.

64. Z. Chaochen, A.P. Ravn, and M.R. Hansen. An extended duration calculus for
hybrid real-time systems. In Lecture Notes in Computer Science [94].

65. S. Charles, H. Das, T. Ohm, C. Boswell, G. Rodriguez, R. Steele, and D. Istrate.
Dexterity-enhanced telerobotics microsurgery. In 8th International Conference on
Advanced Robotics (ICAR97), Monterey, CA, July 1997.

66. R. Courant and D. Hilbert. Methods of Methematical Physics, volume 1. Inter-
science, New York, 1953.

67. J.E.R. Cury, B.H. Krogh, and T. Niinomi. Synthesis of supervisory controllers
for hybrid systems based on approximating automata. Transactions on Automatic
Control, Special Issue on Hybrid Systems, 1998.

68. H. Das, H. Zak, W. S. Kim, A. K. Bejczy, and P. S. Schenker. Operator performance
with alternative manual control modes in teleoperation. Presence, 1(2):201–218,
Spring 1992.

69. B. Davies. A review of robotics in surgery. volume Part H, pages 129–140. Institution
of Mechanical Engineers, 2000.

70. B. De Schutter. Optimal control of a class of linear hybrid systems with saturation.
SIAM Journal on Control and Optimization,, 2000.

71. K.T Den Boer. Surgical Task Performance, Assessment using Time-Action Analy-
sis. PhD thesis, Delft University of Technology, 2001.

72. A.M. Derossis, G.M. Fried, M. Abrahamowicz, H.H. Sigman, J.S. Barkun, and J.L.
Meakins. Development of a model for training and evaluation of laparoscopic skills.
Am.J.Surg, 1998.

73. A. Deshpande, A. Gollu, and P. Varaiya. The shift programming language and
run-time system for dynamic networks of hybrid automata. IEEE Transactions on
automatic control, Special Issue on Hybrid Systems, 1998.

74. A. Deshpande and P. Varaiya. Viable control of hybrid systems. In 35th IEEE
Conference on Decision and Control, Kobe, Japan.

75. The Galileo development team. Galileo program description document: command
and data subsystem. Technical Report 625-355-060000, D-535 Rev. G, NASA Jet
Propulsion Laboratory, California Institute of Technology, Pasadena, CA (USA),
May 1989.

References 103

76. M.B. Dias, M. Zinck, R. Zlot, and A. Stentz. Robust multirobot coordination in
dynamic environments. In IEEE International Conference on Robotics and Au-
tomation, pages 3435–3441, New Orleans, LA, April 2004.

77. P. M. Do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall,
Upper Side river, New Jersey, 1976.

78. M. Dogruel, S. Drakunov, and Oz̈gun̈er. Sliding mode control in discrete state
systems. In 32nd Conference on Decision and Control, pages 1194–1199, 1993.

79. S.E. Dreyfus. Dynamic Programming and the Calculus of Variations. Academic
Press, New York, 1965.

80. R. Dubey, S. Everett, N. Pernalete, and K. Manocha. Teleoperation assistance
through variable velocity mapping. IEEE Transactions of Robotics and Automation,
17(5):761–766, October 2001.

81. B. Eberman. A model-based approach to cartesian manipulation contact sensing.
International Jurnal of Robotics Research, 16(4), 1997.

82. B. Eberman and J.K. Salisbury. Application of change detection to dynamic contact
sensing. International Jurnal of Robotics Research, 13(5), 1994.

83. M. Egerstedt. Behavior based robotics using hybrid automata. In Springer-Verlag,
editor, Lecture Notes in Computer Science: Hybrid Systems III, pages 103–116. 2000.

84. A. Ferreira. Strategies for human robot interaction for automatic microassembly.
In IEEE International Conference on Robotics and Automation, pages 3076–3081,
Taipei, Taiwan, September 2003.

85. P.A. Finlay and M.H. Ornstein. Controlling the movement of a surgical laparoscope.
IEEE Engineeing in Medicine and Biology, pages 289–291, May/June 1995.

86. P. Fiorini. Autonomous organization of grasping tasks. In SPIE Symposia on
Aerospace Sensing, Artificial Intelligence VII, Orlando, FL, March 27-31 1989.

87. P. Fiorini, A. Giancaspro, S. Losito, and G. Pasquariello. Neural networks for the
segmentation of teleoperation tasks. In Presence, pages Vol.2, Number I, Winter
1993.

88. P.M. Fitts. The information capacity of the human motor system in controlling the
amplitude of movements. Journal of Experimental Psychology, 47(6):381–391, June
1954.

89. A.F. Fuller. Lyapunov centenary issue. International Journal of Control, 55(3),
1992.

90. I.M. Gelfand and S.V. Fomin. Calculus of Variations, volume 1. Prentice-Hall, New
Jersy, 1963.

91. P. Gill, W. Murray, and M. Saunders. Users guide for SNOPT 5.3: a fortran
package for large-scale nonlinear programming. Department of Mathematics, Univ.
of California, San Diego, 1997.

92. A. Göllü and P. Varaiya. Hybrid dynamical systems. In 28th IEEE Conference on
Decision and Control, pages 2708–2712, Tampa, Florida, December 1989.

93. G. Grammel. Maximum principle for hybrid system via singular pertrubations.
SIAM Control and Optimization, 37(4):1162–1175, 1999.

94. A. Grossman, A. Nerode, A.P. Ravan, and H. Rischel. Hybrid systems. In Lecture
Notes in Computer Science, volume 736. Springer-Verlag, 1993.

95. J. Guckenheimer. A robust hybrid stabilization strategy for equilibria. IEEE Trans-
actions on Automatic control, 40(2):321–326, 1995.

96. A. Guia, C. Seatzu, and C. V. D. Mee. Optimal control of switched autonomous
linear systems. In 40th IEEE Conf. On Decision and Control, pages 2472–2477,
Dec. 2000.

97. B. Hannaford and P. Lee. Hidden markov model analysis of force/torque information
in telemanipulatio. The International Journal of Robotics Research, 10(5):528–539,
October 1991.

104 References

98. M. Hardt, J. Helton, and K. Kreutz-Delgado. Numerical solution of nonlinear h2 and
h1 control problems with application to jet engine compressors. IEEE Transactions
on Control Systems Technology, 2000.

99. S. Hayati, T. Lee, K. Tso, and P. Backes. A testbed for a unified teleoperated-
autonomous dual-arm robotic system. In IEEE Int. Conf. on Robotics and Au-
tomation, pages 1090–1095, 1990.

100. S. Hayati, T. Lee, K. Tso, P. Backes, and E. Kan. The jpl telerobot manipulator
control and mechanization subsystem (mcm). pages 173–181.

101. S. Hedlund and A Rantzer. Optimal control of hybrid systems. In 38th IEEE Conf.
On Decision and Control, pages 3972–3977, Dec 1999.

102. W.P.M.H. Heemels, J.M. Schumacher, and S. Weiland. Linear complementarity
systems. SIAM Journal on Applied Mathematics, 60(4):1234–1269, 2000.

103. T. Henderson et al. The specification of distributed sensing and control. Journal
of Robotic Systems, 2(4), April 1985.

104. T.A. Henzinger, P-H. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear
hybrid systems. IEEE Transactions on automatic control, Special Issue on Hybrid
Systems, 1998.

105. I.A. Hiskens. Analysis tools for power systems - contending with nonlinearities.
1995.

106. R.D. Howe and Y. Matsuoka. Robotics for surgery. In Annual Review of Biomedical
Engineering, volume 1. 1999.

107. M. Johansson and A. Rantzer. Computation of piecewise lyapunov function for
hybrid systems. IEEE Transaction on Automatic Control, 43(4):555–559, April
1998.

108. H. Kang and J.T. Wen. Robotic assistants aid surgeons during minimally inva-
sive procedures. IEEE Engineering in Medicine and Biology, pages 94–104, Jan-
uary/February 2001.

109. L.V. Kantorovich and V.I. Krylov. Approximate Methods of Higher Analysis, vol-
ume 1. Interscience and P.Noordhoff Ltd., New York and Groningen, The Nether-
lands, 1958.

110. H.J. Kelley and G. Leitman. Method of Gradients. Academic Press, New York,
optimization techniques edition, 1962. Chapter 6.

111. M. Kitagawa, M. Okamura, B.T. Bethea, V.L. Gott, and A. Baumgartner. Anal-
ysis of suture manipulation forces for teleoperation with force feedback. In Fifth
International Conference on Medical Image Computing and Computer Assisted In-
tervention (MICCAI), 2002.

112. I. Kolmanovsky and N.H. McClamroch. Hybrid feedback laws for a class of nonlinear
cascade systems. IEEE Transaction on Automatic Control, 41:1271–1281, 1996.

113. K. Kondak and G. Hommel. Computation of time optimal movements for au-
tonomous parking of non-holonomic mobile platforms. Seoul, Korea, 2001. IEEE
International Conference on Robotics and Automation.

114. D. Kragic, A. Miller, and P. Allen. Realtime tracking meets on line grasping plan-
ning. In IEEE International Conference on Robotics and Automation, pages 2460–
2465, Seoul, Korea, May, 21-26 2001.

115. A. Krupa, C. Doignon, J. Gangloff, M. de Mathelin, G. Morel, L. Soler, J. leroy,
and M. Ghodoussi. Towards semi-autonomy in laparoscopic surgery: first live ex-
periments. Sant’Angelo d’Ischia, Italy, July 2002.

116. A Krupa, C. Doignon, J. Gengloff, M. de Mathelin, L. Soler, G. Morel, J. Leroy,
and M. Ghodoussi. Towards semi-autonomy in laparoscopic surgery: first live ex-
periment. In 8th International Symposium on Experimental Robotics, Sant’Angelo
d’Ischia, Italy, July 2002.

References 105

117. Y.S. Kwoh, E. Jonckheere, and S. Hayati. A robot with improved absolute position-
ing accuracy for ct guided stereotactic surgery. IEEE Transaction on Biomedical
Engineering, pages 153–161, February 1988.

118. R.E. Larson. Dynamic programming with reduced computational requirements.
IEEE Transaction on Automatic Control, (10):135–143, 1965.

119. J.C. Latombe, editor. Robot Motion Planning. Kluwer Academic Publisher, Boston,
MA, 1991.

120. D.A. Lawrence. Stability and transparency in bilateral teleoperation. IEEE Trans-
action on Robotics and Automation, 9(5):624–637, October 1993.

121. S. Lee and M.H. Kim. Cognitive contorl of dynamic systems. In IEEE International
Symposium on Intelligent Control, pages 455–460, Philadelphia, PA, January 19-20
1987.

122. G. Leitman. An Introduction to Optimal Control. McGraw-Hill Book Co., New
York, NY, 1966.

123. M.D. Lemmon and P.J. Antsaklis. Timed automata and robust control: Can we
now control complex dynamical systems? In 36th IEEE Conference on Decision
and Control.

124. M. Lind. The use of flow models for automated plant diagnosis. In NATO Sy,posium
on human detection and diagnosis of system failures, 1981.

125. J. Lygeros, D.N. Godbole, and S. Sastry, editors. A Game Theoretic Approach to
Hybrid System Design. University of California, Berkeley, 1995.

126. J. Lygeros, D.N. Godbole, and S. Sastry. Multiagent hybrid system design using
game theory and optimal control. In 35th IEEE Conference on Decision and Con-
trol, pages 1190–1195, Kobe, Japan, 1996.

127. J. Lygeros, D.N. Godbole, and S. Sastry. Verified hybrid controllers for automated
vehicles. Transactions on Automatic Control, Special Issue on Hybrid Systems,
1998.

128. N. Lynch, R. Segala, and F. Vaandrager. Hybrid i/o automata. Inf. Comput.,
185(1):105–157, 2003.

129. H. Maa and U. Kühnapfel. Noninvasive measurement of elastic properties of living
tissue. Technical report, Institut fr Angewandte Informatik, Forschungszentrum
Karlsruhe,, 1997.

130. B. Martin and J. Bobrow. Minimum e ort motions for open chain manipulators
with task-dependent end-e ector constraints. Albuquerque, New Mexiko, 1997. In
Proceedings of the IEEE International Conference on Robotics and Automation.

131. N.H. McClamroch, C. Rui, I. Kolmanvsky, and M. Reyhanoglu. Hybrid closed loop
systems: A nonlinear control perspective. In 36th IEEE Conference on Decision
and Control, 1997.

132. R. McGill. Optimal control, inequality state constraint, and the generalized newton-
raphson algorithm. SIAM J.Control, 1965.

133. E.J. McShane. On Multipliers for Lagrange Problems, volume 61. American J.
Math., New York, 1939.

134. W.S. Melvin and E.C Johnson, J.A.and Ellison. Laparoscopic skill enhancement.
Am.J.Surg., 1996.

135. C.W. Merriam. Optimization Theory and Design of Feedback Control Systems.
McGraw-Hill Book Co., New York, 1964.

136. A. Meystel. Intelligent control in robotics. Journal of Robotic Systems, 5(4):269–
308, August 1988.

137. A.S. Morse. Control using logic-based switching. In Lecture Notes in Control and
Information Science, volume 222. Springer, 1997.

138. M.S.Branicky. Studies in Hybrid Systems:Modeling, Analysis, and Control. PhD
thesis, Massachusetts Institute of Technology, 1995. In English.

106 References

139. A. Nerode and W. Kohn. Multiple agent hybrid control architecture. In Lecture
Notes in Computer Science [94].

140. K. Passino and P. Antsaklis. A system and control theoretic perspective on artificial
intelligence planning systems. Applied Artificial Intelligence, 3:1–32, 1989.

141. P. Peleties and R.A. DeCarlo. Modeling of interacting continuous time and discrete
event systems: An example. In 26th Annual Allerton Conference on comunication,
control and Computing, pages 1150–1159, 1988.

142. P. Peleties and R.A. DeCarlo. Asymptotic stability of m-switched systems using
lyapunov-like functions. In American Control Conference, pages 1679–1684, 1991.

143. L. Petersson, D. Austin, and D. Kragic. High-level control of a manipulator for
door opening. volume 3, pages 2333–2338, Takamatsu, Kagawa, Japan, 2000.

144. S. Pettersson and B. Lennartson. Stability and robusteness of hybrid systems. In
35th Conference on Decision and Control, Kobe, Japan, 1996.

145. A. Pnueli and J. Sifakis. Special issue on hybrid systems. In Theoretical Computer
Scinence, volume 138, 1995.

146. L.S. Pontryagin. The Mathematical Theory of Optimal Processes. Wiley, New York,
1962.

147. A. Potocnik, B.and Bemporad, F.D. Torrisi, G. Music, and B. Zupancic. Hysdel
modeling and simulation of hybrid dynamical systems. In MATHMOD Conference,
Vienna, February 2003.

148. K. Radermacher, H.W. Staudte, and G. Rau. Computer assisted orthopaedic
surgery by means of individual templates. aspects and analysis of potential applica-
tions. In 1st International Symposium on Medical Robotics and Computer Assisted
Surgery (MRCAS’94), pages 42–48, Pittsburgh, PA, September 1994.

149. J. Raisch and S.D. O’Young. Discrete approximation and supervisory control of
continuous systems. Transactions on Automatic Control, Special Issue on Hybrid
Systems, 1998.

150. J. Rasmussen and M. Lind. Coping with complexity. In European Annual Confer-
ence of Human Decision and Manual Control, Delft, The Netherlands, 1981.

151. J. Rasmussen and M. Lind. Model of human decision making in complex systems
and its use for design of control strategies. In American Control Conference, Ar-
lington, VA, June, 14-16 1982.

152. J. Rosen, J.D. Brown, L. Chang, M. Barreca, M. Sinanan, and B. Hannaford. The
bluedragon - a system for measuring the kinematics and the dynamics of minimally
invasive surgical tools in-vivo. In 2002 IEEE International Conference on Robotics
and Automation, pages 1876–1881, Washington, DC, May 2002.

153. Jee-Hwan Ryn, Dong-Soo Kwon, and B. Hannaford. Stable teleoperation with time
domain passivity control. In 2002 IEEE International Conference on Robotics &
Automation, pages 3260–3264, Waschintong, US, May 2002.

154. A.P. Sage and C.C.III White. Optimum System Control. Prentice-Hall, New Jersy,
1977.

155. R. Satava. Virtual reality surgical simulator. Surg Endosc, 1993.
156. R. Sengupta and S. Lafortune. An optimal control theory for discrete event systems.

SIAM Control and Optimization, 36(2):488–541, 1998.
157. R. Simmons. Structured control for autonomous robots. IEEE Transactions of

Robotics and Automation, 10(1):34–43, February 1984.
158. C. Simone. Modeling of needle insertion forces for percutaneous therapies. PhD

thesis, The Johns Hopkins University, Baltimore, Mariland, 2002.
159. E. D. Sontag, editor. Mathematical Control Theory: Deterministic Finite Dimen-

sional Systems. Springer, New York, 1998.
160. E.D. Sontag. Nonlinear regulation: the piecewise linear approach. IEEE Transac-

tions on Automatic Control, 26(2):346–357, 1981.

References 107

161. J.A. Stiver, P.J. Antsaklis, and M.D Lemmon. An invariant based approach to the
design of hybrid contol systems. volume J, San Francisco, 1996.

162. J.A. Stiver, P.J. Antsaklis, and M.D. Lemmon. A logical des approach to the design
of hybrid control systems. Mathl. Comput. Modelling, 23(11/12):55–76, 1996.

163. Y. Sun, N. Xi, and Y. Wang. Modeling and analysis of perceptive robot controller
based on hybrid automata. In IEEE International conference on robotics and Au-
tomation, New Orleans, LA, 2004.

164. G.T. Sung and I.S. Gill. Robotic laparoscopic surgery: a comparison of the da vinci
and Zeus systems. Elsevier Science, Urology(58):893–898, 2001.

165. L.W. Tang, G. D’Ancona, J. Bergsland, and H.L. Kawaguchi, A.and Kara-
manoukian. Robotically assisted video-enhanced-endoscopic coronary artery bypass
graft surgery. Angiology, 52:99–102, 2001.

166. L. Tavernini. Differential automata and their discrete simulator. In Nonlinear
Analysis, Theory, Methods and Applications, volume 11, pages 665–683, 1987.

167. J.H. Taylor and D. Kebede. Modeling and simulation of hybrid systems in matlab.
volume J, San Francisco, 1996.

168. R.H. Taylor, J. Funda, B. Eldridge, S. Gomory, K. Gruben, D. LaRose, M. Talamini,
L. Kavoussi, and J. Anderson. A telerobotic assistant for laparoscopic surgery. IEEE
Engineeing in Medicine and Biology, pages 279–288, May/June 1995.

169. R.H. Taylor, S. Lavallé, G.C. Burdea, and R. Mosges, editors. Computer - Integrated
Surgery. MIT Press, Cambridge, MA, 1996.

170. M. Tittus and B. Egart. Control design for integrator hybrid systems. IEEE Trans-
action on Automatic Control, 43(4):491–500, April 1998.

171. C. Tomlin. Towards effcient computation of solutions to hybrid systems. Phoenix,
AZ, 1999. 38th IEEE Conference on Decision and Control.

172. C. Tomlin, G.J. Pappas, and S. Sastry. Conflict resolution for air traffic manage-
ment: A study in multi-agent hybrid systems. Transactions on Automatic Control,
Special Issue on Hybrid Systems, 1998.

173. R. Tomovich et al. A strategy for grasp synthesis with multifingered robot hands. In
IEEE International Conference on Robotics and Automation, pages 83–89, Raleigh,
NC, March 31 - April 3 1987.

174. J. Troccaz, M. Peshkin, and B. Davies. The use of localizers, robots and synergistic
devices in cas. In 4th International Symposium on Medical Robotics and Computer
Assisted Surgery (CVRMed-MRCAS’97), pages 727–735, Grenoble, France, March
1997.

175. University of Pennsylvania School of Veterinary Medicine. Principles of Surgery.
176. A.J. Van der Schaft and M. Schumacher. Complementarity modeling of hybrid

systems. IEEE Transaction on Automatic Control, 43(4):483–490, April 1998.
177. A.J. Van der Schaft and M. Schumacher. An introduction to hybrid dynamical

systems. In Springer Verlag, editor, In Lecture Notes in Control and Information
Sciences, volume 251. 2000.

178. O. Von Stryk. Numerical hybrid optimal control and related topics. PhD thesis,
Technical University of Munich, 2000. In English.

179. O. Von Stryk. User s guide for DIRCOL version 2.1: A direct collocation method
for the numerical solution of optimal control problems. Tecnical University of Darm-
stadt, 2001. WWW:www.sim.informatik.tu-darmstadt.de/sw/.

180. O. Von Stryk and M. Glocker. Decomposition of mixed-integer optimal control
problems using branch and bound and sparse direct collocation. In ADPM 4th Int
l Conf. on Automation of Mixed Processes: Hybrid Dynamic Systems, 2000.

181. O. Von Stryk and M. Schlemmer. Optimal control of the industrial robot manutec
r3. In R. Bulirsch and D. Kraft, editors, Computational Optimal Control, volume
115 of International Series of Numerical Mathematics, pages 367–382. 1994.

108 References

182. J.C. Willems. Paradigms and puzzles in the theory of dynamical systems. IEEE
Transactions on Automatic Control, 36:259–294, 1991.

183. A.S. Willsky. A survey of design methods for failure detection in dynamic systems.
Automatica, 12(6), 1974.

184. N. Xi, Tarn T.J., and A.K. Bejczy. Intelligent planning and control for multirobot
coordination: An event-based approach. IEEE Transaction on Robotics and Au-
tomation, 12(2), June 1996.

185. X. Xu and J. Antsaklis. A dynamic programmin approach for optimal control of
switched systems. In 39th IEEE Conf. On Decision and Control, pages 1822–1827,
Dec. 2000.

186. H. Ye, A.N. Michel, and L. Hou. Stability theory for hybrid dynamical systems.
pages 2779–2684, New Orelans, 1995. IEEE Conference on Decision Control.

187. H. Ye, N. Michel, and L. Hou. Stability theory for hybrid dynamical systems. IEEE
Transaction on Automatic Control, 43(4):461–474, April 1998.

188. Y. Yokokohji and T. Yoshikawa. Bilateral control of master-slave manipulators
for ideal kinestetic coupling–formulation and experiment. IEEE Transactions on
Robotics and Automation, 10(5):605–620, October 1994.

Sommario

La continua crescita della Chirurgia Minimamente Invasiva é motivata dalla
volontá di migliorare le cure dei pazienti e contemporaneamente abbassare i costi
della sanitá. Questi obiettivi richiedono lo sviluppo di tecniche chirurgiche, con
particolare attenzione alla riduzione della variabilitá e la crescita dell’efficienza
delle stesse.

Molti dispositivi robotici sono stati sviluppati o proposti per cercare di rag-
giungere tali obiettivi, ed alcuni di essi sono usati in ambito ospedaliero. Nella
robotica assistita le procedure sono completamente eseguite dal chirurgo e il robot
svolge solamente la funzione di strumento, a volte anche troppo sofisticato, per
svolgere tale operazione.

Quindi per aumentare la qualitá delle cure e ridurre il loro costo, sarebbe
desiderabile e necessario esplorare lo sviluppo di algoritmi che diano la capacitá al
robot di collaborare con il chirurgo durante una procedura minimamente invasiva.
In questo contesto, con collaborazione si intende la capacitá di un robot di portare
avanti autonomamente sottoprocedure, adattandosi alla forte variabilitá tipica dell’
ambiente chirurgico. Questa collaborazione potrebbe ridurre le fatiche del chirurgo,
eliminare la variabilitá presente tra i vari specializzandi e conseguentemente nella
esecuzione delle procedure chirurgiche ed infine aumentare l’efficienza dell’intero
sistema riducendo il tempo di impiego del chirurgo.

In questa tesi viene esaminata l’esecuzione automatica di compiti robotici in
ambiente non completamente conosciuto come quello chirurgico, e viene proposto
un metodo per il calcolo del controllo nominale per un robot che esegue una tipica
procedura chirurgica.

La sicurezza é un problema molto importante nella chirurgia robotica, ed é an-
cora piú importante nell’esecuzione automatica ti procedure chirurgiche. I robot
chirurghi attualmente in commercio non utilizzano la retroazione di forza, privando
l’operatore umano di una modalitá di controllo delle prestazione del robot molto
potente. Quindi, ancora oggi, una grande responsabilitá per la corretta esecuzione
della procedura é messa nella correttezza dell’algoritmo di controllo, vista la vari-
abilitá dell’ambiente. In questa Tesi viene investigata la sicurezza dell’algoritmo
utilizzando l’ottimizzazione con vincoli sull’esecuzione. La variabilitá é considerata
rispetto al modello del compito ed ai vincoli ed é quantificata come la distanza
del comportamento corrente del robot da quello desiderato durante un’operazione
minimamente invasiva. Questo approccio consente anche di monitorare continua-
mente la qualitá della procedurae le prestazioni dell’operatore.

Tradizionalmente, l’esecuzione automatica di procedure é stata affrontata sem-
plificando il problema ingegnerizzando l’ambiente, ad esempio aggiungendo op-
portuni punti fissi per cercare di rimuovere l’incertezza del compito. Le piú avan-
zate tecniche di controllo consistono di comportamenti pre-programmati, cośı che
differenti compiti possano essere programmati ed eseguiti usando lo stesso in-
sieme di comportamenti di base. Quando non é disponibile un modello esplicito
dell’ambiente, i comportamenti vengono parametrizzati in modo da consentire al-
cuni gradi di flessibilitá nell’esecuzione del compito. Se il compito e/o il modello

110 References

dell’ambiente sono conosciuti o possono essere identificati, é possibile sviluppare
una legge di controllo esplicita per il controllo dell’esecuzione della procedura. In
questa Tesi abbiamo sviluppatouna legge di controllo esplicita usando le teoria
dei Sistemi Ibridi, e abbiamo modellato l’incertezza con una appropiata sequanza
di stati nel sistema ibrido. In particolare, abbiamo usato un automaton deter-
ministico come modello della procedura considerato che le procedure chirurgiche
studiate sono ben codificate nella letteratura medica, e possono essere propiamente
rappresentate come procedure autonome.

Rappresentiamo una procedura chirurgicacome un automaton ibrido i quali
stati elementari rappresentanouna distinta azione della procedura. In questo modo,
possiamo calcolare il controllo nominale ottimizzando un appropiato indice di
qualitá nel dominio del sottocompito, che corrisponde ad ogni azione del compito.
In questo contesto, il compromesso tra la conoscenza esplicita del modello e la com-
pensazione con retroazione influenza pesantemente le prestazioni del sistema. Ab-
biamo indagato la relazione tra conoscenza a priori, rappresentata dall’automaton
ibrido, il numero e la forma dei vincoli ed il tipo di retroazione on-line per garantire
delle linee guida per il progetto dell’intero sistema.

Auspichiamo che l’integrazione di tecniche dalla teoria dei sistemi ibridi, dell’
ottimizzazione vincolata e della rappresentazione dei vincoli, faciliti l’autonomia
in ambiente incerto. Per dimostrare questo , abbiamo simulato l’esecuzione auto-
matica di una sutura, che é una comoda e rappresentativa procedura chirurgica.
L’esecuzione della sutura richiede la definizione di una traiettoria nominale che
guidi il robot alla completa e corretta esecuzione del compito. A questo riguardo,
definiamo una strategia ottima per calcolare la traiettoria ottima off-line ed una
compensazione on-line dalla deviazione dalla traiettoria ottima. Possiamo con-
cludere che l’integrazione di metodi diversi come sistemi ibridi, metodi di ottimiz-
zazione e controllo ottimo hanno facilitato la costruzione di una piú sicura ese-
cuzione automatica di una realistica procedura chirurgica.

Riassumendo, un insieme di strumenti per la sintesi del controllo un un compito
complesso é stato proposto, investigato e valutato nel contesto delle procedure
chirurgiche autonome. Questo metodo sviluppato costituisce una ricca base per
trattare compiti complessi in ambiente non conosciuto ed espande la parte sullo
stato dell’arte dell’esecuzione automatica di compiti.

	Introduction
	The Challenge of Surgery Automatization
	The Big Picture
	Teleoperation System
	Surgical Systems

	Thesis Objectives
	Outline and Contributions

	Autonomous Task Execution
	Definitions and General Concepts
	Early Work in Autonomous Task Planning and Execution
	Recent Work in Autonomous Task Planning and Execution
	Design, Sensing and Actuation Issues
	Architectural Issues

	Conclusions

	Hybrid System
	Survey of systems and model
	Classification of Dynamic Systems
	Discrete Event Systems

	Hybrid Systems
	Modeling Approaches

	Lyapunov Stability
	Basic Definitions
	Existing stability results
	A Literature Review

	Conclusions

	Robotic Surgery
	Medical Aspects
	Clinical and Social Aspects
	Analysis and Segmentation of Surgical Task
	Suture
	Suture characteristics
	Suture Model

	Conclusion

	Optimal Control Design
	Optimum System Control
	Decision Processes
	Nominal Trajectory

	Hybrid Optimal Control
	Problem Formulation
	Discussion and Conclusions

	Computational Issues
	HOCP Solutions
	 Suboptimal Solution Technique
	Branch-and-Bound

	TPBVP Solutions
	The Calculus of Variation and Optimal Control

	The Algorithm
	Conclusions

	Computation Results and Simulations
	Introduction
	Nominal Trajectory Computation
	Simulation Results
	Conclusions

	Experimental Verification
	The Experimental Setup
	Teleoperated Task Experiments
	Autonomous Task Experiments
	Conclusions

	Summary and Recomandation for Future Research
	Contributions
	Recommendations for Future Research
	Conclusion

	References

