The course is intended to introduce into the interaction between syntax (formal languages and calculi) and semantics (interpretations and models) as is fundamental for abstract mathematics and theoretical informatics.
Formal languages of first-order predicate logic.
Calculus of natural deduction.
Minimal, intuitionistic and classical logic.
Soundness and completeness theorems.
Compactness and Löwenheim-Skolem theorems.
Models and theories.
Author | Title | Publisher | Year | ISBN | Note |
Troelstra, Anne S. & Schwichtenberg, Helmut | Basic Proof Theory. (Edizione 2) | Cambridge University Press | 2000 | 0-521-77911-1 | |
Jon Barwise (ed.) | Handbook of Mathematical Logic | North-Holland | 1977 | 0-444-86388-5 | |
David, René & Nour, Karim & Raffali, Christophe | Introduction à la Logique. Théorie de la démonstration (Edizione 2) | Dunod | 2004 | 9782100067961 | |
Cantini, Andrea & Minari, Pierluigi | Introduzione alla logica : linguaggio, significato, argomentazione. (Edizione 1) | Le Monnier | 2009 | 978-88-00-86098-7 | |
van Dalen, Dirk | Logic and Structure. (Edizione 5) | Springer | 2013 | 978-1-4471-4557-8 | |
Abrusci, Vito Michele & Tortora de Falco, Lorenzo | Logica. Volume 1 - Dimostrazioni e modelli al primo ordine. (Edizione 1) | Springer | 2015 | 978-88-470-5537-7 | |
Shoenfield, Joseph R. | Mathematical Logic. (Edizione 2) | Association for Symbolic Logic & A K Peters | 2001 | 1-56881-135-7 | |
Schwichtenberg, Helmut | Mathematical Logic (lecture notes). | 2012 | |||
Helmut Schwichtenberg, Stanley S. Wainer | Proofs and Computation | Cambridge University Press | 2012 | 9780521517690 |
Single oral exam with open questions and grades out of 30. The exam modalities are equal for attending and non-attending students.
The exam's objective is to verify the full maturity about proof techniques and the ability to read and comprehend advanced arguments of mathematical logic.