Bio-information technology workshop (2017/2018)



Course code
4S003713
Credits
12
Coordinator
Alejandro Giorgetti
Academic sector
BIO/10 - BIOCHEMISTRY
Language of instruction
Italian
Teaching is organised as follows:
Activity Credits Period Academic staff Timetable
Modulo 1 6 I sem. Daniele Dell'Orco

Go to lesson schedule

Modulo 2 6 II sem. Alejandro Giorgetti

Go to lesson schedule

Learning outcomes

------------------------
MM: Modulo 1
------------------------
The course will provide the theoretical and practical basis to understand and employ algorithms and programs currently used in Bioinformatics. Major biological databases will be introduced with a special focus on genomic, proteomic and biochemical information. The students will also be introduced to the most modern fields of structural bioinformatics and systems biology. The theoretical part will be taught in the classroom, and it is aimed at understanding and learning bioinformatic topics and paradigms. The laboratory part will be useful to develop problem solving skills in classical and structural bioinformatics. Students will also work in groups and present databases of their choice, which will improve their communication skills and self criticism.
------------------------
MM: Modulo 2
------------------------
Knowledge of the basical bioinformatic tools for the analysis, interpretation and prediction of biological data in: genomics, structural and functional biology. This course offers the possibility of applying state of the art bioinformatic tools to solve biological problems

Syllabus

------------------------
MM: Modulo 1
------------------------
Theoretical Module ---------------------------- - Overview of the main structural features of proteins and nucleic acids in relation to the concept of evolution. Introduction to biomolecular databases: online resources and their use - Biological databases: organization and integration of information concerning: a) protein and nucleic acid sequences; b) biomolecular structures; c) bibliographic and scientific literature. Retrieve of specific information: use of limitations and Boolean operators. - Sequence comparison and alignments: static and dynamic algorithms; substitution matrices (PAM,BLOSUM) - Search-algorithms: dynamic algorithms; Smith-Waterman; Needleman-Wunsch; statistic significance for an alignment (z-score, expectation values and probability); heuristic methods for local alignments; BLAST - Multiple sequence alignments: ClustalW, search on specific databases, other algorithms, PSI-BLAST - Introduction to Structural Bioinformatics: visualization and analysis of protein and nucleic acid 3D structures - Methods to predict protein secondary structure elements starting from the sequence; introduction to neural networks. NN-based methods - Introduction to Systems Biology: Spatial and temporal scales, static and dynamic models, mathematical frameworks, introduction on signal transduction networks Laboratory Module ---------------------------- - NCBI databases: Entrez interface, Gene, UniGene, Protein, Uniprot and EBI - Single and multiple sequence alignments, score matrices, optimal methods; online resources and spreadsheets - BLAST,PSI-BLAST and BLAT: online tools and their use - Tools for multiple alignments, the Homologene databank, computation and visualization of multiple alignments - Introduction to PyMol and molecular visualization. Use of PSI-PRED and JPRED for predicting secondary structures from sequences - Systems biology: numerical simulation of simple biochemical reactions. Building simple kinetic models by using SBOTOOLBOX2 for Matlab; application to G-potein signalling cycles. RECOMMENDED BOOKS ----------------------------------- The main recommended book is: - Stefano Pascarella, Alessandro Paiardini. "Bioinformatica: dalla sequenza alla struttura delle proteine". Ed. Zanichelli The following books are also recommended: - Valle, Helmer Citterich, Attimonelli, Pesole. "Introduzione alla Bioinformatica". Ed. Zanichelli - Tramontano. "Bioinformatica". Ed. Zanichelli -J. Pevsner. "Bioinformatics and Functional Genomics, II edition". Ed. Wiley-Blackwell
------------------------
MM: Modulo 2
------------------------
Bioinformatic tools for the analysis of molecular evolution and phylogenesis: Molecular clock, substitution models, methods for the construction of phylogenetic trees. Protein structural preditions: Comparative modeling, Fold recognition and ab initio methods. Gene prediction Functional annotation Microarrays: databases and programs for the analysis of expression data. Introduction to the energetic treatment of proteins: MD simulations, ligand-protein and protein-protein docking. Reference Text: Testi di riferimento: Bioinformatica di di Stefano Pascarella, Alessandro Paiardini - Zanichelli The teaching includes: front lectures and hands-on excersices on the PC. The students are also involved in a project to be developed in groups.

Assessment methods and criteria

------------------------
MM: Modulo 1
------------------------
In order to pass the examination, students shall demonstrate: - to understand the concept of homology and its practical implications in bioinformatics - to understand the difference between similarity and identity of biological sequences - to know how to query bioinformatics databases, in order to obtain and store relevant data and to conduct appropriate cross-searches on different databases - to know how to use algorithms for comparison of nucleotide and amino acid sequences - to know how to use software for molecular graphics and visualization - to know how to build simple interaction networks of biomolecules and simulate their time course. Theory -------- The exam consists of a written test with 5 open questions on the topics discussed in the course. Each correct question will score a maximum of 6 points. The test will last 75 minutes. Laboratory ----------------- The exam, which can be given on the same day of the theory part, is made of 3 exercises to be solved using the computer (each one has a maximum 10 points-score). The test will last 75 minutes. Presentations -------------------- At the end of January, groups of 2 or 3 students will present a database of their choice, which has been described in the January issue of Nucleic Acids Research (Database issue). A10 minute presentation (+ 3 minute for questions / discussion) shall be given, illustrating the database goals and an original test-case. Presentation will be given a score of 1 to 4, taking into account the depth of the presented subject, clarity and effectiveness of communication and mastery of the tools used. Final score --------------- The final score, in thirty's (/30), will be given by the average score of the theoretical and laboratory part, plus the score for the presentation.
------------------------
MM: Modulo 2
------------------------
The written exam is divided in two: a session of open questions regarding the theoretical arguments of the course: modelling, docking and gene annotation. The second phase consists in the preparation of a scientific-like article presenting the results obtained during the project development

Reference books
Activity Author Title Publisher Year ISBN Note
Modulo 1 Stefano Pascarella e Alessandro Paiardini Bioinformatica Zanichelli 2011 9788808062192
Modulo 2 Stefano Pascarella e Alessandro Paiardini Bioinformatica Zanichelli 2011 9788808062192

STUDENT MODULE EVALUATION - 2017/2018