The course is intended to introduce into the interaction between syntax (formal languages and calculi) and semantics (interpretations and models) as is fundamental for abstract mathematics and theoretical informatics.
Formal languages of first-order predicate logic.
Calculus of natural deduction.
Minimal, intuitionistic and classical logic.
Soundness and completeness theorems.
Compactness and Löwenheim-Skolem theorems.
Models and theories.
Author | Title | Publisher | Year | ISBN | Note |
Troelstra, Anne S. & Schwichtenberg, Helmut | Basic Proof Theory. (Edizione 2) | Cambridge University Press | 2000 | 0-521-77911-1 | |
David, René & Nour, Karim & Raffali, Christophe | Introduction à la Logique. Théorie de la démonstration (Edizione 2) | Dunod | 2004 | 9782100067961 | |
Cantini, Andrea & Minari, Pierluigi | Introduzione alla logica : linguaggio, significato, argomentazione. (Edizione 1) | Le Monnier | 2009 | 978-88-00-86098-7 | |
Andrea Asperti, Agata Ciabattoni | Logica a Informatica | McGraw-Hill | 2007 | ||
van Dalen, Dirk | Logic and Structure. (Edizione 5) | Springer | 2013 | 978-1-4471-4557-8 | |
Abrusci, Vito Michele & Tortora de Falco, Lorenzo | Logica. Volume 1 - Dimostrazioni e modelli al primo ordine. (Edizione 1) | Springer | 2015 | 978-88-470-5537-7 | |
Shoenfield, Joseph R. | Mathematical Logic. (Edizione 2) | Association for Symbolic Logic & A K Peters | 2001 | 1-56881-135-7 | |
Schwichtenberg, Helmut | Mathematical Logic (lecture notes). | 2012 | Testo disponibile dalla pagina web dell'autore: http://www.math.lmu.de/~schwicht/lectures/logic/ws12/ml.pdf |
Single oral exam with open questions and grades out of 30. The exam modalities are equal for attending and non-attending students.