The course is an introduction into the fundamental methods and concepts of mathematics, especially into the method of proof and the language of sets.
Propositions and predicates
Connectives and quantifiers
Sets, elements, subsets
The axiomatic-deductive method
Mathematical terminology
Proof techniques
Relations and functions
Families and sequences
The Peano axioms
Number systems
Transfinite methods
Author | Title | Publisher | Year | ISBN | Note |
Day, Martin | An Introduction to Proofs and the Mathematical Vernacular. | 2015 | Testo disponibile dall'autore sotto Creative Commons: https://www.math.vt.edu/people/day/ProofsBook/IPaMV.pdf | ||
Velleman, Daniel J. | How to Prove It: A Structured Approach (Edizione 2) | Cambridge University Press | 2006 | 978-0-521-67599-4 | |
Cantini, Andrea & Minari, Pierluigi | Introduzione alla logica : linguaggio, significato, argomentazione. (Edizione 1) | Le Monnier | 2009 | 978-88-00-86098-7 | |
Halmos, Paul | Teoria elementare degli insiemi (Edizione 4) | Feltrinelli | 1981 |
Single written exam with open questions and grades out of 30. The exam modalities are equal for attending and non-attending students.
Strada le Grazie 15
37134 Verona
VAT number
01541040232
Italian Fiscal Code
93009870234
© 2021 | Verona University | Credits