Mathematical logic (2015/2016)

Course code
4S001096
Name of lecturer
Peter Michael Schuster
Coordinator
Peter Michael Schuster
Number of ECTS credits allocated
6
Other available courses
Academic sector
MAT/01 - MATHEMATICAL LOGIC
Language of instruction
English
Period
I semestre dal Oct 1, 2015 al Jan 29, 2016.

Lesson timetable

Learning outcomes

The interaction between syntax (formal languages and calculi) and semantics (interpretations and models) as is fundamental for abstract mathematics and theoretical informatics.

Syllabus

Formal languages of first-order predicate logic.
Calculus of natural deduction.
Minimal, intuitionistic and classical logic.
Soundness and completeness theorems.
Compactness and Löwenheim-Skolem theorems.
Models and theories.

Reference books
Author Title Publisher Year ISBN Note
Troelstra, Anne S. & Schwichtenberg, Helmut Basic Proof Theory. (Edizione 2) Cambridge University Press 2000 0-521-77911-1
David, René & Nour, Karim & Raffali, Christophe Introduction à la Logique. Théorie de la démonstration (Edizione 2) Dunod 2004 9782100067961
Cantini, Andrea & Minari, Pierluigi Introduzione alla logica : linguaggio, significato, argomentazione. (Edizione 1) Le Monnier 2009 978-88-00-86098-7
van Dalen, Dirk Logic and Structure. (Edizione 5) Springer 2013 978-1-4471-4557-8
Abrusci, Vito Michele & Tortora de Falco, Lorenzo Logica. Volume 1 - Dimostrazioni e modelli al primo ordine. (Edizione 1) Springer 2015 978-88-470-5537-7
Shoenfield, Joseph R. Mathematical Logic. (Edizione 2) Association for Symbolic Logic & A K Peters 2001 1-56881-135-7
Schwichtenberg, Helmut Mathematical Logic (lecture notes). 2012 http://www.math.lmu.de/~schwicht/lectures/logic/ws12/ml.pdf

Assessment methods and criteria

Written or oral examination, depending on the number of candidates who want to sit the exam.

Teaching aids

Documents

STUDENT MODULE EVALUATION - 2015/2016