Physics 2 (2006/2007)

Course Not running, not visible

Course code
4S00035
Credits
6
Coordinator
Francesca Monti
Teaching is organised as follows:
Unit Credits Academic sector Period Academic staff
Modulo I 5 FIS/01-EXPERIMENTAL PHYSICS 2° Q Francesca Monti
Modulo II 1 FIS/01-EXPERIMENTAL PHYSICS 2° Q Francesca Monti

Learning outcomes

Module: Modulo I
-------
Aim of the course is to complete the knowledge of classical physics with the study of the laws of electromagnetism, wave phenomena and electromagnetic waves.


Module: Modulo II
-------

Aim of the second module is to complete the knowledge of the laws of electromagnetism with the differential form of Maxwell equations.

Syllabus

Module: Modulo I
-------
Electric field and potential: electric charge, Coulomb law, superposition principle, Gauss theorem. Determination of electric field and potential from a given charge distribution. Energy density in an electric field. Linear circuits, Kirchoff laws.

Magnetic field and electromagnetic induction: electric currents and magnetic fields, magnetic field from currents (the 1st Lapalce law) and from moving charges; magnetic force on currents (the 2nd Laplace law) and on moving charges (the Lorentz law). Application of the 1st Laplace law to the determination of magnetic fields from currents. Magnetic interaction between two wires. definition of Ampere and Coulomb. Ampere theorem and its application to the determination of magnetic fields from a given distribution of currents. Gauss theorem for magnetic fields.
Magnetic induction: fem as a consequence of the Lorentz force and as the derivative of the magnetic flux; fem from time dependent magnetic fields; circuitation of the electric field and derivative of the magnetic field flux: the Faraday-Henry law. Inductance and energy density in a magnetic field. The Ampere-Maxewll law and the four Maxwell equations (integral form).

Waves and electromagnetic waves
Waves, impulse waves, wave trains, periodic waves; plane waves; wavelength, period and frequency of a periodic wave. Wave equation. Armonic waves: velocity and frequency, wavelength and wavenumber. Superposition principle. Armonic waves and Fourier analysis. Dispersion. Wave intensity and impedance of the medium. Mechanical waves. Electromagnetic waves: Maxwell equations and electromagnetic waves, electromagnetic waves equation. Energy and intensity. Polarization. Electromagnetic spectrum. Reflection and refraction of waves, transmitted and reflected intensities at normal incidence. Interference of waves, maxima and minima. Thin-film interference, Young experiment.

Brief introduction to quantum mechanics: quantization of light: black-body radiation, photoelectronic effect; quantization of matter: atomic emission and absorption spectra, Bohr’s atom, Stern-Gerlach experiment; wavlike behaviourof matter: De Broglie relation, uncertainty principle.



Module: Modulo II
-------
Gradient of a scalar field: electric field and potential. Divergence and curl of a vector field: differential Maxwell equations.

Assessment methods and criteria

Module: Modulo I
-------
Written exam: solution of some problems on electrostatics, magnetostatics, electromagnetic induction, electromagnetic waves and related phenomena.



Module: Modulo II
-------
A unique written exam for module I and module II together: solution of some problems on electrostatics, magnetostatics, electromagnetic induction, electromagnetic waves and related phenomena.

Share