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Languages

Given a language L over a finite alphabet A we say that L is:

factorial if L contains all the factors of its words, i.e.
uv ∈ L⇒ u, v ∈ L

anti-factorial if no word in L is factor of another word in L, i.e.
uv ∈ L⇒ u, v /∈ L

For example, the set of factors of a (finite or infinite) word is a factorial
language.
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Minimal Forbidden Words

Definition

Given a factorial language L, we say that w ∈ A∗ is a minimal forbidden
word for L if:

1 w /∈ L;

2 every proper factor of w is in L.

The (antifactorial) set of mfw for L is denoted by MF(L).

If L is the set of factors of a word w , the set MF(w) =MF(L) is
usually called the set of minimal forbidden factors of w .

Example

Over A = {a, b} let w = aabbbaa. We have:

MF(w) = {aaa, bbbb, aba, abba, bab, baab}
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Languages

The map µ : L 7→ MF(L) is injective, i.e., different languages have
different sets of minimal forbidden words.

Conversely, given an antifactorial language M, we can define L(M) as
the largest (factorial) language avoiding M, i.e. L(M) = (A∗MA∗)c .
The map λ : M 7→ L(M) is injective and is the inverse of the map µ.

In fact, L(MF(L)) = L and MF(L(M)) = M.

Theorem (Crochemore, Mignosi, Restivo [1])

There is a one-to-one correspondence between factorial and antifactorial
languages.

Moreover, this correspondence preserves the regularity, i.e., a language is
regular iff its set of mfw is regular [1].
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CMR Algorithm

If M is finite, then it can be represented on a trie (tree-like automaton)
T (M).

Theorem (Crochemore, Restivo, Mignosi, [1])

A determinitic automaton A(M) accepting L(M) can be computed from
T (M) in linear time.
Moreover, if M =MF(w), then A(M) is the factor automaton (DAWG)
of w, i.e., it is minimal.

Theorem (Crochemore, Restivo, Mignosi, [1])

Given the factor automaton of a word w, a trie accepting MF(w) can
be computed in linear time.
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BCMRS Algorithm

Theorem (Béal, Crochemore, Mignosi, Restivo, Sciortino [4])

Given a deterministic automaton A(L) accepting a factorial language L,
it is possible to build in quadratic time (which is optimal in the worst
case) a deterministic automaton accepting MF(L).

Actually, if the input is the factor automaton of a word w , i.e., the
minimal deterministic automaton accepting Fact(w), the previous
algorithm takes linear time.

Corollary

The bijective correspondence between w and MF(w) can be computed
in linear time in each direction.
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Theorem (Béal, Crochemore, Mignosi, Restivo, Sciortino [4])

Given a deterministic automaton A(L) accepting a factorial language L,
it is possible to build in quadratic time (which is optimal in the worst
case) a deterministic automaton accepting MF(L).

Actually, if the input is the factor automaton of a word w , i.e., the
minimal deterministic automaton accepting Fact(w), the previous
algorithm takes linear time.

Corollary

The bijective correspondence between w and MF(w) can be computed
in linear time in each direction.

G. Fici Minimal Forbidden Words and Applications



BCMRS Algorithm
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Combinatorial properties of MFW

Given a word w , the repetition index r(w) is the length of the longest
factor of w that has more than one occurrences in w .

Proposition

Let w ∈ A∗ be generated by a memoryless source with identical symbol
probabilities. Then the probability that r(w) ≤ 3 log|A| |w | tends to 1 as
|w | tends to infinity.

Proposition

Let m(w) be the length of the longest mff of w. Then m(w) = r(w) + 2.

Example

Let w = aabbbaa. Then r(w) = 2 since every factor of length 3 is
unioccurrent. A longest mff for w has length 4, that is, m(w) = 4.
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Data Compression using Antidictionaries

Minimal forbidden words can be used to compress a text.

Definition

An antidictionary for a word w is a subset of MF(w).

For example, let w = 0100101001. Then AD = {000, 10101, 11} is an
antidictionary for w .

The idea is to eliminate redundant letters of w , which can be retrieved
from AD.

Crochemore, Mignosi, Restivo and Salemi [2] proposed a lossless
antidictionary-based compressor.
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Data Compression using Antidictionaries

ENCODER (AD, w ∈ {0, 1}∗)
1. v ← ε; γ ← ε;
2. for a← first to last letter of w
3. if ∀ suffix v ′ of v , v ′0 and v ′1 /∈ AD
4. γ ← γa;
5. v ← va;
6. return (|v |, γ);

Example: w = 0100101001.

v = ε γ(w) = ε
v = 0 γ(w) = 0
v = 01 γ(w) = 01 v ′ = 11 ∈ AD
v = 010 γ(w) = 01
v = 0100 γ(w) = 010 v ′ = 000 ∈ AD
v = 01001 γ(w) = 010 v ′ = 11 ∈ AD
v = 010010 γ(w) = 010
v = 0100101 γ(w) = 0101 v ′ = 11 ∈ AD
v = 01001010 γ(w) = 0101 v ′ = 10101 ∈ AD
v = 010010100 γ(w) = 0101 v ′ = 000 ∈ AD
v = 0100101001 γ(w) = 0101 v ′ = 11 ∈ AD
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Data Compression using Antidictionaries

DECODER (AD, γ, n)
1. v ← ε;
2. while |v | < n
3. if for some v ′ suffix of v and letter a, v ′a ∈ AD
4. v ← v ā;
5. else
6. a← next letter of γ;
7. v ← va;
8. return (v);
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Word Reconstruction

Another application of mfw concerns the reconstruction of a word from a
set of factors [6].
This is a theoretical simplified model for the Fragment Assembly Problem.

Definition

Given a finite set of words I, we say that a word w is I-compatible if:

1 I ⊂ Fact(w);

2 every factor of w shorter than m(w) appears in some word of I.

Example

I = {abb, bba}. Then abba is I-compatible.
I = {ab, bb, ba}. Then no word is I-compatible.

Theorem

For any I, there exists at most one I-compatible word.
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Word Reconstruction

The algorithm for the reconstruction takes a set I in input, and in linear
time on |I| reconstructs an I-compatible word if this exists, or gives a
negative answer.

Idea: if we are able to retrieve the set MF(w), then we can retrieve w .

So, first we construct the word

w1 = $i1$i2$ · · · $in$

where i1, . . . , in = I and $ /∈ A . Then we compute the set MF(w1).

But how can we retrieve MF(w) from MF(w1)?

Proposition

If w is I-compatible, then MF(w) =MF(w1) ∩ A≤m(w).

Wonderful, but we don’t know the value m(w)...
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Word Reconstruction

Let S be the set of words aub ∈MF(w1) ∩ A∗ such that:

1 au$, $ub ∈ Fact(w1);

2 aux , xub /∈ Fact(w1) for any x ∈ A.

Proposition

Let l1, l2 be the lengths of the shortest and second shortest words in S.
If w is I-compatible, then either MF(w) =MF(w1) ∩ Al1 or
MF(w) =MF(w1) ∩ Al2 .

So, the algorithm is the following:
- Try with l1: if the set MF(w1) ∩ Al1 is the set of mff of a finite word,
retrieve the word;
- otherwise, try with l2: if the set MF(w1) ∩ Al2 is the set of mff of a
finite word, retrieve the word;
- otherwise, no I-compatible word exists.
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- Try with l1: if the set MF(w1) ∩ Al1 is the set of mff of a finite word,
retrieve the word;
- otherwise, try with l2: if the set MF(w1) ∩ Al2 is the set of mff of a
finite word, retrieve the word;
- otherwise, no I-compatible word exists.
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