Minimal Forbidden Words and Applications

Gabriele Fici

Dipartimento di Matematica e Informatica
Università di Palermo

December 9th, 2013

Languages

Given a language L over a finite alphabet A we say that L is:

Languages

Given a language L over a finite alphabet A we say that L is:

- factorial if L contains all the factors of its words, i.e. $u v \in L \Rightarrow u, v \in L$

Languages

Given a language L over a finite alphabet A we say that L is:

- factorial if L contains all the factors of its words, i.e. $u v \in L \Rightarrow u, v \in L$
- anti-factorial if no word in L is factor of another word in L, i.e. $u v \in L \Rightarrow u, v \notin L$

Languages

Given a language L over a finite alphabet A we say that L is:

- factorial if L contains all the factors of its words, i.e.

$$
u v \in L \Rightarrow u, v \in L
$$

- anti-factorial if no word in L is factor of another word in L, i.e. $u v \in L \Rightarrow u, v \notin L$

For example, the set of factors of a (finite or infinite) word is a factorial language.

Minimal Forbidden Words

Definition

Given a factorial language L, we say that $w \in A^{*}$ is a minimal forbidden word for L if:
(1) $w \notin L$;
(2) every proper factor of w is in L.

Minimal Forbidden Words

Definition

Given a factorial language L, we say that $w \in A^{*}$ is a minimal forbidden word for L if:
(1) $w \notin L$;
(2) every proper factor of w is in L.

The (antifactorial) set of mfw for L is denoted by $\mathcal{M} \mathcal{F}(L)$.

Minimal Forbidden Words

Definition

Given a factorial language L, we say that $w \in A^{*}$ is a minimal forbidden word for L if:
(1) $w \notin L$;
(2) every proper factor of w is in L.

The (antifactorial) set of mfw for L is denoted by $\mathcal{M} \mathcal{F}(L)$.
If L is the set of factors of a word w, the set $\mathcal{M F}(w)=\mathcal{M F}(L)$ is usually called the set of minimal forbidden factors of w.

Minimal Forbidden Words

Definition

Given a factorial language L, we say that $w \in A^{*}$ is a minimal forbidden word for L if:
(1) $w \notin L$;
(2) every proper factor of w is in L.

The (antifactorial) set of mfw for L is denoted by $\mathcal{M} \mathcal{F}(L)$.
If L is the set of factors of a word w, the set $\mathcal{M F}(w)=\mathcal{M F}(L)$ is usually called the set of minimal forbidden factors of w.

Example

Over $A=\{a, b\}$ let $w=a a b b b a a$. We have:

$$
\mathcal{M} \mathcal{F}(w)=\{a a a, b b b b, a b a, a b b a, b a b, b a a b\}
$$

Languages

The map $\mu: L \mapsto \mathcal{M \mathcal { F }}(L)$ is injective, i.e., different languages have different sets of minimal forbidden words.

Languages

The map $\mu: L \mapsto \mathcal{M \mathcal { F }}(L)$ is injective, i.e., different languages have different sets of minimal forbidden words.

Conversely, given an antifactorial language M, we can define $\mathcal{L}(M)$ as the largest (factorial) language avoiding M, i.e. $\mathcal{L}(M)=\left(A^{*} M A^{*}\right)^{c}$.

Languages

The map $\mu: L \mapsto \mathcal{M \mathcal { F }}(L)$ is injective, i.e., different languages have different sets of minimal forbidden words.

Conversely, given an antifactorial language M, we can define $\mathcal{L}(M)$ as the largest (factorial) language avoiding M, i.e. $\mathcal{L}(M)=\left(A^{*} M A^{*}\right)^{c}$. The map $\lambda: M \mapsto \mathcal{L}(M)$ is injective and is the inverse of the map μ.

Languages

The map $\mu: L \mapsto \mathcal{M \mathcal { F }}(L)$ is injective, i.e., different languages have different sets of minimal forbidden words.

Conversely, given an antifactorial language M, we can define $\mathcal{L}(M)$ as the largest (factorial) language avoiding M, i.e. $\mathcal{L}(M)=\left(A^{*} M A^{*}\right)^{c}$. The map $\lambda: M \mapsto \mathcal{L}(M)$ is injective and is the inverse of the map μ.

In fact, $\mathcal{L}(\mathcal{M F}(L))=L$ and $\mathcal{M} \mathcal{F}(\mathcal{L}(M))=M$.

Languages

The map $\mu: L \mapsto \mathcal{M \mathcal { F }}(L)$ is injective, i.e., different languages have different sets of minimal forbidden words.

Conversely, given an antifactorial language M, we can define $\mathcal{L}(M)$ as the largest (factorial) language avoiding M, i.e. $\mathcal{L}(M)=\left(A^{*} M A^{*}\right)^{c}$. The map $\lambda: M \mapsto \mathcal{L}(M)$ is injective and is the inverse of the map μ.

In fact, $\mathcal{L}(\mathcal{M F}(L))=L$ and $\mathcal{M F}(\mathcal{L}(M))=M$.

Theorem (Crochemore, Mignosi, Restivo [1])

There is a one-to-one correspondence between factorial and antifactorial languages.

Languages

The map $\mu: L \mapsto \mathcal{M \mathcal { F }}(L)$ is injective, i.e., different languages have different sets of minimal forbidden words.

Conversely, given an antifactorial language M, we can define $\mathcal{L}(M)$ as the largest (factorial) language avoiding M, i.e. $\mathcal{L}(M)=\left(A^{*} M A^{*}\right)^{c}$. The map $\lambda: M \mapsto \mathcal{L}(M)$ is injective and is the inverse of the map μ.

In fact, $\mathcal{L}(\mathcal{M F}(L))=L$ and $\mathcal{M F}(\mathcal{L}(M))=M$.

Theorem (Crochemore, Mignosi, Restivo [1])

There is a one-to-one correspondence between factorial and antifactorial languages.

Moreover, this correspondence preserves the regularity, i.e., a language is regular iff its set of mfw is regular [1].

CMR Algorithm

If M is finite, then it can be represented on a trie (tree-like automaton) $\mathcal{T}(M)$.

CMR Algorithm

If M is finite, then it can be represented on a trie (tree-like automaton) $\mathcal{T}(M)$.

Theorem (Crochemore, Restivo, Mignosi, [1])

A determinitic automaton $\mathcal{A}(M)$ accepting $\mathcal{L}(M)$ can be computed from $\mathcal{T}(M)$ in linear time. Moreover, if $M=\mathcal{M F}(w)$, then $\mathcal{A}(M)$ is the factor automaton (DAWG) of w, i.e., it is minimal.

CMR Algorithm

If M is finite, then it can be represented on a trie (tree-like automaton) $\mathcal{T}(M)$.

Theorem (Crochemore, Restivo, Mignosi, [1])

A determinitic automaton $\mathcal{A}(M)$ accepting $\mathcal{L}(M)$ can be computed from $\mathcal{T}(M)$ in linear time.
Moreover, if $M=\mathcal{M F}(w)$, then $\mathcal{A}(M)$ is the factor automaton (DAWG) of w, i.e., it is minimal.

Theorem (Crochemore, Restivo, Mignosi, [1])

Given the factor automaton of a word w, a trie accepting $\mathcal{M F}(w)$ can be computed in linear time.

BCMRS Algorithm

Theorem (Béal, Crochemore, Mignosi, Restivo, Sciortino [4])

Given a deterministic automaton $\mathcal{A}(L)$ accepting a factorial language L, it is possible to build in quadratic time (which is optimal in the worst case) a deterministic automaton accepting $\mathcal{M F}(L)$.

BCMRS Algorithm

Theorem (Béal, Crochemore, Mignosi, Restivo, Sciortino [4])

Given a deterministic automaton $\mathcal{A}(L)$ accepting a factorial language L, it is possible to build in quadratic time (which is optimal in the worst case) a deterministic automaton accepting $\mathcal{M F}(L)$.

Actually, if the input is the factor automaton of a word w, i.e., the minimal deterministic automaton accepting $\operatorname{Fact}(w)$, the previous algorithm takes linear time.

BCMRS Algorithm

Theorem (Béal, Crochemore, Mignosi, Restivo, Sciortino [4])

Given a deterministic automaton $\mathcal{A}(L)$ accepting a factorial language L, it is possible to build in quadratic time (which is optimal in the worst case) a deterministic automaton accepting $\mathcal{M F}(L)$.

Actually, if the input is the factor automaton of a word w, i.e., the minimal deterministic automaton accepting $\operatorname{Fact}(w)$, the previous algorithm takes linear time.

Corollary

The bijective correspondence between w and $\mathcal{M F}(w)$ can be computed in linear time in each direction.

Combinatorial properties of MFW

Given a word w, the repetition index $r(w)$ is the length of the longest factor of w that has more than one occurrences in w.

Combinatorial properties of MFW

Given a word w, the repetition index $r(w)$ is the length of the longest factor of w that has more than one occurrences in w.

Proposition

Let $w \in A^{*}$ be generated by a memoryless source with identical symbol probabilities. Then the probability that $r(w) \leq 3 \log _{|A|}|w|$ tends to 1 as $|w|$ tends to infinity.

Combinatorial properties of MFW

Given a word w, the repetition index $r(w)$ is the length of the longest factor of w that has more than one occurrences in w.

Proposition

Let $w \in A^{*}$ be generated by a memoryless source with identical symbol probabilities. Then the probability that $r(w) \leq 3 \log _{|A|}|w|$ tends to 1 as $|w|$ tends to infinity.

Proposition

Let $m(w)$ be the length of the longest mff of w. Then $m(w)=r(w)+2$.

Combinatorial properties of MFW

Given a word w, the repetition index $r(w)$ is the length of the longest factor of w that has more than one occurrences in w.

Proposition

Let $w \in A^{*}$ be generated by a memoryless source with identical symbol probabilities. Then the probability that $r(w) \leq 3 \log _{|A|}|w|$ tends to 1 as $|w|$ tends to infinity.

Proposition

Let $m(w)$ be the length of the longest mff of w. Then $m(w)=r(w)+2$.

Example

Let $w=$ aabbbaa. Then $r(w)=2$ since every factor of length 3 is unioccurrent. A longest mff for w has length 4 , that is, $m(w)=4$.

Data Compression using Antidictionaries

Minimal forbidden words can be used to compress a text.

Data Compression using Antidictionaries

Minimal forbidden words can be used to compress a text.

Definition

An antidictionary for a word w is a subset of $\mathcal{M F}(w)$.

Data Compression using Antidictionaries

Minimal forbidden words can be used to compress a text.

Definition

An antidictionary for a word w is a subset of $\mathcal{M F}(w)$.

For example, let $w=0100101001$. Then $A D=\{000,10101,11\}$ is an antidictionary for w.

Data Compression using Antidictionaries

Minimal forbidden words can be used to compress a text.

Definition

An antidictionary for a word w is a subset of $\mathcal{M F}(w)$.

For example, let $w=0100101001$. Then $A D=\{000,10101,11\}$ is an antidictionary for w.

The idea is to eliminate redundant letters of w, which can be retrieved from $A D$.

Data Compression using Antidictionaries

Minimal forbidden words can be used to compress a text.

Definition

An antidictionary for a word w is a subset of $\mathcal{M} \mathcal{F}(w)$.

For example, let $w=0100101001$. Then $A D=\{000,10101,11\}$ is an antidictionary for w.

The idea is to eliminate redundant letters of w, which can be retrieved from $A D$.

Crochemore, Mignosi, Restivo and Salemi [2] proposed a lossless antidictionary-based compressor.

Data Compression using Antidictionaries

$\operatorname{ENCODER}\left(\mathrm{AD}, w \in\{0,1\}^{*}\right)$

1. $v \leftarrow \varepsilon ; \gamma \leftarrow \varepsilon$;
2. for $a \leftarrow$ first to last letter of w
3. if \forall suffix v^{\prime} of $v, v^{\prime} 0$ and $v^{\prime} 1 \notin A D$
4. $\gamma \leftarrow \gamma a$;
5. $v \leftarrow v a$;
6. return (|v|, γ);

Example: $w=0100101001$.

$$
\begin{aligned}
& v=\varepsilon \\
& v=0 \\
& v=01 \\
& v=010 \\
& v=0100 \\
& v=01001 \\
& v=010010 \\
& v=0100101 \\
& v=01001010 \\
& v=010010100 \\
& v=0100101001
\end{aligned}
$$

$$
\gamma(w)=\varepsilon
$$

$$
\gamma(w)=0
$$

$$
\gamma(w)=01
$$

$$
v^{\prime}=11 \in A D
$$

$$
\gamma(w)=01
$$

$$
\gamma(w)=010 \quad v^{\prime}=000 \in A D
$$

$$
\gamma(w)=010 \quad v^{\prime}=11 \in A D
$$

$$
\gamma(w)=010
$$

$$
\gamma(w)=0101 \quad v^{\prime}=11 \in A D
$$

$$
\gamma(w)=0101 \quad v^{\prime}=10101 \in A D
$$

$$
\gamma(w)=0101 \quad v^{\prime}=000 \in A D
$$

$$
\gamma(w)=0101 \quad v^{\prime}=11 \in A D
$$

Data Compression using Antidictionaries

DECODER (AD, γ, n)

1. $v \leftarrow \varepsilon$;
2. while $|v|<n$
3. if for some v^{\prime} suffix of v and letter $a, v^{\prime} a \in A D$
4. $\quad v \leftarrow v \bar{a}$;
5. else
6. $\quad a \leftarrow$ next letter of γ;
7. $\quad v \leftarrow v a$;
8. return (v);

$$
\begin{aligned}
& v=\varepsilon \\
& v=0 \\
& v=01 \\
& v=010 \\
& v=0100 \\
& v=01001 \\
& v=010010 \\
& v=0100101 \\
& v=01001010 \\
& v=010010100 \\
& v=0100101001
\end{aligned}
$$

$$
\begin{array}{ll}
\gamma(w)=\varepsilon & \\
\gamma(w)=0 & \\
\gamma(w)=01 & v^{\prime}=11 \in A D \\
\gamma(w)=01 & \\
\gamma(w)=010 & v^{\prime}=000 \in A D \\
\gamma(w)=010 & v^{\prime}=11 \in A D \\
\gamma(w)=010 & \\
\gamma(w)=0101 & v^{\prime}=11 \in A D \\
\gamma(w)=0101 & v^{\prime}=10101 \in A D \\
\gamma(w)=0101 & v^{\prime}=000 \in A D \\
\gamma(w)=0101 & v^{\prime}=11 \in A D
\end{array}
$$

Word Reconstruction

Another application of mfw concerns the reconstruction of a word from a set of factors [6].
This is a theoretical simplified model for the Fragment Assembly Problem.

Word Reconstruction

Another application of mfw concerns the reconstruction of a word from a set of factors [6].
This is a theoretical simplified model for the Fragment Assembly Problem.

Definition

Given a finite set of words \mathcal{I}, we say that a word w is \mathcal{I}-compatible if:
(1) $\mathcal{I} \subset \operatorname{Fact}(w)$;
(2) every factor of w shorter than $m(w)$ appears in some word of \mathcal{I}.

Example

$\mathcal{I}=\{a b b, b b a\}$. Then $a b b a$ is \mathcal{I}-compatible.
$\mathcal{I}=\{a b, b b, b a\}$. Then no word is \mathcal{I}-compatible.

Word Reconstruction

Another application of mfw concerns the reconstruction of a word from a set of factors [6].
This is a theoretical simplified model for the Fragment Assembly Problem.

Definition

Given a finite set of words \mathcal{I}, we say that a word w is \mathcal{I}-compatible if:
(1) $\mathcal{I} \subset \operatorname{Fact}(w)$;
(2) every factor of w shorter than $m(w)$ appears in some word of \mathcal{I}.

Example

$\mathcal{I}=\{a b b, b b a\}$. Then $a b b a$ is \mathcal{I}-compatible.
$\mathcal{I}=\{a b, b b, b a\}$. Then no word is \mathcal{I}-compatible.

Theorem

For any \mathcal{I}, there exists at most one \mathcal{I}-compatible word.

Word Reconstruction

The algorithm for the reconstruction takes a set \mathcal{I} in input, and in linear time on $|\mathcal{I}|$ reconstructs an \mathcal{I}-compatible word if this exists, or gives a negative answer.

Word Reconstruction

The algorithm for the reconstruction takes a set \mathcal{I} in input, and in linear time on $|\mathcal{I}|$ reconstructs an \mathcal{I}-compatible word if this exists, or gives a negative answer.

Idea: if we are able to retrieve the set $\mathcal{M F}(w)$, then we can retrieve w.

Word Reconstruction

The algorithm for the reconstruction takes a set \mathcal{I} in input, and in linear time on $|\mathcal{I}|$ reconstructs an \mathcal{I}-compatible word if this exists, or gives a negative answer.

Idea: if we are able to retrieve the set $\mathcal{M F}(w)$, then we can retrieve w.
So, first we construct the word

$$
w_{1}=\$ i_{1} \$ i_{2} \$ \cdots \$ i_{n} \$
$$

where $i_{1}, \ldots, i_{n}=\mathcal{I}$ and $\$ \notin A$. Then we compute the set $\mathcal{M} \mathcal{F}\left(w_{1}\right)$.

Word Reconstruction

The algorithm for the reconstruction takes a set \mathcal{I} in input, and in linear time on $|\mathcal{I}|$ reconstructs an \mathcal{I}-compatible word if this exists, or gives a negative answer.

Idea: if we are able to retrieve the set $\mathcal{M F}(w)$, then we can retrieve w.
So, first we construct the word

$$
w_{1}=\$ i_{1} \$ i_{2} \$ \cdots \$ i_{n} \$
$$

where $i_{1}, \ldots, i_{n}=\mathcal{I}$ and $\$ \notin A$. Then we compute the set $\mathcal{M} \mathcal{F}\left(w_{1}\right)$.
But how can we retrieve $\mathcal{M F}(w)$ from $\mathcal{M F}\left(w_{1}\right)$?

Word Reconstruction

The algorithm for the reconstruction takes a set \mathcal{I} in input, and in linear time on $|\mathcal{I}|$ reconstructs an \mathcal{I}-compatible word if this exists, or gives a negative answer.

Idea: if we are able to retrieve the set $\mathcal{M F}(w)$, then we can retrieve w.
So, first we construct the word

$$
w_{1}=\$ i_{1} \$ i_{2} \$ \cdots \$ i_{n} \$
$$

where $i_{1}, \ldots, i_{n}=\mathcal{I}$ and $\$ \notin A$. Then we compute the set $\mathcal{M F}\left(w_{1}\right)$.
But how can we retrieve $\mathcal{M F}(w)$ from $\mathcal{M F}\left(w_{1}\right)$?

Proposition

If w is \mathcal{I}-compatible, then $\mathcal{M F}(w)=\mathcal{M F}\left(w_{1}\right) \cap A^{\leq m(w)}$.

Word Reconstruction

The algorithm for the reconstruction takes a set \mathcal{I} in input, and in linear time on $|\mathcal{I}|$ reconstructs an \mathcal{I}-compatible word if this exists, or gives a negative answer.

Idea: if we are able to retrieve the set $\mathcal{M F}(w)$, then we can retrieve w.
So, first we construct the word

$$
w_{1}=\$ i_{1} \$ i_{2} \$ \cdots \$ i_{n} \$
$$

where $i_{1}, \ldots, i_{n}=\mathcal{I}$ and $\$ \notin A$. Then we compute the set $\mathcal{M F}\left(w_{1}\right)$.
But how can we retrieve $\mathcal{M F}(w)$ from $\mathcal{M F}\left(w_{1}\right)$?

Proposition

If w is \mathcal{I}-compatible, then $\mathcal{M F}(w)=\mathcal{M \mathcal { F }}\left(w_{1}\right) \cap A \leq m(w)$.
Wonderful, but we don't know the value $m(w)$...

Word Reconstruction

Let S be the set of words $a u b \in \mathcal{M \mathcal { F }}\left(w_{1}\right) \cap A^{*}$ such that:
(1) $a u \$, \$ u b \in \operatorname{Fact}\left(w_{1}\right)$;
(2) aux, xub $\notin \operatorname{Fact}\left(w_{1}\right)$ for any $x \in A$.

Word Reconstruction

Let S be the set of words $a u b \in \mathcal{M F}\left(w_{1}\right) \cap A^{*}$ such that:
(1) $a u \$, \$ u b \in \operatorname{Fact}\left(w_{1}\right)$;
(2) aux, xub $\notin \operatorname{Fact}\left(w_{1}\right)$ for any $x \in A$.

Proposition

Let l_{1}, I_{2} be the lengths of the shortest and second shortest words in S. If w is \mathcal{I}-compatible, then either $\mathcal{M F}(w)=\mathcal{M F}\left(w_{1}\right) \cap A^{h_{1}}$ or $\mathcal{M F}(w)=\mathcal{M \mathcal { F }}\left(w_{1}\right) \cap A^{/ 2}$.

Word Reconstruction

Let S be the set of words $a u b \in \mathcal{M F}\left(w_{1}\right) \cap A^{*}$ such that:
(1) au\$, \$ub $\in \operatorname{Fact}\left(w_{1}\right)$;
(2) aux, xub $\notin \operatorname{Fact}\left(w_{1}\right)$ for any $x \in A$.

Proposition

Let I_{1}, l_{2} be the lengths of the shortest and second shortest words in S. If w is \mathcal{I}-compatible, then either $\mathcal{M F}(w)=\mathcal{M} \mathcal{F}\left(w_{1}\right) \cap A^{/_{1}}$ or $\mathcal{M F}(w)=\mathcal{M F}\left(w_{1}\right) \cap A^{\prime 2}$.

So, the algorithm is the following:

- Try with I_{1} : if the set $\mathcal{M F}\left(w_{1}\right) \cap A^{h_{1}}$ is the set of mff of a finite word, retrieve the word;
- otherwise, try with I_{2} : if the set $\mathcal{M F}\left(w_{1}\right) \cap A^{l_{2}}$ is the set of mff of a finite word, retrieve the word;
- otherwise, no \mathcal{I}-compatible word exists.
[1] M. Crochemore, F. Mignosi, A. Restivo. Automata and Forbidden Words. Inform. Proc. Lett. 67: 111-117, 1998.
[2] M. Crochemore, F. Mignosi, A. Restivo, S. Salemi. Text Compression Using Antidictionaries. ICALP '99. Lecture Notes Comput. Sci. 1644: 261-270, 1999.
[3] F. Mignosi, A. Restivo, M. Sciortino. Words and forbidden factors. Theoret. Comput. Sci. 273: 99-117, 2002.
[4] M.-P. Béal, M. Crochemore, F. Mignosi, A. Restivo, M. Sciortino. Computing forbidden words of regular languages. Fundam. Inform. 20: 1-15, 2003.
[5] M.-P. Béal, M. Crochemore, G. Fici. Presentations of Constrained Systems With Unconstrained Positions. IEEE Trans. Inform. Theory 51: 1891-1900, 2005.
[6] G. Fici, F. Mignosi, A. Restivo, M. Sciortino. Word Assembly through Minimal Forbidden Words. Theoret. Comput. Sci. 359: 214-230, 2006.

Thank You

