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Kinetic

Model Hierarchy: General

• We are interested in Agent or Particle based dynamics.

• As an intermediate model we establish a Kinetic Model of such a process.

• Finally, we go over to a Fluid Dynamics model to describe the macroscopic
behavior by rescaling the kinetic model.

Particle Model
Kinetic

Equation
Fluid Dynamics
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Kinetic

Model Hierarchy: Gas Dynamics

Classical Example: Gas dynamics.

• Newtonian Dynamic: free float and Elastic Collision of Hard Spheres of N(∈ N)
atoms.

• Boltzmann equation as an mesoscopic kinetic model (featuring a mean-field).

• Introducing Moments and taking a Hydrodynamic Limit to gain a fluid dynamics
model e.g. the Euler Equations of Gas Dynamics

Newtonian
Dynamic

Boltzmann
Equation

Euler
Equations
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Kinetic

Gas Dynamics: Pros and Cons of Model Level

• Newtonian dynamic is physically accurate but expansive to compute (N
extremely large).

• Boltzmann equation can be discretized by less DoF (DoF<< N) but has a
seven dimensional input (in 3D: position+velocity+time)!

• Euler equations describe larger space/time-scales with four dimensional
input but lose description of microscopic fluctuations as well as velocity
information.
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Steel Rolling Model

A Steel Rolling Process

Modeling Steel Rolling Processes by
fluid-like Differential Equations
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Steel Rolling Model

A Steel Rolling Process

• We model a single workpiece in a roll mill.

• The model considers the temperature T and thickness g of the workpiece and
their evolution over time.

• We postulate a stochastic "transition" probability of the workpiece to either
undergo a deformation process or not (transport of it or change of milling rolls).
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Steel Rolling Model

Particle Dynamics 1

• Let τ be a random processing time. We choose

P(τ = s) = Φ(s).

• In case of an rolling event the thickness undergoes the deformation

g(t + τ) = g(t)−F(T(t),g(t),τ).

• Independent of the event (transport of rolling) we assume a temperature flux

T(t + τ) = T(t)− τ c(T(t)).
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Steel Rolling Model

Particle Dynamics 2

• We rescale the probability via

ω(τ) =
Φ(τ)∫

∞

τ
Φ(s)ds

and consider a small time-step ∆t > 0.
[M. Herty, C. Ringhofer, 2001].

• With probability ω(τ(t))∆t we have (rolling):

τ(t + ∆t) = 0,

g(t + ∆t) = g(t)−F(T(t),g(t),τ),

T(t + ∆t) = T(t)−∆tc(T(t)),

And with probability 1−ω(τ(t))∆t (no rolling):

τ(t + ∆t) = τ(t) + ∆t,

g(t + ∆t) = g(t),

T(t + ∆t) = T(t)−∆tc(T(t)).
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Steel Rolling Model

Transition Probability

• As the transition from state X = (τ,g,T) to state X ′ = (τ ′,g′,T′) in a time step
∆t we have:

P(X ,X ′) =

(1−ω(τ
′)∆t) ·δ (τ− (τ

′+ ∆t)) ·δ (g−g′) ·δ (T− (T′−∆tc(T′))

+ω(τ
′)∆t ·δ (τ) ·δ (g− (g′−F(T′,g′,τ ′)) ·δ (T− (T′−∆tc(T′))).

• Hence, the probability f (t,X) (kinetic model) to be in state X at time t evolves
according to

f (t + ∆t,X) =
∫

P(X ,X ′)f (t,X ′)dX .

Axel-Stefan Häck, M.Sc. (RWTH Aachen) 2017 December 21th 7 / 35



Steel Rolling Model

Transition Probability

• As the transition from state X = (τ,g,T) to state X ′ = (τ ′,g′,T′) in a time step
∆t we have:

P(X ,X ′) =

(1−ω(τ
′)∆t) ·δ (τ− (τ

′+ ∆t)) ·δ (g−g′) ·δ (T− (T′−∆tc(T′))

+ω(τ
′)∆t ·δ (τ) ·δ (g− (g′−F(T′,g′,τ ′)) ·δ (T− (T′−∆tc(T′))).

• Hence, the probability f (t,X) (kinetic model) to be in state X at time t evolves
according to

f (t + ∆t,X) =
∫

P(X ,X ′)f (t,X ′)dX .

Axel-Stefan Häck, M.Sc. (RWTH Aachen) 2017 December 21th 7 / 35



Steel Rolling Model

Fluid-like Limit

For reasons of presentation we quickly list the involved steps:

• Scaling frequency ω by ω̂ = ω

∆t ,

• Taylor expansion w.r.t. ∆t and considering resulting first-order dynamics (see
Boltzmann limit),

• Scaling τ by τ

ε
and take ε → 0 (see hydrodynamic limit).

Axel-Stefan Häck, M.Sc. (RWTH Aachen) 2017 December 21th 8 / 35



Steel Rolling Model

Fluid-like Limit

For reasons of presentation we quickly list the involved steps:

• Scaling frequency ω by ω̂ = ω

∆t ,

• Taylor expansion w.r.t. ∆t and considering resulting first-order dynamics (see
Boltzmann limit),

• Scaling τ by τ

ε
and take ε → 0 (see hydrodynamic limit).

Axel-Stefan Häck, M.Sc. (RWTH Aachen) 2017 December 21th 8 / 35



Steel Rolling Model

Fluid-like Limit

For reasons of presentation we quickly list the involved steps:

• Scaling frequency ω by ω̂ = ω

∆t ,

• Taylor expansion w.r.t. ∆t and considering resulting first-order dynamics (see
Boltzmann limit),

• Scaling τ by τ

ε
and take ε → 0 (see hydrodynamic limit).

Axel-Stefan Häck, M.Sc. (RWTH Aachen) 2017 December 21th 8 / 35



Steel Rolling Model

Fluid-like Limit

For reasons of presentation we quickly list the involved steps:

• Scaling frequency ω by ω̂ = ω

∆t ,

• Taylor expansion w.r.t. ∆t and considering resulting first-order dynamics (see
Boltzmann limit),

• Scaling τ by τ

ε
and take ε → 0 (see hydrodynamic limit).

Axel-Stefan Häck, M.Sc. (RWTH Aachen) 2017 December 21th 8 / 35



Steel Rolling Model

Fluid-like PDE

The resulting PDE reads

ft (t,g,T) =ω̂(0) [∂g(Fτ (T,g,0)f (t,g,T)) + c(T)fT(t,g,T)]

+ f (t,g,T)(1 + ω̂(0))(c(T)−1).
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Steel Rolling Model

Simulations
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Steel Rolling Model

Interpretation of Results

• As desired, the resulting dynamics recovers a reduction in thickness and
temperature of the initial workpieces,

• Some realistic properties of the deformation: hotter particles deform quicker.
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Steel Rolling Model

Potential Applications

• A credible model would offer the opportunity to predict stochastic quantities of a
rolling process e.g. expectation value and variance of thickness,

• This would enable the possibility to control the production precess (choice of
applied force),

• Desirable optimizations: Production time, minimizing variance (to name a few).
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Steel Rolling Model

Remaining Modeling Steps

To gain a credible model it remains:

• Model ω(·) after experimental data,

• Implement a higher-order approximation to the temperature flux c(·),

• Discriminate between temperature flux into air and into milling roll,

• Introduce uncertainties! on each step (in the particle dynamics) according to
experimental data.
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Coupling

Coupling

Coupling Conditions by high-order
Schemes
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Coupling

• We consider a model of flow on graphs.

• A single vertex with n adjacent arcs (which we extend to infinity).

• All arcs are parameterized by [0,∞), such that the junction is located at x = 0 (for
all arcs).

• We assume the flux f (·) ∈ C 4(R2,R2) and the uj (t,x) : R+
0 ×R+

0 to be the
conserved states on the arcs j = 1, ...,n
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Coupling

Problem Setting

∂t uj + ∂x f (uj ) = 0, t ≥ 0,x ≥ 0, (PDE)

uj (0,x) = uj,o(x), x ≥ 0,

Ψ(u1(t,0+), . . . ,un(t,0+)) = 0, t ≥ 0, (CC)

where Ψ : R2n→ Rn is the (possilbly nonlinear!) coupling condition.
(PDE) are assumed to be strictly hyperbolic.

(Existence and uniqueness of solution in [R. M. Colombo, M. Herty, and V. Sachers,
2008].)
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Coupling

Transversality condition

Let Ψ fulfill the transversality condition

det
[
D1Ψ(û)r2(û1), . . . ,DnΨ(û)r2(ûn)

]
6= 0, (TC)

where

• Dj Ψ(û) = ∂

∂uj
Ψ(û),

• û ∈ R2n is a steady state solution to (PDE) (and Ψ(û) = 0),

• Df (ûj ) has a strictly negative λ 1(ûj ) and a strictly positive eigenvalue λ 2(ûj ) with
linearly independent (right) eigenvectors r1(ûj ) and r2(ûj ),

• Corresponding characteristic fields to be either genuine nonlinear or linearly
degenerate.

Axel-Stefan Häck, M.Sc. (RWTH Aachen) 2017 December 21th 16 / 35



Coupling

Transversality condition

Let Ψ fulfill the transversality condition

det
[
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Coupling

Finite Volume

• The discretization for each ui (seperately) is done by a finite volume method,
where the cell average Um

i,j of uj in cell i at time tm is given by

Um
j,i :=

1
∆x

∫ x
i+ 1

2

x
i− 1

2

uj (x , tm)dx ,

• Its evolution over ∆t follows

Um+1
j,i = Um

j,i −
1

∆x

(
(Fj )i+ 1

2
− (Fj )i− 1

2

)
. (FVM)
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Coupling

Finite Volume + Coupling

• The flux across the cell interfaces is given by

(Fj )i+ 1
2

=
∫ tm+1

tm
f
(

uj

(
xi+ 1

2
,s
))

ds.

• We will use a second order approximation!

• By (CC) we get boundary conditions for (PDE) at x = 0!

• The cell average at the first cell i = 0 at time tm is given by the states um
j,0,

j = 1, ...,n. We assume them to be sufficiently close to ûj such that (TC) holds.
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• The cell average at the first cell i = 0 at time tm is given by the states um
j,0,

j = 1, ...,n. We assume them to be sufficiently close to ûj such that (TC) holds.
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Coupling

Characteristic Splitting

• Let s→Lκ (uo,s) the κ-th Lax curve through the state uo for κ = 1,2.

• We find (s∗1, . . . ,s
∗
n) (e.g. using Newton′s method) to solve

Ψ
(
L2(Um

1,0,s1), . . . ,L2(Um
n,0,sn)

) !
= 0

which exists and is unique due to (TC).
(This is zero order data only!)
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Coupling

Extend numerical Scheme to Boundary Values (in the Vertex).
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Coupling

Step 0: First order data at x=0

We can now calculate the boundary cell value Um+1
j,0 at time tm+1 by (FVM) for i = 0 by

using
Um

j,−1 := L2
(
Um

j,0,s
∗
j

)
. (GC)

(Hence, we obtain a first-order approximation to the coupling condition as well as to
the solution uj .)
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Coupling

Step 1: Reconstruction

• Given the cell averages Um
j,i we reconstruct a p.w. linear function uj (x , tm) and

each cell
[
xi− 1

2
,xi+ 1

2

]
.

(This is standard: MUSCL scheme.)

• In the first cell i = 0 the slope reconstruction will utilize the data gained in (GC) to
calculate σj,0.

We obtain a p.w. linear reconstruction

Uj (x , tm) = σj,i (x− xi ) + Um
j,i , xi− 1

2
≤ x ≤ xi+ 1

2
, i = 0, . . . , (1)

where σj,i is the vector of slopes.

• This way we get distinct values at each interface (in the spatial domain, as well as
at the vertex) which we will denote by the values at xi+ 1

2
∓.
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Coupling

Step 2: Reconstruction at boundary

• Reconstruct for each arc j a piecewise linear function vj (t) for tm ≤ t ≤ tm+1 such
that

d
dt

Ψ(v1(t), . . . ,vn(t))|t=tm = 0.

Let the solution be (v̇1, . . . , v̇j ).
(Solution exists due to (TC).)

• First order data of vj (t) already gained by (GC).
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Coupling

Step 3: Second order flow

Using the Midpoint rule for the flux (at the interfaces), Taylor expansion (on f±) and the
p.w. linear reconstruction of uj we get:

Um
j,i− :=Um

j,i + σj,i
∆x
2

, Um
j,i+ := Um

j,i+1−σj,i+1
∆x
2

,

1
∆x

(Fj )i+ 1
2
≈∆t

∆x

[
f +

(
Um

j,i−−
∆t
2

Df (Um
j,i−)σj,i

)
+

f−
(

Um
j,i+−

∆t
2

Df (Um
j,i+)σj,i+1

)]
,

where the flux is splitted as

f (u) = f +(u) + f−(u) :=
1
2

(f (u) + au) +
1
2

(f (u)−au) ,

with a = λmax. [A. Kurganov, E. Tadmor, 2000].
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Coupling

Step 4: Second order flow at boundary

We need to evaluate the flux at the boundary (Fj )− 1
2
. By (GC) and Step 2 of the

algorithm the characteristic speed of information is non-negative.

Using the midpoint rule:

(Fj )− 1
2

=
∫ tm+1

tm
f
(

uj

(
x− 1

2
,s
))

ds

≈
∫ tm+1

tm
f (vj (s))ds = ∆tf

(
vj

(
tm+ 1

2

))
+O

(
(∆t)3) .

Therefore, the boundary flux is given by

1
∆x

(Fj )− 1
2
≈ ∆t

∆x
f

(
vj +

∆t
2

v̇j

)
. (BF)
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Coupling

Step 5: Update

Evolve the dynamics according to equation (FVM) for i = 1, . . . , to obtain the new cell
averages at time tm+1 and proceed with STEP 1.
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Coupling

Calculate Step 2

• Using the p.w. linear reconstruction

uj

(
x− 1

2
, tm
)

= Um
j,0−

∆x
2

σj,0

to get second order accurate boundary values.

• We determine the vector s = (s1, . . . ,sn) ∈ Rn by solving the possibly nonlinear
equation:

Ψ

(
L2

(
Um

1,0−
∆x
2

σ1,0,s1

)
, . . . ,L2

(
Um

n,0−
∆x
2

σn,0,sn

))
= 0.

• Since we want Ψ to hold for t > tm we solve:

0 =
d
dt

Ψ(u1(t,0+), . . . ,un(t,0+))

=
n

∑
k=1

Duk Ψ(u1(t,0+), . . . ,un(t,0+))∂t uk (t,0+).
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Coupling

Lemma: Second order CC

Lemma:

Consider a single node with n connected arcs and let tm be some positive time. Let
Ψ ∈ C2(R2n;Rn) and let ûj := Um

j,0− ∆x
2 be such that condition (TC) holds true.

Then, for vj (t) as in the the previous construction, the coupling condition is satisfied up
to second order in time

Ψ(v1(t), . . . ,vn(t)) = O
(
(t− tm)2) .
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Coupling

Application: Gas Dynamics
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Coupling

Conservation Law + CC

• We will connect two arcs j = 1,2.

• We consider isothermal Euler equations, where the conservation law reads:

∂t

(
ρj

qj

)
+ ∂x

(
qj

a2ρj +
q2

j
ρj

)
= 0, a > 0

(
U =

(
ρ

q

))
.

• Ψ1(U1(t,0+),U2(t,0+)) = q1(t,0+) + q2(t,0+) and

• Ψ2(U1(t,0+),U2(t,0+)) =
(

a2ρ2(t,0+) +
q2

2 (t,0+)

ρ2(t,0+)

)
+
(

a2ρ1(t,0+) +
q2

1 (t,0+)

ρ1(t,0+)

)
.
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Coupling

Solving Step2

• For subsonical states Uj we have λ 1
j < 0 and λ 2

j > 0.

• For small t− tm we use the decomposition

Uj (tm,0+) = v1
j (t)r1

j (v(tm)) + v2
j (t)r2

j (v(tm)) = Rj

(
v1

j (t)
v2

j (t)

)
= RjVj (t).

• v i
j (t) = v i

j + (t− tm)v̇ i
j . We know v i

j from (GC) and v̇1
j .

• v̇1
j =−λ1∂x

(
R−1Uj (tm,0+)

)1
=−λ1

(
R−1

(
σ1

j,0
σ2

j,0

))1

.
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Coupling

Linearize of Influx: v̇2
j

• Linearize Ψ:

0 =
d
dt

Ψ(U1(tm,0+),U2(t,0+))

=
d
dt

Ψ(V1(t),V2(t)) |t=tm

=−
2

∑
j=1

DVj Ψ(V1(t),V2(t))Df (Vj )

(
v̇1

j
v̇2

j

)
.

• ⇒ v̇2
j ⇒ Vj (t) which we will use to calculate the fluxes at x = 0.
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Coupling

Plot Periodic vs. Coupled

• Initial data: ρ(x)0 = 0.1cos(x) + 1, q(x)0 = 0.05cos(x) + 2, final time T = 0.3.

• Plot of solutions Up (periodic) and Uc (coupled).
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Coupling

Table of Error

Nk L1 ρ L1 q Rate ρ Rate q
25 8.8259 7.1826 / /
26 10.4556 8.6067 1.6297 1.4242
27 12.1436 10.3566 1.6880 1.7499
28 13.8907 12.1301 1.7471 1.7735
29 15.6996 13.9506 1.8089 1.8205
210 17.5927 15.8745 1.8931 1.9239
211 19.5538 17.8503 1.9611 1.9758
212 21.5445 19.8373 1.9907 1.9870

Table: L1 convergence of the periodic boundary to the nodal coupled method.
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Coupling

Y-Junction: Setup

• Consider n = 3 (arcs); spatial domain x ∈ [0,2],

• Neumann boundary conditions (outflowing) at x = 2,

• Coupling conditions: Conservation of mass and conservation of flow (as in the
previous example),

• The initial data:
For the first arc, j = 1, we set

ρ1(x ,0) =

{
−x3 + 3

2 x2 + 1 x ∈ [0,1)
3
2 x ∈ [1,2]

and q1(x ,0) =

{
−x3 + 3

2 x2 x ∈ [0,1)
1
2 x ∈ [1,2]

.

For the second and the third arcs, j = 2,3, we set

qj (x ,0)≡ 0 and ρj (x ,0)≡ 1.

• We have: Ψ(U1(x ,0),U2(x ,0),U3(x ,0)) = (0,0,0)>.
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• Coupling conditions: Conservation of mass and conservation of flow (as in the
previous example),

• The initial data:
For the first arc, j = 1, we set

ρ1(x ,0) =

{
−x3 + 3

2 x2 + 1 x ∈ [0,1)
3
2 x ∈ [1,2]

and q1(x ,0) =

{
−x3 + 3

2 x2 x ∈ [0,1)
1
2 x ∈ [1,2]

.

For the second and the third arcs, j = 2,3, we set

qj (x ,0)≡ 0 and ρj (x ,0)≡ 1.

• We have: Ψ(U1(x ,0),U2(x ,0),U3(x ,0)) = (0,0,0)>.
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Coupling

Y-Junction: Plots ρ

Figure: Evolution of the density ρ . Arcs: � j = 1, ◦ j = 2, × j = 3.
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Coupling

Y-Junction: Plots q

Figure: Evolution of the flow q. Arcs: � j = 1, ◦ j = 2, × j = 3.
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