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—
Outline

e From Newtonian Mechanics to Boltzmann and Euler Equations

e Modeling Steel Rolling Processes by fluid-like Differential Equations

e Coupling Conditions by high-order Schemes
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Model Hierarchy: General

o We are interested in Agent or Particle based dynamics.

Kinetic
Equation

Fluid Dynamics

Particle Model
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e As an intermediate model we establish a Kinetic Model of such a process.
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Model Hierarchy: General

o We are interested in Agent or Particle based dynamics.
e As an intermediate model we establish a Kinetic Model of such a process.

e Finally, we go over to a Fluid Dynamics model to describe the macroscopic
behavior by rescaling the kinetic model.

Kinetic
Equation

Fluid Dynamics

Particle Model
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Model Hierarchy: Gas Dynamics

Classical Example: Gas dynamics.

Newtonian Boltzmann

Dynamic Equation

Euler
Equations
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Model Hierarchy: Gas Dynamics

Classical Example: Gas dynamics.

e Newtonian Dynamic: free float and Elastic Collision of Hard Spheres of N(€ N)
atoms.

Newtonian Boltzmann Euler

Dynamic Equation Equations
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Model Hierarchy: Gas Dynamics

Classical Example: Gas dynamics.

e Newtonian Dynamic: free float and Elastic Collision of Hard Spheres of N(€ N)
atoms.

e Boltzmann equation as an mesoscopic kinetic model (featuring a mean-field).

e Introducing Moments and taking a Hydrodynamic Limitto gain a fluid dynamics
model e.g. the Euler Equations of Gas Dynamics

Newtonian Boltzmann Euler

Dynamic Equation Equations
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Gas Dynamics: Pros and Cons of Model Level

e Newtonian dynamic is physically accurate but expansive to compute (N
extremely large).
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Gas Dynamics: Pros and Cons of Model Level

e Newtonian dynamic is physically accurate but expansive to compute (N
extremely large).

e Boltzmann equation can be discretized by less DoF (DoF<< N) but has a
seven dimensional input (in 3D: position+velocity+time)!
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Gas Dynamics: Pros and Cons of Model Level

e Newtonian dynamic is physically accurate but expansive to compute (N
extremely large).

e Boltzmann equation can be discretized by less DoF (DoF<< N) but has a
seven dimensional input (in 3D: position+velocity+time)!

e Euler equations describe larger space/time-scales with four dimensional
input but lose description of microscopic fluctuations as well as velocity
information.
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A Steel Rolling Process

Modeling Steel Rolling Processes by
fluid-like Differential Equations
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A Steel Rolling Process

o We model a single workpiece in a roll mill.
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A Steel Rolling Process

o We model a single workpiece in a roll mill.

e The model considers the temperature T and thickness g of the workpiece and
their evolution over time.
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A Steel Rolling Process

o We model a single workpiece in a roll mill.
e The model considers the temperature T and thickness g of the workpiece and
their evolution over time.

e We postulate a stochastic "transition" probability of the workpiece to either
undergo a deformation process or not (transport of it or change of milling rolls).
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Particle Dynamics 1

e Let 7 be a random processing time. We choose
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Particle Dynamics 1

e Let 7 be a random processing time. We choose

e |n case of an rolling event the thickness undergoes the deformation

9(t+1) = 9(t) - F(T(t),9(1), 7).
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Particle Dynamics 1

e Let 7 be a random processing time. We choose

e |n case of an rolling event the thickness undergoes the deformation

o(t+17) =g(t) — F(T(1),9(t), 7).
e Independent of the event (transport of rolling) we assume a temperature flux

T(t+7)=T(t) — 7 c(T(1)).
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Particle Dynamics 2
e We rescale the probability via

o(1)

%) = 1= 5 (s)ds

and consider a small time-step At > 0.
[M. Herty, C. Ringhofer, 2001].
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L el
Particle Dynamics 2

e We rescale the probability via
o(7)
(1) = =5 (s)ds

and consider a small time-step At > 0.
[M. Herty, C. Ringhofer, 2001].
e With probability w(t(t))At we have (rolling):
7(t+ At) =0,
o(t+At) = g(t) — F(T(1),9(1), ),
T(t+ At) =T(t) — Ate(T(1)),
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L el
Particle Dynamics 2

e We rescale the probability via

and consider a small time-step At > 0.
[M. Herty, C. Ringhofer, 2001].
e With probability w(t(t))At we have (rolling):
7(t+ At) =0,
o(t+At) = g(t) — F(T(1),9(1), ),
T(t+ At) =T(t) — Ate(T(1)),
@ And with probability 1 — w(t(t))At (no rolling):
T(t+ At) = 1(t) + At,
o(t+At) =g(1),
T(t+ At) =T(t) — Ate(T(1)).
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Transition Probability

e As the transition from state X = (7,9, T) to state X’ = (7/,¢’, T') in a time step
At we have:

P(X,X") =
(1—o(t)At)-8(t— (7' +At))-8(g—¢') - 6(T— (T — Ate(T'))
+o(7)At-8(1)-8(g— (9" — F(T',g', 7)) - 8(T— (T' — Ate(T'))).
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Transition Probability

e As the transition from state X = (7,9, T) to state X’ = (7/,¢’, T') in a time step

At we have:

P(X,X') =
(1-o(7)Al)-6(r— (' +At) - 8(g —g') - (T — (T' — Ate(T'))
+a(2)At-5(c)-8(g — (¢ — F(T. g/, 7)) 8(T— (T = Ate(T))).

e Hence, the probability f(t, X) (kinetic model) to be in state X at time ¢ evolves

according to

f(t+AtX) = /P(X,x’)f(t,x’)dx.
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Fluid-like Limit

For reasons of presentation we quickly list the involved steps:
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Fluid-like Limit

For reasons of presentation we quickly list the involved steps:

e Scaling frequency @ by @ = Aﬂt’
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Fluid-like Limit

For reasons of presentation we quickly list the involved steps:

o
At?

e Taylor expansion w.r.t. At and considering resulting first-order dynamics (see
Boltzmann limit),

e Scaling frequency @ by @ =

iopy, -
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Fluid-like Limit

For reasons of presentation we quickly list the involved steps:

o
At?

e Taylor expansion w.r.t. At and considering resulting first-order dynamics (see
Boltzmann limit),

e Scaling frequency @ by @ =

e Scaling 7 by £ and take € — 0 (see hydrodynamic limit).
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Fluid-like PDE

The resulting PDE reads

ff(t’g’T) :(1\)(0) [ag(FT(Tvgvo)f(t’g’T)) + C(T)fT(t’g’T)]
+f(t,9,T)(1+ &(0))(c(T) —1).
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Steel Rolling Model

Simulations

Initial Data
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Interpretation of Results

e As desired, the resulting dynamics recovers a reduction in thickness and
temperature of the initial workpieces,
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Interpretation of Results

e As desired, the resulting dynamics recovers a reduction in thickness and
temperature of the initial workpieces,

e Some realistic properties of the deformation: hotter particles deform quicker.
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Potential Applications

e A credible model would offer the opportunity to predict stochastic quantities of a
rolling process e.g. expectation value and variance of thickness,
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Potential Applications

e A credible model would offer the opportunity to predict stochastic quantities of a
rolling process e.g. expectation value and variance of thickness,

e This would enable the possibility to control the production precess (choice of
applied force),
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Potential Applications

e A credible model would offer the opportunity to predict stochastic quantities of a
rolling process e.g. expectation value and variance of thickness,

e This would enable the possibility to control the production precess (choice of
applied force),

e Desirable optimizations: Production time, minimizing variance (to name a few).
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Remaining Modeling Steps

To gain a credible model it remains:
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Remaining Modeling Steps

To gain a credible model it remains:
e Model o(-) after experimental data,
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Remaining Modeling Steps

To gain a credible model it remains:
e Model o(-) after experimental data,
e Implement a higher-order approximation to the temperature flux c(+),
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Remaining Modeling Steps

To gain a credible model it remains:
e Model o(-) after experimental data,
e Implement a higher-order approximation to the temperature flux c(+),
e Discriminate between temperature flux into air and into milling roll,
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Remaining Modeling Steps

To gain a credible model it remains:
e Model o(-) after experimental data,
Implement a higher-order approximation to the temperature flux c(-),

e Discriminate between temperature flux into air and into milling roll,

Introduce uncertainties! on each step (in the particle dynamics) according to
experimental data.
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Coupling

Coupling Conditions by high-order
Schemes
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Coupling

e We consider a model of flow on graphs.
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Coupling

e We consider a model of flow on graphs.
e A single vertex with n adjacent arcs (which we extend to infinity).
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Coupling

e We consider a model of flow on graphs.
e A single vertex with n adjacent arcs (which we extend to infinity).

e All arcs are parameterized by [0, ), such that the junction is located at x = 0 (for
all arcs).
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Coupling

We consider a model of flow on graphs.

A single vertex with n adjacent arcs (which we extend to infinity).

All arcs are parameterized by [0,0), such that the junction is located at x = 0 (for
all arcs).

o We assume the flux f(-) € €"*(R?,R?) and the u;(t,x) : Ry x R to be the
conserved statesonthearcs j=1,...,n
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Problem Setting

oruj+ dxf(uj)) =0, t>0,x >0, (PDE)
ui(0,x) = ujo(x), x>0,
W(uy(t,0+),...,un(t,0+)) =0, t >0, (CC)

where ¥ : R?" — R" is the (possilbly nonlinear!) coupling condition.
(PDE) are assumed to be strictly hyperbolic.

(Existence and uniqueness of solution in [R. M. Colombo, M. Herty, and V. Sachers,
2008].)
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Transversality condition

Let W fulfill the transversality condition

det| Dy (0)ra(Dn), ..., DV (D) r2(ln) | # 0,

where
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O
Transversality condition

Let W fulfill the transversality condition
det| Dy (0)ra(Dn), ..., DV (D) r2(ln) | # 0,

where
o DV(D) = £-W(D),
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O
Transversality condition

Let W fulfill the transversality condition
det| Dy (0)ra(Dn), ..., DV (D) r2(ln) | # 0,

where
o DV(0) = (,iu/w(a),
e 0 € R?"is a steady state solution to (PDE) (and W (&) = 0),
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O
Transversality condition

Let W fulfill the transversality condition
det D1\U(f1)r2(£/1),...,Dn\ll(ﬁ)rg(ﬁ,,) 750, (TC)

where
o DV(0) = aiu/w(a),
e 0 € R?"is a steady state solution to (PDE) (and W (&) = 0),

e Df({y) has a strictly negative 1'(2;) and a strictly positive eigenvalue A2({;) with
linearly independent (right) eigenvectors ry (&) and ra(Zj),
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Transversality condition

Let W fulfill the transversality condition
det D1\U(f1)r2(£/1),...,Dn\ll(ﬁ)rg(ﬁ,,) 750, (TC)

where
~ p) ~

o V(D) = £ V(D)

e 0 € R?"is a steady state solution to (PDE) (and W (&) = 0),

e Df({y) has a strictly negative 1'(2;) and a strictly positive eigenvalue A2({;) with
linearly independent (right) eigenvectors ry (&) and ra(Zj),

e Corresponding characteristic fields to be either genuine nonlinear or linearly
degenerate.
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Finite Volume

e The discretization for each u; (seperately) is done by a finite volume method,
where the cell average U’" of u; in cell i at time " is given by

j’,- = / ui(x,t"

l\)
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Finite Volume

e The discretization for each u; (seperately) is done by a finite volume method,
where the cell average U’" of u; in cell i at time " is given by

Ui = A/ ui(x, t")ax,

e lts evolution over At follows

l\)

1
Ut = Ul - o= ((F) gy~ (F)y)- (FVM)
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Finite Volume + Coupling

e The flux across the cell interfaces is given by

tm+1

(L%)H_%:/tm f(Uj<XH_1§,S))dS.
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Finite Volume + Coupling

e The flux across the cell interfaces is given by

"+%:/tm f(uj<xl.+1§,s))ds.

e We will use a second order approximation!

(7))
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Finite Volume + Coupling

e The flux across the cell interfaces is given by

(L%)H_%:/tm f(Uj<XH_1§,S))dS.

e We will use a second order approximation!
e By (CC) we get boundary conditions for (PDE) at x = 0!
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Finite Volume + Coupling

e The flux across the cell interfaces is given by

(‘%)H% = /rm f(uj (xl.+1§,s)) ds.
e We will use a second order approximation!

e By (CC) we get boundary conditions for (PDE) at x = 0!

e The cell average at the first cell i = 0 at time " is given by the states u/%,
j=1,...,n. We assume them to be sufficiently close to &j; such that (TC) holds.
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Characteristic Splitting

o Let s — % (uo,s) the k-th Lax curve through the state u, for Kk = 1,2.
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Characteristic Splitting

o Let s — % (uo,s) the k-th Lax curve through the state u, for Kk = 1,2.

e Wefind (s],...,s}) (e.g. using Newton's method) to solve

(e UTg, 1), Za(Ul,50)) 20

which exists and is unique due to (TC).
(This is zero order data only!)

Axel-Stefan Hack, M.Sc. (RWTH Aachen) 2017 December 21th 19/35



Coupling

Extend numerical Scheme to Boundary Values (in the Vertex).
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Step 0: First order data at x=0

We can now calculate the boundary cell value U™ at time t™*1 by (FVM) for i = 0 by
: 0
using

ULy =2 (Ub.s)- (GC)

(Hence, we obtain a first-order approximation to the coupling condition as well as to
the solution u;.)
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Step 1: Reconstruction

e Given the cell averages U]} we reconstruct a p.w. linear function u;(x, tm) and
each cell {x,._%,xpr%] .

(This is standard: MUSCL scheme.)
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Step 1: Reconstruction

e Given the cell averages U]} we reconstruct a p.w. linear function u;(x, tm) and
each cell {x,._%,x,,r%] .

(This is standard: MUSCL scheme.)

e In the first cell i = 0 the slope reconstruction will utilize the data gained in (GC) to
calculate oj .

We obtain a p.w. linear reconstruction
le(x,tm):Gj’,-(x—x,-)—i—le’g, X 1 <x<x,

where 0} ; is the vector of slopes.
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Step 1: Reconstruction

e Given the cell averages U]} we reconstruct a p.w. linear function u;(x, tm) and
each cell {x,._%,xH%] .

(This is standard: MUSCL scheme.)

e In the first cell i = 0 the slope reconstruction will utilize the data gained in (GC) to
calculate oj .

We obtain a p.w. linear reconstruction
lJ/(x,tm):G/’,-(x—x,-)—i—le’g, X 1 <x<x,

where 0} ; is the vector of slopes.

e This way we get distinct values at each interface (in the spatial domain, as well as
at the vertex) which we will denote by the values at x,+%¢.

Axel-Stefan Hack, M.Sc. (RWTH Aachen) 2017 December 21th 21/35



Step 2: Reconstruction at boundary

o Reconstruct for each arc j a piecewise linear function v;(t) for t7 < t < ™1 such
that

%\U(w(t),...,vn(t))h:tm —o.

Let the solution be (v1,..., ;).
(Solution exists due to (TC).)
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Step 2: Reconstruction at boundary

o Reconstruct for each arc j a piecewise linear function v;(t) for t7 < t < ™1 such
that

%W(w(t),...,vn(t))h:,m —o.

Let the solution be (v1,..., ;).
(Solution exists due to (TC).)

e First order data of v;(t) already gained by (GC).
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Step 3: Second order flow

Using the Midpoint rule for the flux (at the interfaces), Taylor expansion (on %) and the
p.w. linear reconstruction of u; we get:

Ax Ax
Ui+ i s Ul = Uy — 61 -

m .
U=

1 At At
APy~ |17 (u,"z SO o) +

_ At
f <U/n/7+ - 2Df(U/",7+)G/,i+1ﬂ )

I\)\

where the flux is splitted as

fu) =T (u)+F (u):= %(f(u) +au)+ % (f(u) —au),

with @ = Anmax. [A. Kurganov, E. Tadmor, 2000].
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Step 4: Second order flow at boundary

@ We need to evaluate the flux at the boundary (%)7%. By (GC) and Step 2 of the
algorithm the characteristic speed of information is non-negative.
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Step 4: Second order flow at boundary

@ We need to evaluate the flux at the boundary (%)7%. By (GC) and Step 2 of the
algorithm the characteristic speed of information is non-negative.
@ Using the midpoint rule:

(#)-y= |,
“ o

tm+1

f(u, <x7%7s)) ds

f(vi(s )ds_Atf( (t’"+ ))+ﬁ((At)3).

g1
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Coupling

Step 4: Second order flow at boundary

@ We need to evaluate the flux at the boundary (%)7%. By (GC) and Step 2 of the
algorithm the characteristic speed of information is non-negative.
@ Using the midpoint rule:

tm+1

(F)_ 1—/ f(u, <x7%7s))ds

N/[m+1 F(vi(s )ds_Atf( (t’"+ ))4-@’((&)3)-

@ Therefore, the boundary flux is given by
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Step 5: Update

Evolve the dynamics according to equation (FVM) for i =1,..., to obtain the new cell

averages at time t™*" and proceed with STEP 1.
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Calculate Step 2

e Using the p.w. linear reconstruction
Ax
uj (Xi%,tm) = U]% - Gj.0

to get second order accurate boundary values.
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Calculate Step 2

e Using the p.w. linear reconstruction

Ax
uj X1tm): 0 — —0j
]( 727 ],0 2 170

to get second order accurate boundary values.

e We determine the vector s = (s1,...,Ss) € R by solving the possibly nonlinear
equation:

Ax Ax
W(fz <U1"77026170,S1) ,...,f2< ,T0*7 n,07sn>) =0.
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Calculate Step 2

e Using the p.w. linear reconstruction

Ax
uj X1tm): 0 — —0j
]( 727 ],0 2 170

to get second order accurate boundary values.

e We determine the vector s = (s1,...,Ss) € R by solving the possibly nonlinear
equation:

Ax Ax
\U (gz <UT0 26170731) ,...,gz < r’,rjof 26,—;_]0,3,,)) :0

e Since we want W to hold for t > ™ we solve:

d
0= E\U(u1(t,0—|—), ooy un(t,04))
n

Dy W (ui(t,04),...,un(t,0+)) druk(t,0+).

k=1
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Lemma: Second order CC

Lemma:

Consider a single node with n connected arcs and let t™ be some positive time. Let
W € C*(R®"R") and let §; := Uy — £ be such that condition (TC) holds true.

Then, for v,-(t) as in the the previous construction, the coupling condition is satisfied up
to second order in time

W (vi(1),...,va(t)) = O ((t—t")?).
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Coupling

Application: Gas Dynamics
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Conservation Law + CC

e We will connect two arcs j = 1,2.
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Conservation Law + CC

e We will connect two arcs j = 1,2.
e We consider isothermal Euler equations, where the conservation law reads:

(2) 0 () =000 (v=(2)
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Conservation Law + CC

e We will connect two arcs j = 1,2.
e We consider isothermal Euler equations, where the conservation law reads:

(2) 0 () =000 (v=(2)

o W (Us(t,0+4), Us(t,0+)) = g1 (t,0+) + go(t,0+) and
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Conservation Law + CC

e We will connect two arcs j = 1,2.
e We consider isothermal Euler equations, where the conservation law reads:

(2) 0 () =000 (v=(2)

o W (Us(t,04), Ua(t,0+)) = g1(t,0+) + go(t,0+) and
o WR(UI(1,04), Ua(1,0+)) = (£pa(t,04) + EETT) + (£ (1,04) + LT ).
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Solving Step2

e For subsonical states U; we have A < 0and A? > 0.
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Solving Step2

e For subsonical states U; we have A < 0and A? > 0.
e For small t — t™ we use the decomposition

U(E™.04) = v (O (v(E™) 1+ v(D)2(v(t™) = A, ( !

28) = RVj().

<

=
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Solving Step2

e For subsonical states U; we have A < 0and A? > 0.
e For small t — t™ we use the decomposition

U(tm,0+) = \//1(t)r/1(V(fm))+ v/?(t)r/?(v(tm)) =R, <Z/2Eg> = R Vj(t).

j
o v/(t)=Vv/+(t—t™)V/. We know v/ from (GC) and v;'.
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Solving Step2

e For subsonical states U; we have A < 0and A? > 0.
e For small t — t™ we use the decomposition
v (1)
Gi(t™,0+) = v ()] (v(t™) + (P (v(t™) = Ry <vj?(t)> = RVj(1).

e v/(t) = v/ +(t—1t")¥. We know v/ from (GC) and /.

9 1
o ¥ =-Md (RTY(".04)) =~y ('w (g’é()» '
j,0
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Coupling

Linearize of Influx: \'/j2

e Linearize V:
d
0 =E\IJ(U1 (t™,04), Us(t,0+))

:%\U(W(t), Va(t)) [e=m

=— ; Dy W (Vi (t), Va(t))DF(V)) <2> .

So=~
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Coupling

Linearize of Influx: \'/j2

e Linearize V:
d
O:E\II(U1(t’",O+),U2(t,O+))
d
=—W(V(t), Vo(t _m
p (Vi (1), Va(1)) | e=t

= X D v (0. ve)or() (2.

Yj
e = ¥? = Vj(t) which we will use to calculate the fluxes at x = 0.
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Plot Periodic vs. Coupled

o Initial data: p(x)o = 0.1cos(x) + 1, g(x)o = 0.05cos(x) + 2, final time T = 0.3.

—periodic
Sse. © nodal ||

=
=]
5l

Density rho
o

©

& e

°
o

—periodic
21 #9750 nodal |

Flow q
~
T
I
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Coupling

Plot Periodic vs. Coupled

o Initial data: p(x)o = 0.1cos(x) + 1, g(x)o = 0.05cos(x) + 2, final time T = 0.3.
e Plot of solutions U, (periodic) and U, (coupled).

11 P ——
- —periodic
2105 “Sse. © nodal |
=
2 1
@
c
Ro.9s
0.9
7
X
2.2
—periodic
eo99Se o nodal |
- v
2 i
o
i
18 I ! |
0 1 2 3 4 5 6 7
X
igpm) ... "TH

31/35
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Coupling

Table of Error

Ni L"p L"q || Rate p | Rate q
25 8.8259 | 7.1826 / /

26 || 10.4556 | 8.6067 || 1.6297 | 1.4242
27 || 12.1436 | 10.3566 || 1.6880 | 1.7499
28 || 13.8907 | 12.1301 || 1.7471 | 1.7735
2% || 15.6996 | 13.9506 || 1.8089 | 1.8205
210 || 17,5927 | 15.8745 || 1.8931 | 1.9239
2" || 19.5538 | 17.8503 || 1.9611 | 1.9758
22 || 21.5445 | 19.8373 || 1.9907 | 1.9870

Table: L' convergence of the periodic boundary to the nodal coupled method.
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Y-dunction: Setup

e Consider n = 3 (arcs); spatial domain x € [0,2],
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Y-dunction: Setup

e Consider n = 3 (arcs); spatial domain x € [0,2],
e Neumann boundary conditions (outflowing) at x = 2,
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Y-dunction: Setup

e Consider n = 3 (arcs); spatial domain x € [0,2],
e Neumann boundary conditions (outflowing) at x = 2,

e Coupling conditions: Conservation of mass and conservation of flow (as in the
previous example),
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Y-dunction: Setup

e Consider n = 3 (arcs); spatial domain x € [0,2],
e Neumann boundary conditions (outflowing) at x = 2,

e Coupling conditions: Conservation of mass and conservation of flow (as in the
previous example),

e The initial data:
For the first arc, j = 1, we set

X+ 32 +1 xelo,1) —x*+35x* x€[0,1)

p1(x,0):{g xelt 2] andCﬁ(X,O):{12 xel2’

For the second and the third arcs, j = 2,3, we set

qi(x,0) =0 and p;(x,0) =1.
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Y-dunction: Setup

e Consider n = 3 (arcs); spatial domain x € [0,2],
e Neumann boundary conditions (outflowing) at x = 2,

e Coupling conditions: Conservation of mass and conservation of flow (as in the
previous example),

e The initial data:
For the first arc, j = 1, we set

-x3+3x2+1 x€l0,1) -x3+3x% xel0,1)

p1(x,0):{g xelt 2] andCﬁ(X,O):{12 xel2’

For the second and the third arcs, j = 2,3, we set
qi(x,0) =0 and p;(x,0) =1.

e We have: W(U;(x,0), Us(x,0), Us(x,0)) = (0,0,0)".
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Y-Junction: Plots p

Density rho

Density rho

Figure: Evolution of the density p.

RWTH Aachen)

Density rho

Density rho

Arcs:oj=1,0j=2, x j=3.

igpmy,..
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Coupling

Y-dunction: Plots g

t=0.1

Flow q

Figure: Evolution of the flow q. Arcs: ¢ j=1,0j=2, X j=3.
igpy,
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