Kinetic and Hyperbolic Equations with Applications to Engineering Processes

Axel-Stefan Häck, M.Sc.
IGPM — RWTH Aachen University

Talk in "Research Modelling Seminar"

UNIVERSITÀ di VERONA
Diporifiention
diNformatca

Outline

(1) From Newtonian Mechanics to Boltzmann and Euler Equations
(2) Modeling Steel Rolling Processes by fluid-like Differential Equations
(3) Coupling Conditions by high-order Schemes

Model Hierarchy: General

- We are interested in Agent or Particle based dynamics.
- As an intermediate model we establish a Kinetic Model of such a process.
- Finally, we go over to a Fluid Dynamics model to describe the macroscopic behavior by rescaling the kinetic model.

Model Hierarchy: General

- We are interested in Agent or Particle based dynamics.
- As an intermediate model we establish a Kinetic Model of such a process.
- Finally, we go over to a Fluid Dynamics model to describe the macroscopic behavior by rescaling the kinetic model.

Model Hierarchy: General

- We are interested in Agent or Particle based dynamics.
- As an intermediate model we establish a Kinetic Model of such a process.
- Finally, we go over to a Fluid Dynamics model to describe the macroscopic behavior by rescaling the kinetic model.

Model Hierarchy: Gas Dynamics

Classical Example: Gas dynamics.

- Newtonian Dynamic: free float and Elastic Collision of Hard Spheres of $N(\in \mathbb{N})$ atoms.
- Boltzmann equation as an mesoscopic kinetic model (featuring a mean-field).
- Introducing Moments and taking a Hydrodynamic Limit to gain a fluid dynamics model e.g. the Euler Equations of Gas Dynamics

igpm $=1$

Model Hierarchy: Gas Dynamics

Classical Example: Gas dynamics.

- Newtonian Dynamic: free float and Elastic Collision of Hard Spheres of $N(\in \mathbb{N})$ atoms.
- Boltzmann equation as an mesoscopic kinetic model (featuring a mean-field).
- Introducing Moments and taking a Hydrodynamic Limit to gain a fluid dynamics model e.g. the Euler Equations of Gas Dynamics

$$
\text { igpm } /=\text { RWIHMCHEN }
$$

Model Hierarchy: Gas Dynamics

Classical Example: Gas dynamics.

- Newtonian Dynamic: free float and Elastic Collision of Hard Spheres of $N(\in \mathbb{N})$ atoms.
- Boltzmann equation as an mesoscopic kinetic model (featuring a mean-field).
- Introducing Moments and taking a Hydrodynamic Limit to gain a fluid dynamics model e.g. the Euler Equations of Gas Dynamics

$$
\text { igpm } h=1 \text { RWIHMCHENTN }
$$

Model Hierarchy: Gas Dynamics

Classical Example: Gas dynamics.

- Newtonian Dynamic: free float and Elastic Collision of Hard Spheres of $N(\in \mathbb{N})$ atoms.
- Boltzmann equation as an mesoscopic kinetic model (featuring a mean-field).
- Introducing Moments and taking a Hydrodynamic Limit to gain a fluid dynamics model e.g. the Euler Equations of Gas Dynamics

Gas Dynamics: Pros and Cons of Model Level

- Newtonian dynamic is physically accurate but expansive to compute (N extremely large).
- Boltzmann equation can be discretized by less DoF (DoF $\ll N$) but has a seven dimensional input (in 3D: position+velocity+time)!
- Fuler equations describe larger snace/time-scales with four dimensional input but lose description of microscopic fluctuations as well as velocity information.

Gas Dynamics: Pros and Cons of Model Level

- Newtonian dynamic is physically accurate but expansive to compute (N extremely large).
- Boltzmann equation can be discretized by less DoF (DoF $\ll N$) but has a seven dimensional input (in 3D: position+velocity+time)!
- Euler equations describe larger space/time-scales with four dimensional input but lose description of microscopic fluctuations as well as velocity information.

Gas Dynamics: Pros and Cons of Model Level

- Newtonian dynamic is physically accurate but expansive to compute (N extremely large).
- Boltzmann equation can be discretized by less DoF (DoF $\ll N$) but has a seven dimensional input (in 3D: position+velocity+time)!
- Euler equations describe larger space/time-scales with four dimensional input but lose description of microscopic fluctuations as well as velocity information.

A Steel Rolling Process

Modeling Steel Rolling Processes by fluid-like Differential Equations

A Steel Rolling Process

- We model a single workpiece in a roll mill.
- The model considers the temperature T and thickness g of the workpiece and their evolution over time.
- We nostulate a stochastic "transition" probability of the workpiece to either undergo a deformation process or not (transport of it or change of milling rolls).

A Steel Rolling Process

- We model a single workpiece in a roll mill.
- The model considers the temperature \mathbf{T} and thickness \mathbf{g} of the workpiece and their evolution over time.
- We postulate a stochastic "transition" probability of the workpiece to either undergo a deformation process or not (transport of it or change of milling rolls).

A Steel Rolling Process

- We model a single workpiece in a roll mill.
- The model considers the temperature \mathbf{T} and thickness \mathbf{g} of the workpiece and their evolution over time.
- We postulate a stochastic "transition" probability of the workpiece to either undergo a deformation process or not (transport of it or change of milling rolls).

Particle Dynamics 1

- Let τ be a random processing time. We choose

$$
P(\tau=s)=\Phi(s)
$$

- In case of an rolling event the thickness undergoes the deformation

$$
\mathbf{g}(t+\tau)=\mathbf{g}(t)-F(\mathbf{T}(t), \mathbf{g}(t), \tau)
$$

- Independent of the event (transport of rolling) we assume a temperature flux

$$
T(t+\tau)=T(t)-\tau c(T(t)) .
$$

Particle Dynamics 1

- Let τ be a random processing time. We choose

$$
P(\tau=s)=\Phi(s) .
$$

- In case of an rolling event the thickness undergoes the deformation

$$
\mathbf{g}(t+\tau)=\mathbf{g}(t)-F(\mathbf{T}(t), \mathbf{g}(t), \tau)
$$

- Independent of the event (transport of rolling) we assume a temperature flux

$$
\mathbf{T}(t+\tau)=\mathbf{T}(t)-\tau c(\mathbf{T}(t)) .
$$

Particle Dynamics 1

- Let τ be a random processing time. We choose

$$
P(\tau=s)=\Phi(s) .
$$

- In case of an rolling event the thickness undergoes the deformation

$$
\mathbf{g}(t+\tau)=\mathbf{g}(t)-F(\mathbf{T}(t), \mathbf{g}(t), \tau)
$$

- Independent of the event (transport of rolling) we assume a temperature flux

$$
\mathbf{T}(t+\tau)=\mathbf{T}(t)-\tau c(\mathbf{T}(t))
$$

Particle Dynamics 2

- We rescale the probability via

$$
\omega(\tau)=\frac{\Phi(\tau)}{\int_{\tau}^{\infty} \Phi(s) d s}
$$

and consider a small time-step $\Delta t>0$.
[M. Herty, C. Ringhofer, 2001].

- With probability $\omega(\tau(t)) \Delta t$ we have (rolling):

- And with probability $1-\omega(\tau(t)) \Delta t$ (no rolling):

Particle Dynamics 2

- We rescale the probability via

$$
\omega(\tau)=\frac{\Phi(\tau)}{\int_{\tau}^{\infty} \Phi(s) d s}
$$

and consider a small time-step $\Delta t>0$.
[M. Herty, C. Ringhofer, 2001].

- With probability $\omega(\tau(t)) \Delta t$ we have (rolling):

$$
\begin{aligned}
\tau(t+\Delta t) & =0, \\
\mathbf{g}(t+\Delta t) & =\mathbf{g}(t)-F(\mathbf{T}(t), \mathbf{g}(t), \tau), \\
\mathbf{T}(t+\Delta t) & =\mathbf{T}(t)-\Delta t c(\mathbf{T}(t)),
\end{aligned}
$$

- And with probability $1-\omega(\tau(t)) \Delta t$ (no rolling):

Particle Dynamics 2

- We rescale the probability via

$$
\omega(\tau)=\frac{\Phi(\tau)}{\int_{\tau}^{\infty} \Phi(s) d s}
$$

and consider a small time-step $\Delta t>0$.
[M. Herty, C. Ringhofer, 2001].

- With probability $\omega(\tau(t)) \Delta t$ we have (rolling):

$$
\begin{aligned}
\tau(t+\Delta t) & =0, \\
\mathbf{g}(t+\Delta t) & =\mathbf{g}(t)-F(\mathbf{T}(t), \mathbf{g}(t), \tau), \\
\mathbf{T}(t+\Delta t) & =\mathbf{T}(t)-\Delta t c(\mathbf{T}(t)),
\end{aligned}
$$

- And with probability $1-\omega(\tau(t)) \Delta t$ (no rolling):

$$
\begin{aligned}
\tau(t+\Delta t) & =\tau(t)+\Delta t, \\
\mathbf{g}(t+\Delta t) & =\mathbf{g}(t), \\
\mathbf{T}(t+\Delta t) & =\mathbf{T}(t)-\Delta t c(\mathbf{T}(t)) .
\end{aligned}
$$

Transition Probability

- As the transition from state $X=(\tau, \mathbf{g}, \mathbf{T})$ to state $X^{\prime}=\left(\tau^{\prime}, \mathbf{g}^{\prime}, \mathbf{T}^{\prime}\right)$ in a time step Δt we have:

$$
\begin{aligned}
& P\left(X, X^{\prime}\right)= \\
& \left(1-\omega\left(\tau^{\prime}\right) \Delta t\right) \cdot \delta\left(\tau-\left(\tau^{\prime}+\Delta t\right)\right) \cdot \delta\left(\mathbf{g}-\mathbf{g}^{\prime}\right) \cdot \delta\left(\mathbf{T}-\left(\mathbf{T}^{\prime}-\Delta t c\left(\mathbf{T}^{\prime}\right)\right)\right. \\
& +\omega\left(\tau^{\prime}\right) \Delta t \cdot \delta(\tau) \cdot \delta\left(\mathbf{g}-\left(\mathbf{g}^{\prime}-F\left(\mathbf{T}^{\prime}, \mathbf{g}^{\prime}, \tau^{\prime}\right)\right) \cdot \delta\left(\mathbf{T}-\left(\mathbf{T}^{\prime}-\Delta t c\left(\mathbf{T}^{\prime}\right)\right)\right) .\right.
\end{aligned}
$$

- Hence, the probability $f(t, X)$ (kinetic model) to be in state X at time t evolves according to

$$
f(t+\Delta t, X)=\int P\left(X, X^{\prime}\right) f\left(t, X^{\prime}\right) d X
$$

```
igpm\=_ RNTHMCHEN
```


Transition Probability

- As the transition from state $X=(\tau, \mathbf{g}, \mathbf{T})$ to state $X^{\prime}=\left(\tau^{\prime}, \mathbf{g}^{\prime}, \mathbf{T}^{\prime}\right)$ in a time step Δt we have:

$$
\begin{aligned}
& P\left(X, X^{\prime}\right)= \\
& \left(1-\omega\left(\tau^{\prime}\right) \Delta t\right) \cdot \delta\left(\tau-\left(\tau^{\prime}+\Delta t\right)\right) \cdot \delta\left(\mathbf{g}-\mathbf{g}^{\prime}\right) \cdot \delta\left(\mathbf{T}-\left(\mathbf{T}^{\prime}-\Delta t c\left(\mathbf{T}^{\prime}\right)\right)\right. \\
& +\omega\left(\tau^{\prime}\right) \Delta t \cdot \delta(\tau) \cdot \delta\left(\mathbf{g}-\left(\mathbf{g}^{\prime}-F\left(\mathbf{T}^{\prime}, \mathbf{g}^{\prime}, \tau^{\prime}\right)\right) \cdot \delta\left(\mathbf{T}-\left(\mathbf{T}^{\prime}-\Delta t c\left(\mathbf{T}^{\prime}\right)\right)\right) .\right.
\end{aligned}
$$

- Hence, the probability $f(t, X)$ (kinetic model) to be in state X at time t evolves according to

$$
f(t+\Delta t, X)=\int P\left(X, X^{\prime}\right) f\left(t, X^{\prime}\right) d X
$$

Fluid-like Limit

For reasons of presentation we quickly list the involved steps:

- Scaling frequency ω by $\hat{\omega}=\frac{\omega}{\Delta t}$,
- Taylor expansion w.r.t. Δt and considering resulting first-order dynamics (see Boltzmann limit),
- Scaling τ by $\frac{\tau}{\varepsilon}$ and take $\varepsilon \rightarrow 0$ (see hydrodynamic limit).

Fluid-like Limit

For reasons of presentation we quickly list the involved steps:

- Scaling frequency ω by $\hat{\omega}=\frac{\omega}{\Delta t}$,
- Taylor expansion w.r.t. Δt and considering resulting first-order dynamics (see Boltzmann limit),
- Scaling τ by $\frac{\tau}{\square}$ and take $\varepsilon \rightarrow 0$ (see hydrodynamic limit).

Fluid-like Limit

For reasons of presentation we quickly list the involved steps:

- Scaling frequency ω by $\hat{\omega}=\frac{\omega}{\Delta t}$,
- Taylor expansion w.r.t. Δt and considering resulting first-order dynamics (see Boltzmann limit),
- Scaling τ by $\frac{\tau}{\varepsilon}$ and take $\varepsilon \rightarrow 0$ (see hydrodynamic limit).

Fluid-like Limit

For reasons of presentation we quickly list the involved steps:

- Scaling frequency ω by $\hat{\omega}=\frac{\omega}{\Delta t}$,
- Taylor expansion w.r.t. Δt and considering resulting first-order dynamics (see Boltzmann limit),
- Scaling τ by $\frac{\tau}{\varepsilon}$ and take $\varepsilon \rightarrow 0$ (see hydrodynamic limit).

Fluid-like PDE

The resulting PDE reads

$$
\begin{aligned}
f_{t}(t, \mathbf{g}, \mathbf{T})= & \hat{\omega}(0)\left[\partial_{\mathbf{g}}\left(F_{\tau}(\mathbf{T}, \mathbf{g}, 0) f(t, \mathbf{g}, \mathbf{T})\right)+c(\mathbf{T}) f_{\mathbf{T}}(t, \mathbf{g}, \mathbf{T})\right] \\
& +f(t, \mathbf{g}, \mathbf{T})(1+\hat{\omega}(0))(c(\mathbf{T})-1) .
\end{aligned}
$$

Simulations

igpm/ nomen
RWTHAA

Interpretation of Results

- As desired, the resulting dynamics recovers a reduction in thickness and temperature of the initial workpieces,
- Some realistic properties of the deformation: hotter particles deform quicker.

Interpretation of Results

- As desired, the resulting dynamics recovers a reduction in thickness and temperature of the initial workpieces,
- Some realistic properties of the deformation: hotter particles deform quicker.

Potential Applications

- A credible model would offer the opportunity to predict stochastic quantities of a rolling process e.g. expectation value and variance of thickness,
- This would enable the possibility to control the production precess (choice of applied force),
- Desirable optimizations: Production time, minimizing variance (to name a few),

Potential Applications

- A credible model would offer the opportunity to predict stochastic quantities of a rolling process e.g. expectation value and variance of thickness,
- This would enable the possibility to control the production precess (choice of applied force),
- Desirable optimizations: Production time, minimizing variance (to name a few)

Potential Applications

- A credible model would offer the opportunity to predict stochastic quantities of a rolling process e.g. expectation value and variance of thickness,
- This would enable the possibility to control the production precess (choice of applied force),
- Desirable optimizations: Production time, minimizing variance (to name a few).

Remaining Modeling Steps

To gain a credible model it remains:

- Model $\omega(\cdot)$ after experimental data,
- Implement a higher-order approximation to the temperature flux $c(\cdot)$,
- Discriminate between temperature flux into air and into milling roll,
- Introduce uncertainties! on each step (in the particle dynamics) according to experimental data.

Remaining Modeling Steps

To gain a credible model it remains:

- Model $\omega(\cdot)$ after experimental data,
- Implement a higher-order approximation to the temperature flux $c(\cdot)$,
- Discriminate between temperature flux into air and into milling roll,
- Introduce uncertainties! on each step (in the particle dynamics) according to experimental data.

Remaining Modeling Steps

To gain a credible model it remains:

- Model $\omega(\cdot)$ after experimental data,
- Implement a higher-order approximation to the temperature flux $c(\cdot)$,
- Discriminate between temperature flux into air and into milling roll,
- Introduce uncertainties! on each step (in the particle dynamics) according to experimental data.

Remaining Modeling Steps

To gain a credible model it remains:

- Model $\omega(\cdot)$ after experimental data,
- Implement a higher-order approximation to the temperature flux $c(\cdot)$,
- Discriminate between temperature flux into air and into milling roll,
- Introduce uncertainties! on each step (in the particle dynamics) according to experimental data.

Remaining Modeling Steps

To gain a credible model it remains:

- Model $\omega(\cdot)$ after experimental data,
- Implement a higher-order approximation to the temperature flux $c(\cdot)$,
- Discriminate between temperature flux into air and into milling roll,
- Introduce uncertainties! on each step (in the particle dynamics) according to experimental data.

Coupling

Coupling Conditions by high-order Schemes

- We consider a model of flow on graphs.
- A single vertex with n adjacent arcs (which we extend to infinity).
- All arcs are parameterized by $[0, \infty)$, such that the junction is located at $x=0$ (for all arcs).
- We assume the flux $f(\cdot) \in \mathscr{C}^{4}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ and the $u_{j}(t, x): \mathbb{R}_{0}^{+} \times \mathbb{R}_{0}^{+}$to be the conserved states on the arcs $j=1, \ldots, n$
- We consider a model of flow on graphs.
- A single vertex with n adjacent arcs (which we extend to infinity).
- All arcs are parameterized by $[0, \infty)$, such that the junction is located at $x=0$ (for all arcs).
- We assume the flux $f(\cdot) \in \mathscr{C}^{4}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ and the $u_{j}(t, x): \mathbb{R}_{0}^{+} \times \mathbb{R}_{0}^{+}$to be the conserved states on the arcs $j=1, \ldots, n$
- We consider a model of flow on graphs.
- A single vertex with n adjacent arcs (which we extend to infinity).
- All arcs are parameterized by $[0, \infty)$, such that the junction is located at $x=0$ (for all arcs).
- We assume the flux $f(\cdot) \in \mathscr{C}^{4}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ and the $u_{j}(t, x): \mathbb{R}_{0}^{+} \times \mathbb{R}_{0}^{+}$to be the conserved states on the arcs $j=1, \ldots, n$
- We consider a model of flow on graphs.
- A single vertex with n adjacent arcs (which we extend to infinity).
- All arcs are parameterized by $[0, \infty)$, such that the junction is located at $x=0$ (for all arcs).
- We assume the flux $f(\cdot) \in \mathscr{C}^{4}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ and the $u_{j}(t, x): \mathbb{R}_{0}^{+} \times \mathbb{R}_{0}^{+}$to be the conserved states on the $\operatorname{arcs} j=1, \ldots, n$

Problem Setting

$$
\begin{align*}
\partial_{t} u_{j}+\partial_{x} f\left(u_{j}\right) & =0, t \geq 0, x \geq 0, \tag{PDE}\\
u_{j}(0, x) & =u_{j, o}(x), x \geq 0, \\
\Psi\left(u_{1}(t, 0+), \ldots, u_{n}(t, 0+)\right) & =0, t \geq 0, \tag{CC}
\end{align*}
$$

where $\psi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{n}$ is the (possilbly nonlinear!) coupling condition.
(PDE) are assumed to be strictly hyperbolic.
(Existence and uniqueness of solution in [R. M. Colombo, M. Herty, and V. Sachers, 2008].)

Transversality condition

Let Ψ fulfill the transversality condition

$$
\begin{equation*}
\operatorname{det}\left[D_{1} \Psi(\hat{u}) r_{2}\left(\hat{u}_{1}\right), \ldots, D_{n} \Psi(\hat{u}) r_{2}\left(\hat{u}_{n}\right)\right] \neq 0, \tag{TC}
\end{equation*}
$$

where

- $D_{j} \Psi(\hat{u})=\frac{\partial}{\partial \omega_{j}} \Psi(\hat{u})$,
- $\hat{u} \in \mathbb{R}^{2 n}$ is a steady state solution to (PDE) (and $\Psi(\hat{u})=0$),
- $\operatorname{Df}\left(\hat{u}_{j}\right)$ has a strictly negative $\lambda^{1}\left(\hat{u}_{j}\right)$ and a strictly positive eigenvalue $\lambda^{2}\left(\hat{u}_{j}\right)$ with linearly independent (right) eigenvectors $r_{1}\left(\hat{u}_{j}\right)$ and $r_{2}\left(\hat{u}_{j}\right)$,
- Corresponding characteristic fields to be either genuine nonlinear or linearly degenerate.

$$
\text { igpm } h=
$$

Transversality condition

Let Ψ fulfill the transversality condition

$$
\begin{equation*}
\operatorname{det}\left[D_{1} \Psi(\hat{u}) r_{2}\left(\hat{u}_{1}\right), \ldots, D_{n} \Psi(\hat{u}) r_{2}\left(\hat{u}_{n}\right)\right] \neq 0 \tag{TC}
\end{equation*}
$$

where

- $D_{j} \Psi(\hat{u})=\frac{\partial}{\partial u_{j}} \Psi(\hat{u})$,
- $\hat{u} \in \mathbb{R}^{2 n}$ is a steady state solution to (PDE) (and $\Psi(\hat{u})=0$),
- $\operatorname{Df}\left(\hat{u}_{j}\right)$ has a strictly negative $\lambda^{1}\left(\hat{u}_{j}\right)$ and a strictly positive eigenvalue $\lambda^{2}\left(\hat{u}_{j}\right)$ with linearly independent (right) eigenvectors $r_{1}\left(\hat{u}_{j}\right)$ and $r_{2}\left(\hat{u}_{j}\right)$,
- Corresponding characteristic fields to be either genuine nonlinear or linearly degenerate.

Transversality condition

Let Ψ fulfill the transversality condition

$$
\begin{equation*}
\operatorname{det}\left[D_{1} \Psi(\hat{u}) r_{2}\left(\hat{u}_{1}\right), \ldots, D_{n} \Psi(\hat{u}) r_{2}\left(\hat{u}_{n}\right)\right] \neq 0, \tag{TC}
\end{equation*}
$$

where

- $D_{j} \Psi(\hat{u})=\frac{\partial}{\partial u_{j}} \Psi(\hat{u})$,
- $\hat{u} \in \mathbb{R}^{2 n}$ is a steady state solution to (PDE) (and $\Psi(\hat{u})=0$),
- Df($\left.\hat{u}_{j}\right)$ has a strictly negative $\lambda^{1}\left(\hat{u}_{j}\right)$ and a strictly positive eigenvalue $\lambda^{2}\left(\hat{u}_{j}\right)$ with linearly independent (right) eigenvectors $r_{1}\left(\hat{u}_{j}\right)$ and $r_{2}\left(\hat{u}_{j}\right)$,
- Corresponding characteristic fields to be either genuine nonlinear or linearly degenerate.

Transversality condition

Let Ψ fulfill the transversality condition

$$
\begin{equation*}
\operatorname{det}\left[D_{1} \Psi(\hat{u}) r_{2}\left(\hat{u}_{1}\right), \ldots, D_{n} \Psi(\hat{u}) r_{2}\left(\hat{u}_{n}\right)\right] \neq 0, \tag{TC}
\end{equation*}
$$

where

- $D_{j} \Psi(\hat{u})=\frac{\partial}{\partial u_{j}} \Psi(\hat{u})$,
- $\hat{u} \in \mathbb{R}^{2 n}$ is a steady state solution to (PDE) (and $\Psi(\hat{u})=0$),
- $\operatorname{Df}\left(\hat{u}_{j}\right)$ has a strictly negative $\lambda^{1}\left(\hat{u}_{j}\right)$ and a strictly positive eigenvalue $\lambda^{2}\left(\hat{u}_{j}\right)$ with linearly independent (right) eigenvectors $r_{1}\left(\hat{u}_{j}\right)$ and $r_{2}\left(\hat{u}_{j}\right)$,
- Corresponding characteristic fields to be either genuine nonlinear or linearly degenerate.

Transversality condition

Let Ψ fulfill the transversality condition

$$
\begin{equation*}
\operatorname{det}\left[D_{1} \Psi(\hat{u}) r_{2}\left(\hat{u}_{1}\right), \ldots, D_{n} \Psi(\hat{u}) r_{2}\left(\hat{u}_{n}\right)\right] \neq 0, \tag{TC}
\end{equation*}
$$

where

- $D_{j} \Psi(\hat{u})=\frac{\partial}{\partial u_{j}} \Psi(\hat{u})$,
- $\hat{u} \in \mathbb{R}^{2 n}$ is a steady state solution to (PDE) (and $\Psi(\hat{u})=0$),
- $\operatorname{Df}\left(\hat{u}_{j}\right)$ has a strictly negative $\lambda^{1}\left(\hat{u}_{j}\right)$ and a strictly positive eigenvalue $\lambda^{2}\left(\hat{u}_{j}\right)$ with linearly independent (right) eigenvectors $r_{1}\left(\hat{u}_{j}\right)$ and $r_{2}\left(\hat{u}_{j}\right)$,
- Corresponding characteristic fields to be either genuine nonlinear or linearly degenerate.

Finite Volume

- The discretization for each u_{i} (seperately) is done by a finite volume method, where the cell average $U_{i, j}^{m}$ of u_{j} in cell i at time t^{m} is given by

$$
u_{j, i}^{m}:=\frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} u_{j}\left(x, t^{m}\right) d x,
$$

- Its evolution over Δt follows

Finite Volume

- The discretization for each u_{i} (seperately) is done by a finite volume method, where the cell average $U_{i, j}^{m}$ of u_{j} in cell i at time t^{m} is given by

$$
u_{j, i}^{m}:=\frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} u_{j}\left(x, t^{m}\right) d x,
$$

- Its evolution over Δt follows

$$
\begin{equation*}
U_{j, i}^{m+1}=U_{j, i}^{m}-\frac{1}{\Delta x}\left(\left(\mathscr{F}_{j}\right)_{i+\frac{1}{2}}-\left(\mathscr{F}_{j}\right)_{i-\frac{1}{2}}\right) . \tag{FVM}
\end{equation*}
$$

Finite Volume + Coupling

- The flux across the cell interfaces is given by

$$
\left(\mathscr{F}_{j}\right)_{i+\frac{1}{2}}=\int_{t^{m}}^{t^{m+1}} f\left(u_{j}\left(x_{i+\frac{1}{2}}, s\right)\right) d s .
$$

- We will use a second order approximation!
- By (CC) we get boundary conditions for (PDE) at $x=0$!
- The cell average at the first cell $i=0$ at time t^{m} is given by the states u_{i}^{m}, $j=1, \ldots, n$. We assume them to be sufficiently close to \hat{u}_{j} such that (TC) holds.

Finite Volume + Coupling

- The flux across the cell interfaces is given by

$$
\left(\mathscr{F}_{j}\right)_{i+\frac{1}{2}}=\int_{t^{m}}^{t^{m+1}} f\left(u_{j}\left(x_{i+\frac{1}{2}}, s\right)\right) d s .
$$

- We will use a second order approximation!
- By (CC) we get boundary conditions for (PDE) at $x=0$!
- The cell average at the first cell $i=0$ at time t^{m} is given by the states $u_{j, 0}^{m}$, $j=1, \ldots, n$. We assume them to be sufficiently close to \hat{u}_{j} such that (TC) holds.

Finite Volume + Coupling

- The flux across the cell interfaces is given by

$$
\left(\mathscr{F}_{j}\right)_{i+\frac{1}{2}}=\int_{t^{m}}^{t^{m+1}} f\left(u_{j}\left(x_{i+\frac{1}{2}}, s\right)\right) d s .
$$

- We will use a second order approximation!
- By (CC) we get boundary conditions for (PDE) at $x=0$!
- The cell average at the first cell $i=0$ at time t^{m} is given by the states $u_{j, 0}^{m}$, $j=1, \ldots, n$. We assume them to be sufficiently close to \hat{u}_{j} such that (TC) holds.

Finite Volume + Coupling

- The flux across the cell interfaces is given by

$$
\left(\mathscr{F}_{j}\right)_{i+\frac{1}{2}}=\int_{t^{m}}^{t^{m+1}} f\left(u_{j}\left(x_{i+\frac{1}{2}}, s\right)\right) d s .
$$

- We will use a second order approximation!
- By (CC) we get boundary conditions for (PDE) at $x=0$!
- The cell average at the first cell $i=0$ at time t^{m} is given by the states $u_{j, 0}^{m}$, $j=1, \ldots, n$. We assume them to be sufficiently close to \hat{u}_{j} such that (TC) holds.

Characteristic Splitting

- Let $s \rightarrow \mathscr{L}_{\kappa}\left(u_{0}, s\right)$ the κ-th Lax curve through the state u_{0} for $\kappa=1,2$.
- We find $\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ (e.g. using Newton's method) to solve

$$
\psi\left(\mathscr{L}_{2}\left(U_{1,0}^{m}, s_{1}\right), \ldots, \mathscr{L}_{2}\left(U_{n, 0}^{m}, s_{n}\right)\right) \stackrel{!}{=} 0
$$

which exists and is unique due to (TC).
(This is zero order data only!)

Characteristic Splitting

- Let $s \rightarrow \mathscr{L}_{\kappa}\left(u_{0}, s\right)$ the κ-th Lax curve through the state u_{0} for $\kappa=1,2$.
- We find $\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ (e.g. using Newton's method) to solve

$$
\psi\left(\mathscr{L}_{2}\left(U_{1,0}^{m}, s_{1}\right), \ldots, \mathscr{L}_{2}\left(U_{n, 0}^{m}, s_{n}\right)\right) \stackrel{!}{=} 0
$$

which exists and is unique due to (TC).
(This is zero order data only!)

Extend numerical Scheme to Boundary Values (in the Vertex).

Step 0: First order data at $x=0$

We can now calculate the boundary cell value $U_{j, 0}^{m+1}$ at time t^{m+1} by (FVM) for $i=0$ by using

$$
\begin{equation*}
U_{j,-1}^{m}:=\mathscr{L}_{2}\left(U_{j, 0}^{m}, s_{j}^{*}\right) \tag{GC}
\end{equation*}
$$

(Hence, we obtain a first-order approximation to the coupling condition as well as to the solution u_{j}.)

Step 1: Reconstruction

- Given the cell averages $U_{j, i}^{m}$ we reconstruct a p.w. linear function $u_{j}\left(x, t_{m}\right)$ and each cell $\left[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\right]$.
(This is standard: MUSCL scheme.)
- In the first cell $i=0$ the slope reconstruction will utilize the data gained in (GC) to calculate $\sigma_{j, 0}$.

We obtain a p.w. linear reconstruction
where $\sigma_{j, i}$ is the vector of slopes.

- This way we get distinct values at each interface (in the spatial domain, as well as at the vertex) which we will denote by the values at $x_{i+\frac{1}{2}} \mp$.
igpm $/$ R minmach

Step 1: Reconstruction

- Given the cell averages $U_{j, i}^{m}$ we reconstruct a p.w. linear function $u_{j}\left(x, t_{m}\right)$ and each cell $\left[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\right]$.
(This is standard: MUSCL scheme.)
- In the first cell $i=0$ the slope reconstruction will utilize the data gained in (GC) to calculate $\sigma_{j, 0}$.

We obtain a p.w. linear reconstruction

$$
\begin{equation*}
U_{j}\left(x, t^{m}\right)=\sigma_{j, i}\left(x-x_{i}\right)+U_{j, i}^{m}, \quad x_{i-\frac{1}{2}} \leq x \leq x_{i+\frac{1}{2}}, i=0, \ldots, \tag{1}
\end{equation*}
$$

where $\sigma_{j, i}$ is the vector of slopes.

- This way we get distinct values at each interface (in the spatial domain, as well as at the vertex) which we will denote by the values at $x_{i+\frac{1}{2}} \mp$.

Step 1: Reconstruction

- Given the cell averages $U_{j, i}^{m}$ we reconstruct a p.w. linear function $u_{j}\left(x, t_{m}\right)$ and each cell $\left[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\right]$.
(This is standard: MUSCL scheme.)
- In the first cell $i=0$ the slope reconstruction will utilize the data gained in (GC) to calculate $\sigma_{j, 0}$.

We obtain a p.w. linear reconstruction

$$
\begin{equation*}
U_{j}\left(x, t^{m}\right)=\sigma_{j, i}\left(x-x_{i}\right)+U_{j, i}^{m}, \quad x_{i-\frac{1}{2}} \leq x \leq x_{i+\frac{1}{2}}, i=0, \ldots, \tag{1}
\end{equation*}
$$

where $\sigma_{j, i}$ is the vector of slopes.

- This way we get distinct values at each interface (in the spatial domain, as well as at the vertex) which we will denote by the values at $x_{i+\frac{1}{2}} \mp$.

Step 2: Reconstruction at boundary

- Reconstruct for each arc j a piecewise linear function $v_{j}(t)$ for $t^{m} \leq t \leq t^{m+1}$ such that

$$
\left.\frac{d}{d t} \Psi\left(v_{1}(t), \ldots, v_{n}(t)\right)\right|_{t=t^{m}}=0 .
$$

Let the solution be ($\dot{v}_{1}, \ldots, \dot{V}_{j}$).
(Solution exists due to (TC).)

- First order data of $v_{j}(t)$ already gained by (GC).

Step 2: Reconstruction at boundary

- Reconstruct for each arc j a piecewise linear function $v_{j}(t)$ for $t^{m} \leq t \leq t^{m+1}$ such that

$$
\left.\frac{d}{d t} \Psi\left(v_{1}(t), \ldots, v_{n}(t)\right)\right|_{t=t^{m}}=0 .
$$

Let the solution be ($\left.\dot{v}_{1}, \ldots, \dot{V}_{j}\right)$.
(Solution exists due to (TC).)

- First order data of $v_{j}(t)$ already gained by (GC).

Step 3: Second order flow

Using the Midpoint rule for the flux (at the interfaces), Taylor expansion (on $f^{ \pm}$) and the p.w. linear reconstruction of u_{j} we get:

$$
\begin{gathered}
U_{j, i-}^{m}:=U_{j, i}^{m}+\sigma_{j, i} \frac{\Delta x}{2}, U_{j, i+}^{m}:=U_{j, i+1}^{m}-\sigma_{j, i+1} \frac{\Delta x}{2}, \\
\frac{1}{\Delta x}\left(\mathscr{F}_{j}\right)_{i+\frac{1}{2}} \approx \frac{\Delta t}{\Delta x}\left[f^{+}\left(U_{j, i-}^{m}-\frac{\Delta t}{2} D f\left(U_{j, i-}^{m}\right) \sigma_{j, i}\right)+\right. \\
\left.f^{-}\left(U_{j, i+}^{m}-\frac{\Delta t}{2} D f\left(U_{j, i+}^{m}\right) \sigma_{j, i+1}\right)\right]
\end{gathered}
$$

where the flux is splitted as

$$
f(u)=f^{+}(u)+f^{-}(u):=\frac{1}{2}(f(u)+a u)+\frac{1}{2}(f(u)-a u),
$$

with $a=\lambda_{\text {max }}$. [A. Kurganov, E. Tadmor, 2000].

Step 4: Second order flow at boundary

- We need to evaluate the flux at the boundary $\left(\mathscr{F}_{j}\right)_{-\frac{1}{2}}$. By (GC) and Step 2 of the algorithm the characteristic speed of information is non-negative.
- Using the midpoint rule:

- Therefore, the boundary flux is given by

Step 4: Second order flow at boundary

- We need to evaluate the flux at the boundary $\left(\mathscr{F}_{j}\right)_{-\frac{1}{2}}$. By (GC) and Step 2 of the algorithm the characteristic speed of information is non-negative.
- Using the midpoint rule:

$$
\begin{aligned}
\left(\mathscr{F}_{j}\right)_{-\frac{1}{2}} & =\int_{t^{m}}^{t^{m+1}} f\left(u_{j}\left(x_{-\frac{1}{2}}, s\right)\right) d s \\
& \approx \int_{t^{m}}^{t^{m+1}} f\left(v_{j}(s)\right) d s=\Delta t f\left(v_{j}\left(t^{m+\frac{1}{2}}\right)\right)+\mathscr{O}\left((\Delta t)^{3}\right)
\end{aligned}
$$

- Therefore, the boundary flux is given by

Step 4: Second order flow at boundary

- We need to evaluate the flux at the boundary $\left(\mathscr{F}_{j}\right)_{-\frac{1}{2}}$. By (GC) and Step 2 of the algorithm the characteristic speed of information is non-negative.
- Using the midpoint rule:

$$
\begin{aligned}
\left(\mathscr{F}_{j}\right)_{-\frac{1}{2}} & =\int_{t^{m}}^{t^{m+1}} f\left(u_{j}\left(x_{-\frac{1}{2}}, s\right)\right) d s \\
& \approx \int_{t^{m}}^{t^{m+1}} f\left(v_{j}(s)\right) d s=\Delta t t\left(v_{j}\left(t^{m+\frac{1}{2}}\right)\right)+\mathscr{O}\left((\Delta t)^{3}\right)
\end{aligned}
$$

- Therefore, the boundary flux is given by

$$
\begin{equation*}
\frac{1}{\Delta x}\left(\mathscr{F}_{j}\right)_{-\frac{1}{2}} \approx \frac{\Delta t}{\Delta x} f\left(v_{j}+\frac{\Delta t}{2} \dot{v}_{j}\right) . \tag{BF}
\end{equation*}
$$

igpm $/=$

Step 5: Update

Evolve the dynamics according to equation (FVM) for $i=1, \ldots$, to obtain the new cell averages at time t^{m+1} and proceed with STEP 1.

Calculate Step 2

- Using the p.w. linear reconstruction

$$
u_{j}\left(x_{-\frac{1}{2}}, t^{m}\right)=U_{j, 0}^{m}-\frac{\Delta x}{2} \sigma_{j, 0}
$$

to get second order accurate boundary values.

- We determine the vector $s=\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{R}^{n}$ by solving the possibly nonlinear equation:

- Since we want ψ to hold for $t>t^{m}$ we solve:

igpm $=$

Calculate Step 2

- Using the p.w. linear reconstruction

$$
u_{j}\left(x_{-\frac{1}{2}}, t^{m}\right)=U_{j, 0}^{m}-\frac{\Delta x}{2} \sigma_{j, 0}
$$

to get second order accurate boundary values.

- We determine the vector $s=\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{R}^{n}$ by solving the possibly nonlinear equation:

$$
\Psi\left(\mathscr{L}_{2}\left(U_{1,0}^{m}-\frac{\Delta x}{2} \sigma_{1,0}, s_{1}\right), \ldots, \mathscr{L}_{2}\left(U_{n, 0}^{m}-\frac{\Delta x}{2} \sigma_{n, 0}, s_{n}\right)\right)=0
$$

- Since we want Ψ to hold for $t>t^{m}$ we solve:

Calculate Step 2

- Using the p.w. linear reconstruction

$$
u_{j}\left(x_{-\frac{1}{2}}, t^{m}\right)=U_{j, 0}^{m}-\frac{\Delta x}{2} \sigma_{j, 0}
$$

to get second order accurate boundary values.

- We determine the vector $s=\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{R}^{n}$ by solving the possibly nonlinear equation:

$$
\Psi\left(\mathscr{L}_{2}\left(U_{1,0}^{m}-\frac{\Delta x}{2} \sigma_{1,0}, s_{1}\right), \ldots, \mathscr{L}_{2}\left(U_{n, 0}^{m}-\frac{\Delta x}{2} \sigma_{n, 0}, s_{n}\right)\right)=0
$$

- Since we want Ψ to hold for $t>t^{m}$ we solve:

$$
\begin{aligned}
0 & =\frac{d}{d t} \Psi\left(u_{1}(t, 0+), \ldots, u_{n}(t, 0+)\right) \\
& =\sum_{k=1}^{n} D_{u_{k}} \Psi\left(u_{1}(t, 0+), \ldots, u_{n}(t, 0+)\right) \partial_{t} u_{k}(t, 0+)
\end{aligned}
$$

Lemma: Second order CC

Lemma:

Consider a single node with n connected arcs and let t^{m} be some positive time. Let $\psi \in C^{2}\left(\mathbb{R}^{2 n} ; \mathbb{R}^{n}\right)$ and let $\hat{u}_{j}:=U_{j, 0}^{m}-\frac{\Delta x}{2}$ be such that condition (TC) holds true.

Then, for $v_{j}(t)$ as in the the previous construction, the coupling condition is satisfied up to second order in time

$$
\Psi\left(v_{1}(t), \ldots, v_{n}(t)\right)=\mathscr{O}\left(\left(t-t^{m}\right)^{2}\right)
$$

Application: Gas Dynamics

```
igpml=.

\section*{Conservation Law + CC}
- We will connect two arcs \(j=1,2\).
- We consider isothermal Euler equations, where the conservation law reads:
\[
\partial_{t}\binom{\rho_{j}}{q_{j}}+\partial_{x}\binom{q_{j}}{a^{2} \rho_{j}+\frac{q_{j}^{2}}{\rho_{j}}}=0, a>0\left(U=\binom{\rho}{q}\right)
\]
- \(\Psi^{1}\left(U_{1}(t, 0+), U_{2}(t, 0+)\right)=q_{1}(t, 0+)+q_{2}(t, 0+)\) and
- \(\Psi^{2}\left(U_{1}(t, 0+), U_{2}(t, 0+)\right)=\left(a^{2} \rho_{2}(t, 0+)+\frac{q_{2}^{2}(t, 0+)}{p_{2}(t, 0)}\right)+\left(a^{2} \rho_{1}(t, 0+)+\frac{q_{1}^{2}(t, 0+)}{p_{1}(t, 0+)}\right)\)
igpm \(/=1\)
RWIHACHEN

\section*{Conservation Law + CC}
- We will connect two arcs \(j=1,2\).
- We consider isothermal Euler equations, where the conservation law reads:
\[
\partial_{t}\binom{\rho_{j}}{q_{j}}+\partial_{x}\binom{q_{j}}{a^{2} \rho_{j}+\frac{q_{j}^{2}}{\rho_{j}}}=0, a>0 \quad\left(U=\binom{\rho}{q}\right) .
\]
- \(\Psi^{1}\left(U_{1}(t, 0+), U_{2}(t, 0+)\right)=q_{1}(t, 0+)+q_{2}(t, 0+)\) and
- \(\Psi^{2}\left(U_{1}(t, 0+), U_{2}(t, 0+)\right)=\left(a^{2} \rho_{2}(t, 0+)+\frac{q_{2}^{2}(t, 0+)}{\rho_{2}(t, 0+)}\right)+\left(a^{2} \rho_{1}(t, 0+)+\frac{q_{1}^{2}(t, 0+)}{\rho_{1}(t, 0+)}\right)\)
igpm \(=1\)

\section*{Conservation Law + CC}
- We will connect two arcs \(j=1,2\).
- We consider isothermal Euler equations, where the conservation law reads:
\[
\partial_{t}\binom{\rho_{j}}{q_{j}}+\partial_{x}\binom{q_{j}}{a^{2} \rho_{j}+\frac{q_{j}^{2}}{\rho_{j}}}=0, a>0 \quad\left(U=\binom{\rho}{q}\right) .
\]
- \(\Psi^{1}\left(U_{1}(t, 0+), U_{2}(t, 0+)\right)=q_{1}(t, 0+)+q_{2}(t, 0+)\) and
- \(\Psi^{2}\left(U_{1}(t, 0+), U_{2}(t, 0+)\right)=\left(a^{2} \rho_{2}(t, 0+)+\frac{q_{2}^{2}(t, 0+)}{\rho_{2}(t, 0+)}\right)+\left(a^{2} \rho_{1}(t, 0+)+\frac{q_{1}^{2}(t, 0+)}{\rho_{1}(t, 0+)}\right)\)
\[
\text { igpm } /=
\]

\section*{Conservation Law + CC}
- We will connect two arcs \(j=1,2\).
- We consider isothermal Euler equations, where the conservation law reads:
\[
\partial_{t}\binom{\rho_{j}}{q_{j}}+\partial_{x}\binom{q_{j}}{a^{2} \rho_{j}+\frac{q_{j}^{2}}{\rho_{j}}}=0, a>0 \quad\left(U=\binom{\rho}{q}\right) .
\]
- \(\Psi^{1}\left(U_{1}(t, 0+), U_{2}(t, 0+)\right)=q_{1}(t, 0+)+q_{2}(t, 0+)\) and
- \(\Psi^{2}\left(U_{1}(t, 0+), U_{2}(t, 0+)\right)=\left(a^{2} \rho_{2}(t, 0+)+\frac{q_{2}^{2}(t, 0+)}{\rho_{2}(t, 0+)}\right)+\left(a^{2} \rho_{1}(t, 0+)+\frac{\frac{q}{1}_{2}^{1}(t, 0+)}{\rho_{1}(t, 0+)}\right)\).

\section*{Solving Step2}
- For subsonical states \(U_{j}\) we have \(\lambda_{j}^{1}<0\) and \(\lambda_{j}^{2}>0\).
- For small \(t-t^{m}\) we use the decomposition

- \(v_{j}^{j}(t)=v_{j}^{i}+\left(t-t^{m}\right) \dot{v}_{j}^{j}\). We know \(v_{j}^{i}\) from (GC) and \(\dot{v}_{j}^{1}\).
- \(\dot{i}_{j}^{1}=-\lambda_{1} \partial_{x}\left(R^{-1} U_{j}\left(t^{m}, 0+\right)\right)^{1}=-\lambda_{1}\left(R^{+1}\binom{\sigma_{j 0}^{1}}{\sigma_{j, 0}}\right)\)

\section*{Solving Step2}
- For subsonical states \(U_{j}\) we have \(\lambda_{j}^{1}<0\) and \(\lambda_{j}^{2}>0\).
- For small \(t-t^{m}\) we use the decomposition
\[
U_{j}\left(t^{m}, 0+\right)=v_{j}^{1}(t) r_{j}^{1}\left(v\left(t^{m}\right)\right)+v_{j}^{2}(t) r_{j}^{2}\left(v\left(t^{m}\right)\right)=R_{j}\binom{v_{j}^{1}(t)}{v_{j}^{2}(t)}=R_{j} v_{j}(t) .
\]

\section*{Solving Step2}
- For subsonical states \(U_{j}\) we have \(\lambda_{j}^{1}<0\) and \(\lambda_{j}^{2}>0\).
- For small \(t-t^{m}\) we use the decomposition
\[
U_{j}\left(t^{m}, 0+\right)=v_{j}^{1}(t) r_{j}^{1}\left(v\left(t^{m}\right)\right)+v_{j}^{2}(t) r_{j}^{2}\left(v\left(t^{m}\right)\right)=R_{j}\binom{v_{j}^{1}(t)}{v_{j}^{2}(t)}=R_{j} v_{j}(t) .
\]
- \(v_{j}^{i}(t)=v_{j}^{i}+\left(t-t^{m}\right) \dot{v}_{j}^{j}\). We know \(v_{j}^{i}\) from (GC) and \(\dot{v}_{j}^{1}\).
```

igpm/_m_ RWIHMCHEN

```

\section*{Solving Step2}
- For subsonical states \(U_{j}\) we have \(\lambda_{j}^{1}<0\) and \(\lambda_{j}^{2}>0\).
- For small \(t-t^{m}\) we use the decomposition
\[
U_{j}\left(t^{m}, 0+\right)=v_{j}^{1}(t) r_{j}^{1}\left(v\left(t^{m}\right)\right)+v_{j}^{2}(t) r_{j}^{2}\left(v\left(t^{m}\right)\right)=R_{j}\binom{v_{j}^{1}(t)}{v_{j}^{2}(t)}=R_{j} v_{j}(t) .
\]
- \(v_{j}^{i}(t)=v_{j}^{i}+\left(t-t^{m}\right) \dot{v}_{j}^{j}\). We know \(v_{j}^{i}\) from (GC) and \(\dot{v}_{j}^{1}\).
- \(\dot{v}_{j}^{1}=-\lambda_{1} \partial_{x}\left(R^{-1} U_{j}\left(t^{m}, 0+\right)\right)^{1}=-\lambda_{1}\left(R^{-1}\binom{\sigma_{j, 0}^{1}}{\sigma_{j, 0}^{2}}\right)^{1}\).

\section*{Linearize of Influx: \(\dot{v}_{j}^{2}\)}
- Linearize \(\Psi\) :
\[
\begin{aligned}
0 & =\frac{d}{d t} \Psi\left(U_{1}\left(t^{m}, 0+\right), U_{2}(t, 0+)\right) \\
& =\left.\frac{d}{d t} \Psi\left(V_{1}(t), V_{2}(t)\right)\right|_{t=t^{m}} \\
& =-\sum_{j=1}^{2} D_{V_{j}} \Psi\left(V_{1}(t), V_{2}(t)\right) D f\left(V_{j}\right)\binom{\dot{v}_{j}^{1}}{\dot{v}_{j}^{2}} .
\end{aligned}
\]
- \(\Rightarrow \dot{v}_{j}^{2} \Rightarrow V_{j}(t)\) which we will use to calculate the fluxes at \(x=0\).
```

igpm/{ N

```

\section*{Linearize of Influx: \(\dot{v}_{j}^{2}\)}
- Linearize \(\Psi\) :
\[
\begin{aligned}
0 & =\frac{d}{d t} \Psi\left(U_{1}\left(t^{m}, 0+\right), U_{2}(t, 0+)\right) \\
& =\left.\frac{d}{d t} \Psi\left(V_{1}(t), V_{2}(t)\right)\right|_{t=t^{m}} \\
& =-\sum_{j=1}^{2} D_{V_{j}} \Psi\left(V_{1}(t), V_{2}(t)\right) D f\left(V_{j}\right)\binom{\dot{V}_{j}^{1}}{\dot{V}_{j}^{2}} .
\end{aligned}
\]
- \(\Rightarrow \dot{v}_{j}^{2} \Rightarrow V_{j}(t)\) which we will use to calculate the fluxes at \(x=0\).
```

igpm\=_ RWTHMCHENTN

```

\section*{Plot Periodic vs. Coupled}
- Initial data: \(\rho(x)_{0}=0.1 \cos (x)+1, q(x)_{0}=0.05 \cos (x)+2\), final time \(T=0.3\).
- Plot of solutions \(U_{p}\) (periodic) and \(U_{C}\) (coupled).

igpm \(=\)

\section*{Plot Periodic vs. Coupled}
- Initial data: \(\rho(x)_{0}=0.1 \cos (x)+1, q(x)_{0}=0.05 \cos (x)+2\), final time \(T=0.3\).
- Plot of solutions \(U_{p}\) (periodic) and \(U_{c}\) (coupled).

igpm \(几=\)

\section*{Table of Error}
\begin{tabular}{|l||r|r||c|c|}
\hline\(N_{k}\) & \(L^{1} \rho\) & \(L^{1} q\) & Rate \(\rho\) & Rate \(q\) \\
\hline \(2^{5}\) & 8.8259 & 7.1826 & \(/\) & \(/\) \\
\(2^{6}\) & 10.4556 & 8.6067 & 1.6297 & 1.4242 \\
\(2^{7}\) & 12.1436 & 10.3566 & 1.6880 & 1.7499 \\
\(2^{8}\) & 13.8907 & 12.1301 & 1.7471 & 1.7735 \\
\(2^{9}\) & 15.6996 & 13.9506 & 1.8089 & 1.8205 \\
\(2^{10}\) & 17.5927 & 15.8745 & 1.8931 & 1.9239 \\
\(2^{11}\) & 19.5538 & 17.8503 & 1.9611 & 1.9758 \\
\(2^{12}\) & 21.5445 & 19.8373 & 1.9907 & 1.9870 \\
\hline
\end{tabular}

Table: \(L^{1}\) convergence of the periodic boundary to the nodal coupled method.

\section*{Y-Junction: Setup}
- Consider \(n=3\) (arcs); spatial domain \(x \in[0,2]\),
- Neumann boundary conditions (outlowing) at \(x=2\),
- Coupling conditions: Conservation of mass and conservation of flow (as in the previous example),
- The initial data:

For the first arc, \(j=1\), we set
\(p_{1}(x, 0)=\left\{\begin{array}{ll}-x^{3}+\frac{3}{2} x^{2}+1 & x \in[0,1) \\ \frac{3}{2} & x \in[1,2]\end{array}\right.\) and \(q_{1}(x, 0)= \begin{cases}-x^{3}+\frac{3}{2} x^{2} & x \in[0,1) \\ \frac{1}{2} & x \in[1,2]\end{cases}\)
For the second and the third arcs, \(j=2,3\), we set
\[
q_{j}(x, 0)=0 \text { and } p_{j}(x, 0)=1 .
\]
- We have: \(\Psi\left(U_{1}(x, 0), U_{2}(x, 0), U_{3}(x, 0)\right)=(0,0,0)\)
\[
\text { igpm } /=\text { RWIHMCHEN }
\]

\section*{Y-Junction: Setup}
- Consider \(n=3\) (arcs); spatial domain \(x \in[0,2]\),
- Neumann boundary conditions (outflowing) at \(x=2\),
- Coupling conditions: Conservation of mass and conservation of flow (as in the previous example),
- The initial data:

For the first arc, \(j=1\), we set


For the second and the third arcs, \(j=2,3\), we set
\[
q_{j}(x, 0) \equiv 0 \text { and } p_{j}(x, 0) \equiv 1 .
\]
- We have: \(\Psi\left(U_{1}(x, 0), U_{2}(x, 0), U_{3}(x, 0)\right)=(0,0,0)\)
\[
\text { igpm } h=1 \text { RWIHMCHENTN }
\]

\section*{Y-Junction: Setup}
- Consider \(n=3\) (arcs); spatial domain \(x \in[0,2]\),
- Neumann boundary conditions (outflowing) at \(x=2\),
- Coupling conditions: Conservation of mass and conservation of flow (as in the previous example),
- The initial data:

For the first arc, \(j=1\), we set


For the second and the third arcs, \(j=2,3\), we set
\[
q_{j}(x, 0) \equiv 0 \text { and } \rho_{j}(x, 0) \equiv 1 .
\]
- We have: \(\Psi\left(U_{1}(x, 0), U_{2}(x, 0), U_{3}(x, 0)\right)=(0,0,0)^{\top}\)
\[
\text { igpm } h=1 \text { RWIHMCHENTN }
\]

\section*{Y-Junction: Setup}
- Consider \(n=3\) (arcs); spatial domain \(x \in[0,2]\),
- Neumann boundary conditions (outflowing) at \(x=2\),
- Coupling conditions: Conservation of mass and conservation of flow (as in the previous example),
- The initial data:

For the first arc, \(j=1\), we set
\[
\rho_{1}(x, 0)=\left\{\begin{array}{ll}
-x^{3}+\frac{3}{2} x^{2}+1 & x \in[0,1) \\
\frac{3}{2} & x \in[1,2]
\end{array} \text { and } q_{1}(x, 0)=\left\{\begin{array}{ll}
-x^{3}+\frac{3}{2} x^{2} & x \in[0,1) \\
\frac{1}{2} & x \in[1,2]
\end{array} .\right.\right.
\]

For the second and the third arcs, \(j=2,3\), we set
\[
q_{j}(x, 0) \equiv 0 \text { and } \rho_{j}(x, 0) \equiv 1 .
\]
- We have: \(\Psi\left(U_{1}(x, 0), U_{2}(x, 0), U_{3}(x, 0)\right)=(0,0,0)\)

\section*{Y-Junction: Setup}
- Consider \(n=3\) (arcs); spatial domain \(x \in[0,2]\),
- Neumann boundary conditions (outflowing) at \(x=2\),
- Coupling conditions: Conservation of mass and conservation of flow (as in the previous example),
- The initial data:

For the first arc, \(j=1\), we set
\[
\rho_{1}(x, 0)=\left\{\begin{array}{ll}
-x^{3}+\frac{3}{2} x^{2}+1 & x \in[0,1) \\
\frac{3}{2} & x \in[1,2]
\end{array} \text { and } q_{1}(x, 0)=\left\{\begin{array}{ll}
-x^{3}+\frac{3}{2} x^{2} & x \in[0,1) \\
\frac{1}{2} & x \in[1,2]
\end{array} .\right.\right.
\]

For the second and the third arcs, \(j=2,3\), we set
\[
q_{j}(x, 0) \equiv 0 \text { and } \rho_{j}(x, 0) \equiv 1 .
\]
- We have: \(\Psi\left(U_{1}(x, 0), U_{2}(x, 0), U_{3}(x, 0)\right)=(0,0,0)^{\top}\).

\section*{Y-Junction: Plots \(\rho\)}
\(\mathbf{t}=\mathbf{0}\)

\(t=0.2\)

\[
t=0.1
\]

\(\mathrm{t}=0.3\)


Figure: Evolution of the density \(\rho\). Arcs: \(\diamond j=1, \circ j=2, \times j=3\).
```

igpm

```

\section*{Y-Junction: Plots \(q\)}


Figure: Evolution of the flow \(q\). Arcs: \(\diamond j=1, \circ j=2, \times j=3\).
\[
\text { igpm } h=1 \text { RwIHMCHEN }
\]

\section*{References}

\section*{Thank you!}

\section*{Literature:}

Steel rolling:
- M. Bambach, A.-S. Häck, and M. Herty. Modeling steel rolling processes by fluid-like differential equations. Applied mathematical modelling.
- A.-S. Häck and M. Herty. Hot Rolling Multipass Simulation, pages 286-293. In "Integrative Production Technology - Theory and Applications".
Coupling:
- M.K. Banda, A.-S. Häck, and M. Herty. Numerical discretization of coupling conditions by high-order schemes. Journal of Scientific Computing.```

