
2D Discrete Fourier Transform (DFT)
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2D Discrete Fourier Transform

• Fourier transform of a 2D signal defined over a discrete finite 2D grid 
of size NxxNy

or equivalently

• Fourier transform of a 2D set of samples forming a bidimensional
sequence 

• As in the 1D case, 2D-DFT, though a self-consistent transform, can 
be considered as a mean of calculating the transform of a 2D 
sampled signal defined over a discrete grid.

• The signal is periodized along both dimensions and the 2D-DFT can 
be regarded as a sampled version of the 2D continuous Fourier 
transform
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2D Discrete Fourier Transform

• 2D Fourier Transform
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• 2D Discrete Fourier Transform (DFT)

2D DFT is a sampled version of 2D FT.
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2D Discrete Fourier Transform

• Inverse DFT
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• 2D Discrete Fourier Transform (DFT)
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where                         and 

0,1,..., 1k M= −

0,1,..., 1l N= −
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2D Discrete Fourier Transform

• Inverse DFT
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• It is also possible to define DFT as follows
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where                              and 0,1,..., 1k M= − 0,1,..., 1l N= −
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2D Discrete Fourier Transform

• Inverse DFT
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• Or, as follows
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where                               and 0,1,..., 1k M= − 0,1,..., 1l N= −
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2D Discrete Fourier Transform
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2D Discrete Fourier Transform
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2D Discrete Fourier Transform
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2D Discrete Fourier Transform
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Periodicity
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• [M,N] point DFT is periodic with period [M,N]

[ , ]F k l=
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Periodicity
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• [M,N] point DFT is periodic with period [M,N]
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Convolution

• Be careful about the convolution property!
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For the convolution property to hold, M must be greater 
than or equal to P+Q-1. 
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Convolution

• Zero padding
[ ]* [ ] [ ] [ ]f m g m F k G l⇔
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2D DCT

• Separable product (equivalently, a composition) of DCTs along each 
dimension 

• Row-column algorithm

• The inverse of a multi-dimensional DCT is just a separable product 
of the inverse(s) of the corresponding one-dimensional DCT 
– e.g. the one-dimensional inverses applied along one dimension at a 

time
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DCT: basis functions

Block size
N1=N2=8

Block-based transform
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DCT: example
Low-frequency components

High-frequency components
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Block-based DCT
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Block-based DCT
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Block-based DCT
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Block-based DCT
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Block-based DCT

The mean value has been subtracted before calculating the DCT. This is usual in 
coding applications and allows to outline the value of the coefficients corresponding to 
non-zero spatial frequencies
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JPEG preview

The source data (8x8) is transformed to a linear combination of these 64 frequency 
squares. 

Block size
N1=N2=8

Block-based DCT
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Appendix
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Appendix: Impulse Train

■ The Fourier Transform of a comb function is
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Impulse Train (cont’d)

■ The Fourier Transform of a comb function is
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Impulse Train (cont’d)

■ Proof
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