Discrete Time Signals and Systems
Time-frequency Analysis

Gloria Menegaz



Time-frequency Analysis

e Fourier transform (1D and 2D)

e Reference textbook:

Discrete time signal processing, A.W. Oppenheim and R.W. Shafer
— Chapter 1: Introduction
— Chapter 2: Discrete time Signals and Systems
— Chapter 3: Sampling of Continuos Time Signals

— (Chapter 4: The z-Transform)
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Signal Classification

e Continuous time signals x(t) are functions of a continuous indepen-
dent variable ¢

x=x(t),t € R
e Discrete time signals are functions of a discrete variable
x={x[n]},n € Z,—c0o <n < oo
— Are defined at discrete time intervals

— Are represented as sequences of numbers

e Digital signals both the independent variable and the amplitude are
discrete

Digital systems: both the input and the output are digital signals
= Digital Signal Processing: processing of signals that are discrete in both
time and amplitude

A AN
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Periodic Sampling

The sequences are obtained by sampling the analog signal at equi-spaced
points:
xln] =x(nT),ne I
T: sampling period, interval between samples
f= % : sampling frequency

3-2-10 1 2 3 4

\T\

Gloria Menegaz Discrete Time Signals and SystemsTime-frequency Analysis 4




Basic Sequences

e Delayed or shifted sequence: y|[n| = x[n — k]

e Unit sample sequence o[n| (Dirac function, impulse):

3] = {(1)

Unit step sequence:

uln] = {‘1)

n+0
n=20

n<0
n>0

Products and sums among sequences: element by element operations
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Basic Sequences

— relation between the two functions:

e Sinusoidal sequence:
x|n] = Acos(wgn + P),Vn
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Basic Sequences

e Complex exponential
x[n] — Ae(a+j<®0n+¢))

— |a| < 1: exponentially decaying envelop
— |ot| > 1: exponentially growing envelop

— |a] = 1: complex exponential sequence:
x[n] = |A|cos(won + ¢) + j|A|sin(won + @)

The real and imaginary parts oscillate sinusoidally with n. The fact that n is
an integer leads to important differences with respect to the corresponding func-
tions in the continuous domain. By analogy, ®y and ® are called frequency and
phase.
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Graphically
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Discrete vs. continuous

1. Complex exponentials and sinusoids are 2m-periodic

x[n] = Aexp’ (@o+2m)n _ 4 exp’/ 0" exp/?M = A exp/ 0" (5)

= Complex exponentials with frequencies (wqy + 27r) are indistin-
guishable from one another = only frequencies in an interval of length
27 need to be considered

2. Complex exponentials in general are not periodic
Periodicity condition: x|n] = x[n+ N|, Vr,N € I. For this condition to
be true, the following relation must hold true:

woN =27k, keI (6)

= Complex exponentials and sinusoidal sequences are notf necessar-
ily periodic with period Ty = 21t/ ® as in the continuous domain and,
depending on the value of g, might not be periodic at all.
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Discrete vs. continuous

Hint: relation (??) can be written as:

== (7)
®o k

where T is the period. If one thinks of the discrete time signal as to the
sampled version of a continuous time signal of period 7y with unitary sam-
pling interval (T; = 1), then relation (??) can be naturally interpreted as
follows: in order to obtain a discrete time periodic signal of period N by
sampling a continuous time signal of period 7, the period 7 must be an
integer factor of N, or, viceversa, N must be a multiple of 7. This can be

easily generalized to the case T # 1 (not necessarily integer) as follows:
WoNTs =21k Ty = 2T (8)

namely, N = kTy/Ts; must be an integer multiple of the ratio between the
period and the sampling step.
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Examples

1. Example 1

x(t) = Asin(wgyt)
xln] = Asin(wgn)
3
Wy = ZTE

—>§7cN — 2wk — 3N =8k —

the first two integers satisfying the condition are N = 8,k = 3, thus
the signal x[n] obtained by sampling a continuous sinusoid x(¢) with
frequency ®p = %n is periodic with period N = 8; each period of x|n|
corresponds to three (k = 3) periods of the original signal.

2. Example 2
o = 1 — no solutions!
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Summary

Wy <> O+ 27, rel (9)
2km " .
Wy = N k,N € I condition for periodicity (10)

Let’s assume that, given N, ®, satisfies relation (??) for a certain k. Relation (??) implies
that only N distinguishable frequencies satisfy relation (??).
Proof: let @y = 2= k=0,1,...N—1

= <%,
o, = 0 degenerate case
27
0 = —
N
2 X 2T
0 =
N
(N—1)x2n
Oy—1 = N
N X 21
Oy = N =27
on. . — (N+i)X2R—ZTC+2niH(D-
N+i — N — N I
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Examples

('()h(”") ('(J.\'(??TH) s (-(,_c,( % ") ('()S( l'%n)

L g

cos(Zn) = cos(2En) = .- - cos(mn) = cos(3mn)

Figure 4.16: DT sinusoids of various frequencies: (a) lowest rate 2 = 0 to (d) highest rate 2 — 7.
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Discrete vs Continuous

Conclusion: for a sinusoidal signal x[n] = Asin(®qn), as g increases from
0o = 0 to oy = 7, x[n| oscillates more and more rapidly. Conversely, from
®Wp = T to ®y = 27 the oscillations become slower. In fact, because of
the periodicity in gy of complex exponentials and sinusoidal sequences,
o = 0 is indistinguishable from wy = 27 and, more in general, frequencies
around gy = 21 are indistinguishable from frequencies around wg = 0. As
a consequence, values of mg in the vicinity of @y = 2km are referred to as
low frequencies, whereas frequencies in the vicinity of wg = (2k+ 1)x are
referred to as high frequencies. This is a fundamental difference from the
continuous case, where the speed of the oscillations increases monotoni-
cally with the frequency ®.
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Operations and Properties

e Periodicity: a sequence is periodic with period N iif.

e Energy: E =Y, |x[n]]

x|n+ N] = x[n|,Vn

2

e Sample-wise operations:

Product: x-y = {x[n]y[n]}
Sum: x+y = {x[n] +y[n]}
Scaling: ox = {owx|n] }

Delay: y[n| = x[n —ng|,n,np € 1
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Operations and Properties

Any sequence can be represented as a sum of scaled and delayed unit
samples:

—+o0
xln] = Z x|k|O[n — k| (11)
k= —oo
o - {} ot oo
1 ®

d [n-3]

01 23 4 0
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Discrete Time Fourier Transform

: T .
X(e®) = ) xnJe /™" (13)
x[n] = / X (e/®)e!dw (14)
-

e x[n| is a discrete time signal
e The DTFT X (e/®) is a complex continuos function of the independent variable @. As
such, can be put in the equivalent forms:
X(e®) = Xp(e™)+Xi(e’) (15)
X(e/) = |X(e®)e M (16)
X (e/?)| is the magnitude or Fourier spectrum of the signal and e“*(¢") is the phase
spectrum of the transformed signal.
e x[n] and X (e/®) form the Fourier representation for the sequence.
e Eq. (??): analysis formula. It projects the signal to the frequency domain.

e Eq. (??): synthesis or reconstruction formula. It is used to recover the signal from its
frequency domain representation.
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DTFT: Interpretation

The DTFT represents the sequence x[n| as a linear superposition of in-
finitesimally small complex sinusoids of the form

1 .
ﬁX(ef‘””)doo (17)

with —t < 0 < 7 and X (e/®") representing the relative amount of each
complex sinusoidal component.

By comparing (??) with relation (??) it is easy to realize that the frequency
response of a LTIS is the Fourier transform of its impulse response

. ] T . .
](0 h —](Dn h — / Jwy _jon
He®) = ¥ e nln = o [ HE)e

n——oo
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DTFT

Symmetry properties of the DTFT: see Table 2.1, page 53 of the reference

textbook
The DTFT is a periodic function of ® with period 27.

: Too :
X(e](OH—ZJt)) _ Z x[n]e—]((xH—Zn)n

Nn=—o0
. 1o . .
_ e—]27tn Z x[n]e—](x)n _ X(ejm)

n——oo

More in general:

X (/@2 = X (/) vrel

The Fourier spectrum of a discrete (sampled) signal is periodic

(18)

(19)

(20)
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Eulero’s formula

e/X =cosx+ jsinx — e JONM = o TION,—JAN _ ,—JOR gy o [24)
Reminder:
el* — e X el* e IX

sinx = COSX =
2j 2
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Example: rect() function

TIME DOMAIN FREQUENCY DOMAIN
1 -
s(t) S(f)
AT
: . I
/ \
{
[ ]
A\ AN
T 0 T2 Ho—> —of \{n 0 m\/ of
s()y=A |t|<T/2 —> S(f) = AT _Sin(TTf )
=A2 |t| = T/2 e
=0 |t|>T/2

The rect () function is important because it represents the impulse response of the ideal
band-pass filter in the frequency domain. lts Fourier transform is a sinc () function which

spreads over (oo, 4-o0),
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ldeal low pass filter

: 1 o <o
-](Dn = —_— - ¢
HEe) —H@) = { ) W0 22
I e iy _jon I jon
hln] = =y H(e™)e dm:ﬁ E do =
_ ii [ejcon}wc :Q)Csin((x)cn):(x)csinc(mcn)
2T jn —®, T Ocn T
()
hin] = ?Csinc(mcn) (23)

M, : cutting frequency of the filter <>
Let wg be the sampling frequency. If we let ®, = % then

hin] = %sinc (%) (24)
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To keep in mind

Sequence Fourier transform
o|n] 1
o[n — ny) e~ 010
1 Yk 2%8((D+ 2k7’[>
sin(®¢n )1 |(!)| < O
(” | X(“’)_{o 0 < |0 <
x|n| = rectr|n] | 2Tsinc(®T)

o] 00"

¥ 218(0 — 0 + 2kT)

cos(wgn + D)

Yk |e/P8(w— g+ 2kn + e /PS(w + wg + 2km)

Table 2.3, page 61, reference textbook
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Discrete Time Systems

A DTS is an operator that maps a discrete sequence x|n] at its input to a
discrete sequence y[n| at its output:

yln] =T {x[n]}

X[n] y[n]

e Linearity:

T{xi[n]+x3[n]} = T{x1[n]}+T{xx[n]}, additivity  (25)
T{ax|n]} = aT{x[n]}, scaling or homogeneity (26)

= Principle of superposition:

T{ayxi[n]+apx[n]} = a;T{xi[n]} +aT{x;[n]} (27)
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Discrete Time Systems

e Time-invariance: a delayed input sequence maps to a delayed output
sequence:

x[n] = y[n] (28)
xln—ng] — y[n—ng (29)

e Causality: the output value y|n| for n = ng only depends on previous
input samples x[n] : n < ng
In images causality doesn’t matter!

e Stability: a bounded input generates a bounded output
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Linear Time Invariant Systems

Linear systems:

i) = T{ki x[k]S[n—k]} 30
Principle of superposition: o
il = X T (30K} = @)
= Y il 32
Time invariance: o
yln] = i x|k|h[n — k] <> Convolution sum (33)

k

oo

— The system is completely characterized by the impulse response h|k|
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Convolution operator

—+o0

xnlxyln] =}, «lk]-yln—4] (34)
e

= ) x[n—k]-ylk (35)

Recipe for the convolution (refer to( ?7?)):
1. Reflect y[k] about the origin to get y[—&]
2. Shift the reflected sequence of n steps
3. Multiply (point wise) the resulting sequence by x|n]
4

. Sum over the samples of the resulting signal to get the value of the convolution at
position n

5. Increment n and ge back to point 2.
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Properties of LTIS

e Commutativity (see( ??))
A LTIS with input x[n] and impulse response h|n] has the same output of a system
with input A[n] and impulse response x[n|
— The cascade of LTIS systems has an impulse response that is the
convolution of the IRs of the individual systems

e Distributivity:
x(n)x (hi|n] +holn]) = x[n|%hy[n]+x[n]x ho|n]

— The parallel connection of LTIS systems has an impulse response
that is the sum of the IRs of the single systems
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Properties of LTIS

Cascade connection

xin] h ; [n] hgn] 7777777 S h [n] L~ yIn]
m
x[n] h1[n]*h 2[n] - "h [n] vinl
Parallel connection
h In]
x[n] h£n] Q; y[n] x[n] h1 [n]+h in]+.... +hn[1n] y[n]
h [n]
m
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Difference Equation

The transfer function is a N-th order linear constant coefficient difference
equation:

N—-1 M
apyln—k| = bix\n —k| — (36)
k=0 k=0
1 N—1 M
il { Y apli—k+ Y bkx[nk]} @7
“0 (k=1 k=0

— The output value y|n] is the linear combination of the N — 1 last values
of the output and the M last values of the input x|n].
System classification:

e Finite Impulse Response (FIR): the impulse response involves a finite
number of samples

e Infinite Impulse Response (lIR): the impulse response involves a infi-
nite number of samples
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Frequency domain

e Complex exponential sequences are eigenfunctions of LTIS

e The response to a complex sinusoid x[n] = e/®", —co < n < +oo is a
sinusoid with same frequency and amplitude and phase determined by
the system (i.e. by the impulse response)

oo : :
Z h[k]e](x)(n k) e](x)n< Z hlk ]Q)k) (38)

k=— oo k= —oo
Let: , oo .
HE®) = ) hlk]e /9K (39)
f=—oo
Then: y[n] = H(ejm)ejwn (40)
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Frequency domain

H (ej ®) frequency response of the system
H(e/®) = Hg(e/®)+H(e/®) (41)
= |H ()| H ) (42)
— If we manage to put the input signal in the form of a sum of complex

exponentials then the output can be obtained as the sum of the responses
to such signal components:

oo |

xln] = ) oye/%" Fourier representation — (43)
[
[y o joy output of the LTIS

vl = ), oy (e/Pk)e/ Ok OHPHOTINE (44)
[ ——
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Frequency response of a LTIS

H (ej‘”) is always a periodic function of @ with period 27

H(e] 0)+2r71: Z h —] (0+2rm)n Z h —](Dn (ej(o)
N——o0 Jl——o0

(45)
Due to this property as well as to the fact that frequencies differing for mul-
tiples of 2w are indistinguishable, H (e/®) only needs to be specified over
an interval of length 2m. The inherent periodicity defines the frequency re-
sponse on the entire frequency axis. It is common use to specify H over
the interval —t < ® < w. Then, the frequencies around even multiples of
T are referred to as low frequencies, while those around odd multiples of 7
are high frequencies.
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