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Time-frequency Analysis

• Fourier transform (1D and 2D)

• Reference textbook:

Discrete time signal processing, A.W. Oppenheim and R.W. Shafer

– Chapter 1: Introduction

– Chapter 2: Discrete time Signals and Systems

– Chapter 3: Sampling of Continuos Time Signals

– (Chapter 4: The z-Transform)
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Signal Classification
• Continuous time signals x(t) are functions of a continuous indepen-

dent variable t
x = x(t), t ∈ R

• Discrete time signals are functions of a discrete variable
x = {x[n]},n ∈ Z,−∞ < n <+∞

– Are defined at discrete time intervals

– Are represented as sequences of numbers

• Digital signals both the independent variable and the amplitude are
discrete

Digital systems: both the input and the output are digital signals
⇒ Digital Signal Processing: processing of signals that are discrete in both
time and amplitude
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Periodic Sampling
The sequences are obtained by sampling the analog signal at equi-spaced

points:

x[n] = x(nT ),n ∈ I
T : sampling period, interval between samples

f = 1
T : sampling frequency

1 2 3 4−1−2−3 0

x[0]

x[−1] x[1]
x[2]

T
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Basic Sequences

• Products and sums among sequences: element by element operations

• Delayed or shifted sequence: y[n] = x[n− k]

• Unit sample sequence δ[n] (Dirac function, impulse):

δ[n] =

{
0, n 6= 0
1, n = 0

(1)

• Unit step sequence:

u[n] =

{
0, n < 0
1, n≥ 0

(2)
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Basic Sequences

→ relation between the two functions:

u[n] =
∞

∑
k=0

δ[n− k] (3)

δ[n] = u[n]−u[n−1] (4)

• Sinusoidal sequence:

x[n] = Acos(ω0n+Φ),∀n
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Basic Sequences

• Complex exponential

x[n] = Ae(α+ j(ω0n+φ))

– |α|< 1: exponentially decaying envelop

– |α|> 1: exponentially growing envelop

– |α|= 1: complex exponential sequence:

x[n] = |A|cos(ω0n+φ)+ j|A|sin(ω0n+φ)

The real and imaginary parts oscillate sinusoidally with n. The fact that n is
an integer leads to important differences with respect to the corresponding func-
tions in the continuous domain. By analogy, ω0 and Φ are called frequency and
phase.
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Graphically
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Discrete vs. continuous
1. Complex exponentials and sinusoids are 2π-periodic

x[n] = Aexp j(ω0+2π)n = Aexp jω0n exp j2πn = Aexp jω0n (5)

⇒ Complex exponentials with frequencies (ω0 + 2πr) are indistin-
guishable from one another⇒ only frequencies in an interval of length
2π need to be considered

2. Complex exponentials in general are not periodic
Periodicity condition: x[n] = x[n+N], ∀n,N ∈ I. For this condition to
be true, the following relation must hold true:

ω0N = 2πk, k ∈ I (6)

⇒ Complex exponentials and sinusoidal sequences are not necessar-
ily periodic with period T0 = 2π/ω0 as in the continuous domain and,
depending on the value of ω0, might not be periodic at all.
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Discrete vs. continuous
Hint: relation (??) can be written as:

T0 =
2π

ω0
=

N
k

(7)

where T0 is the period. If one thinks of the discrete time signal as to the

sampled version of a continuous time signal of period T0 with unitary sam-

pling interval (Ts = 1), then relation (??) can be naturally interpreted as

follows: in order to obtain a discrete time periodic signal of period N by

sampling a continuous time signal of period T0, the period T0 must be an

integer factor of N, or, viceversa, N must be a multiple of T0. This can be

easily generalized to the case Ts 6= 1 (not necessarily integer) as follows:

ω0NTs = 2πk T0 =
N
k Ts (8)

namely, N = kT0/Ts must be an integer multiple of the ratio between the

period and the sampling step.
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Examples
1. Example 1

x(t) = Asin(ω0t)
x[n] = Asin(ω0n)

ω0 =
3
4

π

→ 3
4

πN = 2πk→ 3N = 8k→

the first two integers satisfying the condition are N = 8,k = 3, thus
the signal x[n] obtained by sampling a continuous sinusoid x(t) with
frequency ω0 = 3

4π is periodic with period N = 8; each period of x[n]
corresponds to three (k = 3) periods of the original signal.

2. Example 2
ω0 = 1→ no solutions!
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Summary

ω0 ↔ ω0+2πr, r ∈ I (9)

ω0 =
2kπ

N
, k,N ∈ I condition for periodicity (10)

Let’s assume that, given N, ω0 satisfies relation (??) for a certain k. Relation (??) implies
that only N distinguishable frequencies satisfy relation (??).
Proof: let ωk =

2kπ

N , k = 0,1, ...,N−1

ωd = 0 degenerate case

ω1 =
2π

N

ω2 =
2×2π

N
. . .

ωN−1 =
(N−1)×2π

N

ωN =
N×2π

N
= 2π

. . .

ωN+i =
(N + i)×2π

N
= 2π+

2πi
N
↔ ωi
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Examples
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Discrete vs Continuous

Conclusion: for a sinusoidal signal x[n] = Asin(ω0n), as ω0 increases from

ω0 = 0 to ω0 = π, x[n] oscillates more and more rapidly. Conversely, from

ω0 = π to ω0 = 2π the oscillations become slower. In fact, because of

the periodicity in ω0 of complex exponentials and sinusoidal sequences,

ω0 = 0 is indistinguishable from ω0 = 2π and, more in general, frequencies

around ω0 = 2π are indistinguishable from frequencies around ω0 = 0. As

a consequence, values of ω0 in the vicinity of ω0 = 2kπ are referred to as

low frequencies, whereas frequencies in the vicinity of ω0 = (2k+1)π are

referred to as high frequencies. This is a fundamental difference from the

continuous case, where the speed of the oscillations increases monotoni-

cally with the frequency ω0.
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Operations and Properties

• Periodicity: a sequence is periodic with period N iif:

x[n+N] = x[n],∀n

• Energy: E = ∑
+∞
n=−∞ |x[n]|2

• Sample-wise operations:

– Product: x · y = {x[n]y[n]}

– Sum: x+ y = {x[n]+ y[n]}

– Scaling: αx = {αx[n]}

– Delay: y[n] = x[n−n0],n,n0 ∈ I
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Operations and Properties

Any sequence can be represented as a sum of scaled and delayed unit

samples:

x[n] =
+∞

∑
k=−∞

x[k]δ[n− k] (11)

δ[n− k] =

{
1 for n = k
0 for n 6= k

(12)

n

1

3 4210

b [n−3]
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Discrete Time Fourier Transform

X(e jω) =
+∞

∑
n=−∞

x[n]e− jωn (13)

x[n] =
∫

π

−π

X(e jω)e jωndω (14)

• x[n] is a discrete time signal
• The DTFT X(e jω) is a complex continuos function of the independent variable ω. As

such, can be put in the equivalent forms:

X(e jω) = XR(e jω)+XI(e jω) (15)

X(e jω) = |X(e jω)|e∠X(e jω) (16)

|X(e jω)| is the magnitude or Fourier spectrum of the signal and e∠X(e jω) is the phase
spectrum of the transformed signal.

• x[n] and X(e jω) form the Fourier representation for the sequence.
• Eq. (??): analysis formula. It projects the signal to the frequency domain.
• Eq. (??): synthesis or reconstruction formula. It is used to recover the signal from its

frequency domain representation.
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DTFT: Interpretation

The DTFT represents the sequence x[n] as a linear superposition of in-

finitesimally small complex sinusoids of the form

1
2π

X(e jωn)dω (17)

with −π ≤ ω ≤ π and X(e jωn) representing the relative amount of each

complex sinusoidal component.

By comparing (??) with relation (??) it is easy to realize that the frequency

response of a LTIS is the Fourier transform of its impulse response

H(e jω) =
+∞

∑
n=−∞

h[n]e− jωn ↔ h[n] =
1

2π

∫
π

−π

H(e jω)e jωn
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DTFT

Symmetry properties of the DTFT: see Table 2.1, page 53 of the reference

textbook

The DTFT is a periodic function of ω with period 2π.

X(e j(ω+2π)) =
+∞

∑
n=−∞

x[n]e− j(ω+2π)n (18)

= e− j2πn
+∞

∑
n=−∞

x[n]e− jωn = X(e jω) (19)

More in general:

X(e j(ω+2rπ)) = X(e jω),∀r ∈ I (20)

The Fourier spectrum of a discrete (sampled) signal is periodic
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Eulero’s formula

e jx = cosx+ j sinx→ e− jω2nπ = e− jωne− j2πn = e− jωn,∀n ∈ I(21)

Reminder:

sinx =
e jx− e− jx

2 j
cosx =

e jx+ e− jx

2
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Example: rect() function

The rect() function is important because it represents the impulse response of the ideal

band-pass filter in the frequency domain. Its Fourier transform is a sinc() function which

spreads over (∞,+∞).
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Ideal low pass filter

H(e jωn) = H(ω) =

{
1 |ω| ≤ ωc
0 ωc < |ω| ≤ π

(22)

h[n] =
1

2π

∫ +∞

−∞

H(eiω)e jωndω =
1

2π

∫
ωc

−ωc
e jωndω =

=
1

2π

1
jn

[
e jωn

]ωc

−ωc
=

ωc
π

sin(ωcn)
ωcn

=
ωc
π

sinc(ωcn)

h[n] =
ωc
π

sinc(ωcn) (23)

ωc : cutting frequency of the filter↔ bandwidth

Let ωs be the sampling frequency. If we let ωc =
ωs
2 then

h[n] =
1
Ts

sinc

(
nπ

Ts

)
(24)
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To keep in mind

Sequence Fourier transform
δ[n] 1
δ[n−n0] e− jωn0

1 ∑k 2πδ(ω+2kπ)

sin(ωcn)
n X(ω) =

{
1 |ω| ≤ ωc
0 ωc < |ω| ≤ π

x[n] = rectT [n] 2T sinc(ωT )
e jω0n

∑k 2πδ(ω−ω0+2kπ)

cos(ω0n+Φ) π∑k

[
e jΦδ(ω−ω0+2kπ+ e− jΦδ(ω+ω0+2kπ)

]
Table 2.3, page 61, reference textbook
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Discrete Time Systems
A DTS is an operator that maps a discrete sequence x[n] at its input to a

discrete sequence y[n] at its output:
y[n] = T{x[n]}

T
x[n] y[n]

• Linearity:

T{x1[n]+ x2[n]} = T{x1[n]}+T{x2[n]}, additivity (25)

T{ax[n]} = aT{x[n]}, scaling or homogeneity (26)

⇒ Principle of superposition:

T{a1x1[n]+a2x2[n]} = a1T{x1[n]}+a2T{x2[n]} (27)
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Discrete Time Systems

• Time-invariance: a delayed input sequence maps to a delayed output

sequence:

x[n] → y[n] (28)

x[n−n0] → y[n−n0] (29)

• Causality: the output value y[n] for n = n0 only depends on previous

input samples x[n] : n < n0
In images causality doesn’t matter!

• Stability: a bounded input generates a bounded output
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Linear Time Invariant Systems
Linear systems:

y[n] = T

{
∞

∑
k=−∞

x[k]δ[n− k]

}
(30)

Principle of superposition:

y[n] =
∞

∑
k=−∞

x[k]T {δ[n− k]}= (31)

=
∞

∑
k=−∞

x[k]hk[n] (32)

Time invariance:

y[n] =
∞

∑
k=−∞

x[k]h[n− k]↔ Convolution sum (33)

→ The system is completely characterized by the impulse response h[k]
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Convolution operator

x[n]? y[n] =
+∞

∑
k=−∞

x[k] · y[n− k] (34)

=
+∞

∑
k=−∞

x[n− k] · y[k] (35)

Recipe for the convolution (refer to( ??)):
1. Reflect y[k] about the origin to get y[−k]

2. Shift the reflected sequence of n steps

3. Multiply (point wise) the resulting sequence by x[n]

4. Sum over the samples of the resulting signal to get the value of the convolution at
position n

5. Increment n and ge back to point 2.

Gloria Menegaz Discrete Time Signals and SystemsTime-frequency Analysis 27



Properties of LTIS

• Commutativity (see( ??))

A LTIS with input x[n] and impulse response h[n] has the same output of a system

with input h[n] and impulse response x[n]

→ The cascade of LTIS systems has an impulse response that is the

convolution of the IRs of the individual systems

• Distributivity:

x[n]? (h1[n]+h2[n]) = x[n]?h1[n]+ x[n]?h2[n]

→ The parallel connection of LTIS systems has an impulse response

that is the sum of the IRs of the single systems
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Properties of LTIS

h
1

[n]

h [n]
2

h  [n]
m

h [n]+h [n]+.... +h [n]
1 2 m+

h [n]*h [n] .... *h [n]
1 2 m

h
1

[n] h [n]
2

h  [n]
m

Cascade connection

Parallel connection

x[n] y[n]

x[n] y[n]

x[n] y[n] x[n] y[n]
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Difference Equation
The transfer function is a N-th order linear constant coefficient difference
equation:

N−1

∑
k=0

aky[n− k] =
M

∑
k=0

bkx[n− k]→ (36)

y[n] =
1
a0

{
N−1

∑
k=1

aky[n− k]+
M

∑
k=0

bkx[n− k]

}
(37)

→ The output value y[n] is the linear combination of the N− 1 last values
of the output and the M last values of the input x[n].
System classification:

• Finite Impulse Response (FIR): the impulse response involves a finite
number of samples

• Infinite Impulse Response (IIR): the impulse response involves a infi-
nite number of samples

Gloria Menegaz Discrete Time Signals and SystemsTime-frequency Analysis 31



Frequency domain

• Complex exponential sequences are eigenfunctions of LTIS

• The response to a complex sinusoid x[n] = e jωn,−∞ < n < +∞ is a

sinusoid with same frequency and amplitude and phase determined by

the system (i.e. by the impulse response)

y[n] =
+∞

∑
k=−∞

h[k]e jω(n−k) = e jωn

(
+∞

∑
k=−∞

h[k]e− jωk

)
(38)

Let:
H(e jω) =

+∞

∑
k=−∞

h[k]e− jωk (39)

Then: y[n] = H(e jω)e jωn (40)
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Frequency domain

H(e jω) frequency response of the system

H(e jω) = HR(e
jω)+HI(e

jω) (41)

= |H(e jω)|e∠H(e jω) (42)

→ If we manage to put the input signal in the form of a sum of complex

exponentials then the output can be obtained as the sum of the responses

to such signal components:

x[n] =
+∞

∑
k=−∞

αke jωkn Fourier representation→ (43)

y[n] =
+∞

∑
k=−∞

αkH(e jωk)e jωk output of the LTIS (44)
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Frequency response of a LTIS

H(e jω) is always a periodic function of ω with period 2π

H(e j(ω+2rπ)) =
+∞

∑
n=−∞

h[n]e− j(ω+2rπ)n =
+∞

∑
n=−∞

h[n]e− jωn = H(e jω)

(45)

Due to this property as well as to the fact that frequencies differing for mul-

tiples of 2π are indistinguishable, H(e jω) only needs to be specified over

an interval of length 2π. The inherent periodicity defines the frequency re-

sponse on the entire frequency axis. It is common use to specify H over

the interval −π ≤ ω ≤ π. Then, the frequencies around even multiples of

π are referred to as low frequencies, while those around odd multiples of π

are high frequencies.

Gloria Menegaz Discrete Time Signals and SystemsTime-frequency Analysis 34


