

ier iogie	
Decidable ?	Quant. Elim. ?
YES	YES
YES	YES
?	NO
Tarski's result : Every formula in (ℜ, <, +, -, ×, 0, 1) can be decided 1. Eliminate quantified variables 2.Quantifier free formulas can be decided	
	Decidable ? YES YES ? $(\Re,<,+,-,\times,0,$ bles can be decided

Nilpotent Linear SystemsNilpotent matrices: $\exists n \geq 0$ $A^n = 0$ Then flow of linear system is polynomial $e^{-tA} = \sum_{k=0}^{n-1} (-1)^k \frac{t^k}{k!} A^k$ Therefore Pre(Y) completely definable in $(\Re < +, -, \times, 0, 1)$ $Pre(Y) = \{x \in \Re^n \mid \exists y \exists t. p(y) \land t \geq 0 \land x = \sum_{k=0}^{n-1} (-1)^k \frac{t^k}{k!} A^k y\}$

Tenn Renn

Simulation Relations
Consider two transition systems
$S_1 = (Q_1, i_1, \Sigma, \rightarrow_1)$
$S_2 = (Q_2, i_2, \Sigma, \rightarrow_2)$
over the same set of labels and observations. A relation $R \subseteq Q_1 \times Q_2$ is called a simulation relation if it 1. Respects initial states $(i_1, i_2) \in R$
2. Respects transitions $q_1 \xrightarrow{\sigma} q_1$ R R $q_2 \xrightarrow{\sigma} q_2$
If a simulation relation exists, then $S_1 \leq S_2$

Coarsest Bisimulation

Find map $x_2 = Hx_1$ which abstracts as much as possible. Thus Ker(H) must be maximal but also must...

Preserve observations

$$\operatorname{Ker}(\mathsf{H}) \subseteq \operatorname{Ker}(\mathcal{C}_1)$$

Preserve transitions

$$A_1$$
Ker(H) \subseteq Ker(H) + R(E₁)

This lead to the well known algorithm...

Penn

