
1

Verification of hybrid systems

George J. Pappas

Departments of ESE and CIS

University of Pennsylvania

pappasg@ee.upenn.edu

http://www.seas.upenn.edu/~pappasg

HYBRIDGE Summer School on

Hybrid Systems : A Formal Paradigm for

Safety Critical Embedded Systems

Patras, Greece

September 22-24, 2004

Thanks to

School Organizers

Marika di Benedetto

Kostas Kyriakopoulos

John Lygeros

and HYBRIDGE

2

Collaborators
Rajeev Alur, Datta Godbole, Tom
Henzinger, Ali Jadbabaie, John Koo,
Vijay Kumar, Gerardo Lafferierre,
Insup Lee, John Lygeros, Shankar
Sastry, Omid Shakernia, Claire
Tomlin, Sergio Yovine

Support
NSF Career, PECASE
NSF ITR (2)
NSF EHS
ARO MURI
DARPA HURT
Honeywell

Acknowledgments

Postdocs
Mohamed Babaali
Antoine Girard

Ph.D Students
Ali Ahmazadeh
George Fainekos
Hadas Kress Gazit
Hakan Yazarel
Michael Zavlanos

Goals for this mini-course

Why hybrid systems ?
Emphasis on some engineering examples

Modeling of hybrid systems
Emphasis on abstraction and refinement

Analysis of hybrid systems
Emphasis on algorithmic verification

Synthesis of hybrid controllers
Emphasis on temporal logic synthesis

Warning : All questions and answers are biased and incomplete!

3

Some references
Bisimilar linear systems
George J. Pappas
Automatica. 39(12):2035-2047 December 2003.

Model checking LTL over controllable linear systems is decidable
Paulo Tabuada and George J. Pappas
Hybrid Systems : Computation and Control, Lecture Notes in Computer Science, Prague, Czech Republic, April 2003

Symbolic reachability computations for families of linear vector fields
G. Lafferriere, G. J. Pappas, and S. Yovine
Journal of Symbolic Computation, 32(3):231-253, September 2001.

Discrete abstractions of hybrid systems
R.Alur, T. Henzinger, G. Lafferriere, G. Pappas
Proceedings of the IEEE, 88(2):971-984, July 2000.

Hierarchically consistent control systems
George J. Pappas, Gerardo Lafferriere, and Shankar Sastry
IEEE Transactions on Automatic Control, 45(6):1144-1160, June 2000.

O-minimal hybrid systems
G. Lafferriere, G. J. Pappas, and S. Sastry
Mathematics of Control, Signals, and Systems, 13(1):1-21, March 2000.

Outline of lectures

Lecture 1 : Thursday, September 23Lecture 1 : Thursday, September 23
Examples of hybrid systems and modeling formalisms

Transitions systems, temporal logics, abstraction
Discrete abstractions of hybrid systems for verification

Lecture 2 : Friday, September 24
Applications in motion planning and visibility games

4

Why hybrid ?

Enabling technologies

Advances in sensor and actuator technology
GPS, control of quantum systems

Invasion of powerful microprocessors in physical devices
Sophisticated software/hardware on board

Networking everywhere
Interconnects subsystems

5

Emerging applications…

Latest BMW : 72 networked microprocessors
Boeing 777 : 1280 networked microprocessors

Networked embedded systems…

Sensor

Controller
SW/HW

Actuator

Physical
System

Sensor

Controller
SW/HW

Actuator

Physical
System

Network

6

Physical system is continuous, software is discrete

Networked embedded systems…

Sensor

Controller
SW/HW

Actuator

Physical
System

Sensor

Controller
SW/HW

Actuator

Physical
System

Network

Discrete and Continuous

Control Theory
Continuous systems
Stability, control
Feedback, robustness

Computer Science
Transition systems
Composition, abstraction
Concurrency models

Hybrid Systems
Software controlled systems
Multi-modal systems
Embedded real-time systems
Multi-agent systems

7

Exporting Science

Control Theory
Continuous systems
Stability, control
Feedback, robustness

Computer Science
Transition systems
Composition, abstraction
Concurrency models

Composition
Abstraction
Concurrency

Robustness
Feedback
Stability

Different views…

Computer science perspective
View the physics from the eyes of the software
Modeling result : Hybrid automaton

Control theory perspective
View the software from the eyes of the physics
Modeling result : Switched control systems

8

Hybrid behavior arises in
Hybrid dynamics

Hybrid model is a simplification of a larger nonlinear model
Quantized control of continuous systems

Input and observation sets are finite
Logic based switching

Software is designed to supervise various dynamics/controllers
Partial synchronization of many continuous systems

Resource allocation for competing multi-agent systems
Hybrid specifications of continuous systems

Plant is continuous, but specification is discrete or hybrid...

Logic based switching

9

Nuclear reactor example
Without rods

With rod 1

With rod 2

Rod 1 and 2 cannot be used simultaneously
Once a rod is removed, you cannot use it for 10 minutes

Specification : Keep temperature between 510 and 550 degrees.
If T=550 then either a rod is available or we shutdown the plant.

50T 0.1
.
T −=

60T 0.1
.
T −=

56T 0.1
.
T −=

Software model of nuclear reactor

NoRodRod1 Rod2

Shutdown

10

Hybrid model of nuclear reactor

550T ≤

NoRodRod1 Rod2

Shutdown

10y10y510T 21 =∧=∧=

50T 0.1
.
T −=

10y550T 2 ≥∧=10y550T 1 ≥∧=

56T 0.1
.
T −=

510T ≥

60T 0.1
.
T −=

510T ≥

50T 0.1
.
T −=

1
.
y1 = 1

.
y2 = 1

.
y1 = 1

.
y2 = 1

.
y1 = 1

.
y2 =

1
.
y1 = 1

.
y2 =

0y510T 1 =→= : 0y510T 2 =→= :

true

10y10y550T 21 <∧<∧=

Analysis : Is shutdown reachable ?Analysis : Is shutdown reachable ?

Algorithmic verification : NO Algorithmic verification : NO

Conflict Resolution in ATM*

11

Conflict Resolution Protocol

away milesa until Cruise 1. 1

∆Φ by heading Change 2.
 d distance lateral until heading Maintain 3.

heading original to Change 4.
∆Φ- by heading Change 5.

 d- distance lateral until heading Maintain 6.
heading original to Change 7.

Is this protocol safe ?

Conflict Resolution Maneuver

12

Computing Unsafe Sets

Safe Sets

13

Partial synchronization
(Concurrency)

The train gate

Safety specification : If train is within 10 meters of the crossing, then
gate should completely closed.

Liveness specification : Keep gate open as much as possible.

x

approach exit

θ

lower
raise

Controller

Controller || Gate || Train System =

14

Train model

0x ≥

nearfar past

2000 x ≥

0x =

40x 50-
.

−≤≤

1000x ≥ -100x ≥

1000x =

30x 50-
.

−≤≤ 30x 50-
.

−≤≤approach

)[2000,x' 010x ∞∈→−=

exit

Gate model

90θ =

openraising

90θ ≤

9θ
.
=

lowering closed

0θ
.
=

90θ =
lower

9θ
.

−=

0θ ≥

0θ
.
=

0θ =

90θ =

raise
lowerraise

0θ =

raise

lowerlower

raise

15

Controller model

idletolower Going raise to Going

true

0:y =

dy ≤

1y
.
=

approach

true

exit
1y

.
=

raise

0:y =

lower

1y
.
=

dy ≤

0:y =

approach

0:y =

exit

Synchronized transitions

idletolower Going raise to Going

true

0:y =

dy ≤

1y
.
=approach

true

exit 1y
.
=

raise

0:y =

lower

1y
.
=

dy ≤

0:y =

approach

0:y =

exit

0x ≥

nearfar past

2000 x≥

0x =

40x 50-
.

−≤≤

1000x ≥ -100x ≥

1000x =

30x 50-
.

−≤≤ 30x 50-
.

−≤≤approach

)[2000,x' 010x ∞∈→−=
exit

16

Verifying the controller

Safety specification : Can we avoid the set ?

Parametric HyTech verification :

x

approach exit

θ

lower
raise

Controller

Controller || Gate || Train System =

 10)x(-10 0θ ≤≤∧>

5
49d if YES ≤

Research Issues
Modeling Issues

Well posedness, robustness, zenoness
Analysis

Stability issues, qualitative theory, parametric analysis
Verification

Algorithmic methods that verify system performance
Controller Synthesis

Algorithmic methods that design hybrid controllers
Simulation

Mixed signal simulation, event detection, modularity
Code generation

From hybrid models to embedded code
Complexity

Compositionality and hierarchies

Tools : HyTech, Checkmate, d/dt, HYSDEL, Stateflow, Charon

17

Outline of lectures

Lecture 1 : Thursday, September 23Lecture 1 : Thursday, September 23
Examples of hybrid systems and modeling formalisms

Transitions systems, temporal logics, abstraction
Discrete abstractions of hybrid systems for verification

Lecture 2 : Friday, September 24
Applications in motion planning and visibility games

Transition Systems
A transition system

consists of
A set of states Q
A set of events
A set of observations O
The transition relation
The observation map

Initial or final states may be incorporated
The sets Q, , and O may be infinite
Language of T is all sequences of observations

) O, , Σ, Q, (T ⋅→=

0o

2

σ

1 qq →

Σ

Σ

0q

1q 2q

3q 4q

0o0o

1o 2o

01 oq =

σσ

σσ

18

A painful example
The parking meter

0 1 2 3 604 5
tick tick tick tick tick tick tick

tick

5p
5p

5p

5p

States Q ={0,1,2,…,60}

Events {tick,5p}

Observations {exp,act}

A possible string of observations (exp,act,act,act,act,act,exp,…)

exp act actactact actact

A familiar example

1T∆
kk1k BuAxx +=+

kk Cxy =

) O, , Σ, Q, (T∆
 ⋅→= nRX Q set State ==

mR U Σ set Label ==

pR Y O set nObservatio ==

Cxx Map nObservatio Linear =

XUX Relation Transition ××⊆→

BuAxx xx 122

u

1 +=⇔→

∆
 T System Transition

19

Transition Systems
A region is a subset of states

We define the following operators

Q P ⊆

p}q Pp|Q{q(P)Pre
σ

σ →∈∃∈=

p}q Pp Σσ|Q{qPre(P)
σ
→∈∃∈∃∈=

q}p Pp|Q{q(P)Post
σ

σ →∈∃∈=

q}p Pp Σσ|Q{qPost(P)
σ
→∈∃∈∃∈=

Transition Systems
We can recursively define

Similarly for the other operators. Also

(P))(PrePre(P)Pre 1-n
σσ

n
σ =

(P)Pre(P)Pre σ
1
σ =

U
Nn

n* (P)Pre(P)Pre
∈

=

U
Nn

n* (P)Post(P)Post
∈

=

20

Basic safety problems
Given transition system T and regions P, S determine

Forward Forward ReachabilityReachability

Backward Backward ReachabilityReachability

Postã(P)∩ S6=∅

P ∩ Preã(S)6=∅

If T is finite, then algorithm terminates (decidability).
Complexity :

Forward reachability algorithm

Forward Forward Reachability Reachability AlgorithmAlgorithm

initialize
while TRUE do

if return UNSAFE ; end if;
if return SAFE ; end if;

end while

R := P

R∩ S6=∅

R := R∪ Post(R)

Post(R) ò R

O(nI+mR)

reachable
transitions

initial
states

21

If T is infinite, then there is no guarantee of termination.

Backward reachability algorithm

Backward Backward Reachability Reachability AlgorithmAlgorithm

initialize
while TRUE do

if return UNSAFE ; end if;
if return SAFE ; end if;

end while

R := S

R∩ P 6=∅

R := R∪ Pre(R)

Pre(R) ò R

Representation issues
Enumeration for finite sets
Symbolic representation for infinite (or finite) sets

Operations on sets
Boolean operations
Pre and Post computations (closure?)

Algorithmic termination (decidability)
Guaranteed for finite transition systems
No guarantee for infinite transition systems

Algorithmic issues

22

More sophisticated properties can be expressed using
Linear Temporal Logic (LTL)
Computation Tree Logic (CTL)
CTL*
mu-calculus

More complicated problems

The basic verification problem

Basic verification problemBasic verification problem

T |=ϕ

Given transition system T, and temporal logic formula ϕ

Two main approaches

Model checking : Algorithmic, restrictive
Deductive methods : Semi-automated, general

23

Another verification problem

Another verification problemAnother verification problem

L(T) ò L(S)

Given transition system T, and specification system S

Language inclusion problems

The basic synthesis problem

Basic synthesis problemBasic synthesis problem

T k C |=ϕ

Given transition system T, and temporal logic formula ϕ

Synthesis in computer science assumes disturbances

Deep relationship between synthesis and game theory

24

Express temporal specifications along sequences

Informally Syntax Semantics

Eventually p

Always p

If p then next q

p until q

Linear temporal logic (informally)

♦p

p ⇒ í q

p U q

qqqqqqqqqqqqp

qqqqqqqqpq

pppppppppppppppq

p pppppppppppppp

Linear temporal logic syntax

The LTL formulas are defined inductively as follows

Atomic propositions
All observation symbols p are formulas

Boolean operators
If and are formulas then

Temporal operators
If and are formulas then

Linear temporal logic (formally)

ϕ1 ϕ2

ϕ1 ϕ2

ϕ1 ∨ ϕ2 ¬ϕ1

ϕ1 U ϕ2 íϕ1

25

The LTL formulas are interpreted over infinite (omega) words

w = p0 p1 p2 p3 p4. . .

(w, i) |=p iff pi = p

(w, i) |=ϕ1 ∨ ϕ2 iff (w, i) |=ϕ1

(w, i) |=ϕ1 U ϕ2

(w, i) |= íϕ1 iff (w, i +1)|=ϕ1

or (w, i) |=ϕ2

(w, i) |=¬ϕ1 iff (w, i) 6 |=ϕ1

Linear temporal logic semantics

∃j õ i (w, j) |=ϕ2 and ∀ i ô k ô j (w, k) |=ϕ2

w |=þ iff (w, 0) |= ϕ

T |=þ iff ∀w ∈ L(T) w |= ϕ

Syntactic boolean abbreviations

Conjunction
Implication
Equivalence

Syntactic temporal abbreviations

Eventually
Always
In 3 steps

Linear temporal logic

♦ ϕ = > U ϕ
ϕ = ¬♦ ¬ϕ

ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2)
ϕ1 ⇒ ϕ2 = ¬ϕ1 ∨ ϕ2

ϕ1 ⇔ ϕ2 = (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1)

í3 ϕ = íííϕ

26

Two processors want to access a critical section. Each processor can has three
observable states

p1={inCS, outCS, reqCS}
p2={inCS, outCS, reqCS}

Mutual exclusion
Both processors are not in the critical section at the same time.

Starvation freedom
If process 1 requests entry, then it eventually enters the critical section.

LTL examples

¬(p1 = inCS ∧ p2 = inCS)

p1 = reqCS⇒ ♦p1 = inCS

LTL Model Checking

LTL model checkingLTL model checking

T |=ϕ

Given transition system and LTL formula we have

LTL model checking is decidable for finite T

Complexity :

Determine if

O((n+m)(k+ l)2O(k))

states transitions formula
length

System verified

Counterexample

27

Express specifications in computation trees (branching time)

Informally Syntax Semantics

Inevitably next p

Possibly always p

Computation tree logic (informally)

∀í p

∃ p

ppp

pq

p

q

Comparing logics

LTLCTL

CTL*

28

Dealing with complexity

Bisimulation

Simulation

Language Inclusion

Language Equivalence
Consider two transition systems and over same and O

Languanges are equivalent L()=L()

0o 0p

3p 4p

0o

1o 2o

 1T 2T Σ

 2T0o 0q

1q 2q

3q 4q

0o0o

1o 2o

 1T
σσ σ

σ σ σσ

1p

 1T 2T

29

LTL equivalence
Consider two transition systems and and an LTL formula

Language equivalence and inclusion are difficult to check

 1T 2T

Language equivalenceLanguage equivalence

If L(T1) = L(T2) then T1 |=ϕ ⇔ T2 |=ϕ

Language inclusionLanguage inclusion

If L(T1) ò L(T2) then T2 |=ϕ ⇒ T1 |=ϕ

Simulation Relations
Consider two transition systems

over the same set of labels and observations. A relation
is called a simulation relation if it

1. Respects observations

2. Respects transitions

If a simulation relation exists, then

) O, , Σ, ,Q (T 1111 ⋅→=
) O, , Σ, ,Q (T 2222 ⋅→=

 21 Q Q S ×⊆

21 pq then Sp)(q, if =∈

S)p',(q' some for p'p then ,q'q and Sp)(q, if
σσ

∈→→∈

21 TT ≤

30

Game theoretic semantics
Simulation is a matching game between the systems

Check that but it is not true that

0o 0p

3p 4p

0o

1o 2o

 2T0o 0q

1q 2q

3q 4q

0o0o

1o 2o

 1T
σσ σ

σ σ σσ

1p

21 TT ≤ 12 TT ≤

The parking example
The parking meter

A coarser model

0 1 2 3 604 5
tick tick tick tick tick tick tick

tick

5p
5p

5p

5p

exp act actactact actact

5p

0
tick

tick

exp
many

5p

act

tick

many)}(60,many),...,(1,{(0,0), S =

31

Simulation relations
Consider two transition systems and

Complexity of

Complexity of

 1T 2T

Simulation implies language inclusionSimulation implies language inclusion

If T1 ô T2 then L(T1) ò L(T2)

L(T1) ò L(T2) O((n1 +m1)2
n2)

T1 ô T2 O((n1 +m1)(n2 +m2))

Two important cases

Abstraction Refinement

21 TT ≤

1T

2T

21 TT ≤

1T

2T

32

Bisimulation
Consider two transition systems and

Bisimulation is a symmetric simulation
Strong notion of equivalence for transition systems

 1T 2T

BisimulationBisimulation

T1 ñ T2 if T1 ô T2 ∧ T2 ô T1

CTL* (and LTL) equivalenceCTL* (and LTL) equivalence
If T1 ñ T2 then T1 |=ϕ ⇔ T2 |=ϕ

If T1 ñ T2 then L(T1) = L(T2)

≈≤ /TT

T

≈/T

Special quotients

Abstraction

When is the quotient language equivalent or bisimilar to T ?

33

Quotient Transition Systems
Given a transition system

and an observation preserving partition , define

naturally using
1. Observation Map

2. Transition Relation

) O, , Σ, Q, (T ⋅→=
QQ ×⊆≈

) O, , Σ, ,Q/ (T/ ≈≈ ⋅→≈=≈

o p with Pp exists there iff o P =∈=
≈

p' p with P'p'P,p exists there iff P' P
σσ
→∈∈→≈

Bisimulation Algorithm
Quotient system always simulates the original system

When does original system simulate the quotient system ?

≈/T T

T ≈/T

1o

2oσ

σ

34

Bisimulation Algorithm
Quotient system always simulates the original system

When does original system simulate the quotient system ?

≈/T T

T ≈/T

1o

2oσ

σ

If T is finite, then algorithm computes coarsest quotient.
If T is infinite, there is no guarantee of termination

Bisimulation algorithm

BisimulationBisimulation AlgorithmAlgorithm

initialize
while such that

end while

Q/ø = {p ø q iff < q >=< p >}
∅ 6= ò P ∩ Pre(P0)6= ò P0

P1 := P ∩ Pre(P0)

∃P, P0 ∈ Q/ø

P2 := P \ Pre(P0)

Q/ø := (Q/ø \ {P})∪ {P1, P2}

35

Relationships

Bisimulation

Simulation

Language Inclusion

Strongest, more properties, easiest to check

Weaker, less properties, easy to check

Weakest, less properties, difficult to check

Complexity comparisons

Bisimulation

Simulation

Language Equivalence

O(m á log(n))

O(m á n)

O(m á 2n)

36

Outline of lectures

Lecture 1 : Thursday, September 23Lecture 1 : Thursday, September 23
Examples of hybrid systems and modeling formalisms

Transitions systems, temporal logics, abstraction
Discrete abstractions of hybrid systems for verification

Lecture 2 : Friday, September 24
Applications in motion planning and visibility games

≈≡ /TT

T

≈/T

Hybrid to discrete

Abstraction

Goal : Finite quotients of hybrid systems

Hybrid

Discrete

37

Hybrid System Model
A hybrid system consists of

is a finite set of states
is the continuous state space
is the state space of the hybrid system
is the set of initial states
maps a diff. inclusion to each discrete state
maps invariant sets to each discrete state
is a relation capturing discontinuous changes

Define

H = (V,<n,X0, F, Inv,R)

<n

X = Vâ<n

X0 òX
F(l, x) ò<n

V

Inv(l) ò<n

R òXâX

E = {(l, l0)| ∃x ∈ Inv(l), x0 ∈ Inv(l0) ((l, x), (l0, x0)) ∈ R}
Init(l) = {x ∈ Inv(l) | (l, x) ∈ X0}
Guard(e) = {x ∈ Inv(l)| ∃x0 ∈ Inv(l0) ((l, x), (l0, x0)) ∈ R}
Reset(e, x) = {x0 ∈ Inv(l0)| ((l, x), (l0, x0)) ∈ R}

An example

550T ≤

NoRodRod1 Rod2

Shutdown

10y10y510T 21 =∧=∧=

50T 0.1
.
T −=

10y550T 2 ≥∧=10y550T 1 ≥∧=

56T 0.1
.
T −=

510T ≥

60T 0.1
.
T −=

510T ≥

50T 0.1
.
T −=

1
.
y1 = 1

.
y2 = 1

.
y1 = 1

.
y2 = 1

.
y1 = 1

.
y2 =

1
.
y1 = 1

.
y2 =

0y510T 1 =→= : 0y510T 2 =→= :

true

10y10y550T 21 <∧<∧=

38

Transitions of Hybrid Systems
Hybrid systems can be embedded into transition systems
H = (V,<n,X0, F, Inv,R) TH = (Q,Q0,Σ,→,O,< á>)
Q = Vâ<n

Q0 =X0

Σ = E∪ {ü}
→òQâΣâ Q

(l1, x1)à→(l2, x2) iff x1 ∈ Guard(e), x2 ∈ Reset(e, x1)

(l1, x1)à→(l2, x2) iff l1 = l2 and ∃î õ 0 x(á) : [0, î]→<n

x(0) = x1, x(î) = x2, and ∀t ∈ [0, î]

xç ∈ F(l1, x(t)) and x(t) ∈ Inv(l1)

Discrete transitions

Continuous (time-abstract) transitions

Observation set and map
depend on desired properties

e

ü

Rectangular hybrid automata

0x ≥

nearfar past

2000 x ≥

0x =

40x 50-
.

−≤≤

1000x ≥ -100x ≥

1000x =

30x 50-
.

−≤≤ 30x 50-
.

−≤≤approach

)[2000,x' 010x ∞∈→−=

exit

Rectangular sets :
V

ixi ø ci ø∈ {<,ô,=,õ,>}, ci ∈ Q

Rectangular hybrid automata are hybrid systems where

are rectangular sets

Init(l), Inv(l), F(l, x),Guard(e),Reset(e, x)i

39

Multi-rate automata

0x ≥

1l3l

2000 x =

0x =

3x
.

−=

1000x ≥ -100x ≥

1000x =

2x
.

−= 1x
.

−=

2000x' 010x =→−=

Multi-rate automata are rectangular hybrid automata where

are singleton sets

Init(l), F(l, x),Reset(e, x)i

2l

Timed automata

5y <

1l3l

0 x =

3y >1x
.
=

10x < true

0:y 9x =→>

1:y0:x 20y 10x =∧=→>∧>

Timed automata are multi-rate automata where

for all locations l and all variables.

F(l, xi) = 1

2l

1y
.
=

1x
.
=

1y
.
=

1x
.
=

1y
.
=

40

Initialized automata

Rectangular hybrid automata are initializedinitialized if the following holds:

After a discrete transition, if the differential inclusion (equation) for
a variable changes, then the variable must be reset to a fixed interval.

Timed automata are always initialized.

0x ≥

nearfar past

2000 x ≥

0x =

40x 50-
.

−≤≤

1000x ≥ -100x ≥

1000x =

30x 50-
.

−≤≤ 30x 50-
.

−≤≤approach

)[2000,x' 010x ∞∈→−=

exit

Bad news

Undecidability Undecidability barriers barriers
Consider the class of uninitialized multi-rate automata with n-1 clock
variables, and one two slope variable (with two different rates).

The reachability problem is undecidable for this class.

No algorithmic procedure exists.

Model checking temporal logic formulas is also undecidable

Initalization is necessary for decidability

41

Timed automata

5y <

1l3l

0 x =

3y >1x
.
=

10x < true

0:y 9x =→>

1:y0:x 20y 10x =∧=→>∧>

All timed automata admit a finite All timed automata admit a finite bisimulation bisimulation

2l

1y
.
=

1x
.
=

1y
.
=

1x
.
=

1y
.
=

Hence CTL* model checking is decidable for timed automata

Timed automata

5y <

1l3l

0 x =

3y >

true

0:y 9x =→>

1:y0:x 20y 10x =∧=→>∧>

2l
1x

.
=

1y
.
=

1x
.
=

1y
.
=

Approach : Discretize the clock dynamics using region equivalence

42

Region equivalence

3l

 x

y

Equivalence classes : 6 corner points
14 open line segments
8 open regions

Multi-rate automata

0x ≥

1l3l

2000 x =

0x =

3x
.

−=

1000x ≥ -100x ≥

1000x =

2x
.

−= 1x
.

−=

2000x' 010x =→−=

2l

All initialized multiAll initialized multi--rate automata admit a finite rate automata admit a finite bisimulation bisimulation

43

Rectangular automata

0x ≥

1l3l

2000 x =

0x =

3x
.

−=

1000x ≥ -100x ≥

1000x =

2x
.

−= 1x
.

−=

2000x' 010x =→−=

2l

All initialized rectangular automata admit a finite All initialized rectangular automata admit a finite bisimulation bisimulation

Rectangular automata

0x ≥

1l3l

2000 x =

0x =

3x
.

−=

1000x ≥ -100x ≥

1000x =

2x
.

−= 1x
.

−=

2000x' 010x =→−=

2l

All initialized rectangular automata admit a finite All initialized rectangular automata admit a finite bisimulation bisimulation

44

No finite bisimulation

Bisimulation algorithm never terminates

2≤≤
.
y1

2≤≤
.
x1

1≤≤ x0
1≤≤ y0

1≤≤ y0
1≤≤ x0

0 y' Inv =→

0x' Inv =→

but…

All initialized rectangular automata admit a finite language All initialized rectangular automata admit a finite language
equivalence quotient which can be constructed effectively. equivalence quotient which can be constructed effectively.

0x ≥

nearfar past

2000 x ≥

0x =

40x 50-
.

−≤≤

1000x ≥ -100x ≥

1000x =

30x 50-
.

−≤≤ 30x 50-
.

−≤≤approach

)[2000,x' 010x ∞∈→−=

exit

LTL model checking of rectangular automata is decidable. LTL model checking of rectangular automata is decidable.

45

More complicated dynamics?

Bisimulation algorithm
never terminates !!

4}x0|{(x,0)P1 ≤≤=

0}x-4|{(x,0)P2 <≤=

)P(P\RP 21
2

3 ∪=

Sets Sets

211
.

x0.2xx +=

Dynamics Dynamics

212
.

0.2x-xx +=

Basic problems

Finite Finite bisimulations bisimulations of continuous dynamical systems of continuous dynamical systems
Given a vector field F(x) and a finite partition of

1. Does there exist a finite bisimulation ?
2. Can we compute it ?

nR

46

Representation issues
Symbolic representation for infinite sets
Rectangular sets ? Semi-linear ? Semi-algebraic ?

Operations on sets
Boolean (logical) operations
Can we compute Pre and Post ?
Is our representation closed under Pre and Post ?

Algorithmic termination (decidability)
No guarantee for infinite transition systems
We need “nice” alignment of sets and flows
Globally finite properties

Reminder

First-order logic
Every theory of the reals has an associated language

(<,<,+ ,à ,0,1)

Universe Relation Functions Constants

x1, x2, x3, . . .Variables :

TERMS : Variables, constants, or functions of them

ATOMIC FORMULAS : Apply the relation and equality to the terms

(FIRST ORDER) FORMULAS : Atomic formulas are formulas
If are formulas, then ϕ1,ϕ2 ϕ1∨ϕ2,¬ϕ1,∀x.ϕ1,∃x.ϕ1

x1àx2 +1,1+1,àx3

x1 +x2 <à1,2x1 = 1, x1 = x3

47

First-order logic
Useful languages

(<,<,+ ,à ,0,1)

(<,<,+ ,à ,â ,0,1)

(<,<,+ ,à ,â , ex,0,1)

∃x.ax2 +bx+c = 0

∃t.(t õ 0)∧ (y = etx)

∀x∀y(x+2y õ 0)

A theory of the reals is decidabledecidable if there is an algorithm which in
a finite number of steps will decide whether a formula is true or not

A theory of the reals admits quantifier eliminationquantifier elimination if there is an
algorithm which will eliminate all quantified variables.

∃x.ax2 +bx+c =0 ñ b2à4ac õ 0

First-order logic

(<,<,+ ,à ,0,1)

(<,<,+ ,à ,â ,0,1)

(<,<,+ ,à ,â , ex,0,1)

Decidable ? Quant. Elim. ?

YES

YES

YES

YES

NO?

Theory

Tarski’s Tarski’s result : result : Every formula in can be decided
1. Eliminate quantified variables
2.Quantifier free formulas can be decided

(<,<,+,à,â,0,1)

48

A definable set is

A theory of the reals is called oo--minimalminimal if every
definable subset of the reals is a finite union of
points and intervals

Example: for polynomial p(x)
Recent o-minimal theories

O-Minimal Theories

Exponential flows

Spirals ?

Y = {(x1, x2, . . ., xn) ∈ <n | ϕ(x1, . . ., xn)}

(<,<,+,à,0,1)

(<,<,+,à,â,0,1)

(<,<,+ ,à ,â, ex,0,1)

(<,<,+ ,à ,â , fê,0,1)

(<,<,+ ,à,â , fê, ex,0,1)

Y = {(x) ∈ < | p(x)õ 0}

Related to Hilbert’s 16th problem

Basic answers

Finite Finite bisimulations bisimulations of continuous dynamical systems of continuous dynamical systems
Consider a vector field X and a finite partition of where

1. The flow of the vector field is definable in an o-minimal theory
2. The finite partition is definable in the same o-minimal theory

Then a finite bisimulation always exists.

nR

49

Corollaries

Consider continuous systems where
Finite partition is polyhedral (semi-linear)
Vector fields have linear flows (timed, multi-rate)

Then a finite bisimulation exists.

Consider continuous systems where
Finite partition is semialgebraic
Vector fields have polynomial flows

Then a finite bisimulation exists.

(<,<,+,à,0,1)

(<,<,+,à,â,0,1)

Corollaries

Consider continuous systems where
Finite partition is semi-algebraic
Vector fields are linear with real eigenvalues

Then a finite bisimulation exists.

Consider continuous systems where
Finite partition is sub-analytic
Vector fields are linear with purely imaginary eigenvalues

Then a finite bisimulation exists.

(<,<,+ ,à ,â, ex,0,1)

(<,<,+ ,à ,â , fê,0,1)

50

Corollaries

Consider continuous systems where
Finite partition is semi-algebraic
Vector fields are linear with real or imginary eigenvalues

Then a finite bisimulation exists.

(<,<,+ ,à,â , fê, ex,0,1)

xx

x

x

x x

Conditions are sufficient but tight

Computability
Finite bisimulations exist, but can we compute them ?

Need to : Check emptiness
Perform boolean operations
Compute Pre (or Post)

BisimulationBisimulation AlgorithmAlgorithm

initialize
while such that

end while

Q/ø = {p ø q iff < q >=< p >}
∅ 6= ò P ∩ Pre(P0)6= ò P0

P1 := P ∩ Pre(P0)

∃P, P0 ∈ Q/ø

P2 := P \ Pre(P0)

Q/ø := (Q/ø \ {P})∪ {P1, P2}

(<,<,+,à,â,0,1)Use

51

Computing reachable sets
Consider a linear system

and a semi-algebraic set Y. If

Then

dt
dx=Ax A∈Qnân

Y={y ∈<n |p(y)}

Problem?

Pre(Y) = {x ∈ <n | ∃y∃t.p(y)∧ t õ 0∧x = eàtAy}

Rational entries

Nilpotent Linear Systems
Nilpotent matrices:

Then flow of linear system is polynomial

Therefore Pre(Y) completely definable in

eàtA =
P

k=0

nà1(à1)k
k!
tkAk

∃nõ 0 An = 0

(<,<,+,à,â,0,1)

∃y∃t.p(y)∧ t õ 0∧ x =
P

k=0

nà1(à1)k
k!
tkAky}Pre(Y) = {x ∈ <n |

52

Diagonalizable, rational eigenvalues
Example system :

Compute all states that can reach the set Y = { y=5 }

Let , then

xç = 2x

∃y∃t. y = 5 ∧ t õ 0 ∧ x = eà2ty}Pre(Y) = {x ∈ < |

s= eàt

∃y∃t. y = 5∧ 1 õ sõ 0∧ x = s2y}Pre(Y) = {x ∈ < |

0 <x ô 5}Pre(Y) = {x ∈ < |

Diagonalizable, rational eigenvalues
More generally

Therefore

1. Rescale rational eigenvalues to integer eingenvalues.
2. Eliminate negative integer eigenvalues
3. Perform the substitution

xç =Ax⇒ x(t) = TeΛtTà1x(0)

eàtA = [
P

k=1

n aijke
àõkt]ij

s= eàt

Consider diagonalizable linear vector fields with real,
rational eigenvalues, and let Y be a semi-algebraic set.
Then Pre(Y) is also semi-algebraic (and computable)

eàtA =
âP

k=1

n aijke
àõkt

ã
ij

53

Diagonalizable, imaginary eigenvalues
Procedure is similar if system is diagonalizable with purely

imaginary, rational eigenvalues

Equivalence is obtained by
Suffices to compute over a period

Composing all computability results together results in…

eàtA = [
P

k=1

n aijke
àõkt]ij

Consider diagonalizable linear vector fields with real,
rational eigenvalues, and let Y be a semi-algebraic set.
Then Pre(Y) is also semi-algebraic (and computable)

z1 = cos(t) z2 = sin(t)

Decidable problems for continuous systems

Consider linear vector fields of the form F(x)=Ax where

A is rational and nilpotent
A is rational, diagonalizable, with rational eigenvalues
A is rational, diagonalizable, with purely imaginary, rational eigenvalues

Then

1. The reachability problem between semi-algebraic sets is decidable.

2. Consider a finite semi-algebraic partition of the state space.
Then a finite bisimulation always, exists and can be computed.

3. Consider a CTL* formula where atomic propositions denote
semi-algebraic sets. Then CTL* model checking is decidable.

54

Decidable problems for hybrid systems

A hybrid system H is said to be o-minimal if
1. In each discrete state, all relevant sets and the flow of the vector

field are definable in the same o-minimal theory.
2. After every discrete transition, state is reset to a constant set

(forced initialization)

All o-minimal hybrid systems admit a finite bisimulation.

CTL* model checking is decidable for the class of o-minimal hybrid systems.

Decidable problems for hybrid systems

Consider a linear hybrid system H where
1. For each discrete state, all relevant sets are semi-algebraic
2. After every discrete transition, state is reset to a constant

semi-algebraic set (forced initialization)
3. In each discrete location, the vector fields are of the form F(x)=Ax

where
A is rational and nilpotent
A is rational, diagonalizable, with rational eigenvalues
A is rational, diagonalizable, with purely imaginary, rational eigenvalues

Then

CTL* model checking is decidable for this class of linear hybrid systems.

The reachability problem is decidable for such linear hybrid systems.

55

Outline of lectures

Lecture 1 : Thursday, September 23Lecture 1 : Thursday, September 23
Examples of hybrid systems and modeling formalisms

Transitions systems, temporal logics, abstraction
Discrete abstractions of hybrid systems for verification
Bisimulations of continuous systems (if time permits)

Lecture 2 : Friday, September 24
Applications in motion planning and visibility games

The main (controller) synthesis equation

or a more relaxed version…

Equations can be interpreted over various model types
Various semantics of composition and equivalence

Controller synthesis

B X||A ≅

B X||A ≤

56

The main (controller) synthesis equation

or a more relaxed version…

Models : Finite state automata
Composition :
Equivalence :
Order :

Discrete semantics

B X||A ≅

B X||A ≤

L(X) L(A)B)||L(A I=
L(X) L(A) iff BA =≅
L(X) L(A) iff BA ⊆≤

The main (controller) synthesis equation

or a more relaxed version…

Models : Control systems
Composition : Feedback composition
Equivalence : Asymptotic equivalence
Order : Not much…

Continuous semantics

B X||A ≅

B X||A ≤

57

Language equivalence for finite state systems has served us well as a
notion of system equivalence for systems which are NOT interacting
with other systems.

Asymptotic equivalence for control systems has served us well as a
notion of system equivalence for systems which are NOT interacting
with other systems.

Challenge : Reactive notions of system equivalence

Notions of equivalence

Two coffee machines*

 1S 2S

25c

25c

25c
25c

25c

teatea

coffee
coffee

 1S 2S

25c

tea
(25c)

coffee
(50c)

tea
(25c)

coffee
(50c)

25c

*R. Milner, Communicating and mobile systems : the pi-calculus, Cambridge University Press, 1999

58

Two coffee machines

 1S 2S

25c

25c

25c
25c

25c

teatea

coffee
coffee

!)L(S)L(S 21 =

Nondeterminism !

Simulation Relations
Consider two transition systems

over the same set of labels and observations. A relation
is called a simulation relation if it

1. Respects initial states

2. Respects transitions

If a simulation relation exists, then

) Σ,,i ,Q (S 222 2→=

 21 Q Q R ×⊆

 R)i,(i 21 ∈

21 SS ≤

) Σ,,i ,Q (S 1111 →=

'
11 q q

σ
→

'
22 q q

σ
→

 R R

59

Game theoretic semantics

 1S 2S

25c

25c

25c
25c

25c

teatea

coffee
coffee

Simulation is a matching game between the systems

The transition systems are bisimilar iff and 21 SS ≤ 12 SS ≤

Relationships

BisimulationSimulation

Language Inclusion Language Equivalence

)L(S)L(S then SS If 2121 ⊆≤)L(S)L(S then SS If 2121 =≅

Converse statements are true for deterministic systems

 CTL*

LTL

CTL∀

tyReachabili

60

Bi-simulations of control systems*

*G.J. Pappas, Bisimilar linear systems, Automatica, 2003

(t)xC(t)y
(t)dE(t)uB(t)xA(t)x

111

1111111
.

=

++=(t)u1 (t)y1

(t)xC(t)y
(t)dE(t)uB(t)xA(t)x

222

2222222
.

=

++=(t)u2 (t)y2

*P. Tabuada and G.J. Pappas, Bisimilar control affine systems, Systems and Control Letters, 2004.

*A. van der Schaft, Bisimulations of dynamical systems, Hybrid Systems : Computation and Control, 2004

 equations} satisfying (t)d(t),x|(t))y(t),{(u)L(S 11111 ∃=

 equations} satisfying (t)d(t),x|(t))y(t),{(u)L(S 22222 ∃=

 1S

 2S

*G.J. Pappas, G. Lafferriere, and S. Sastry, Hierarchically Consistent Control Systems, IEEE TAC, June 2000

A relation R is a simulation relation if for all

R is a bi-simulation if converse is true as well

Non-deterministic dynamics

(t)xC(t)y
(t)dE(t)xA(t)x

111

11111
.

=

+= (t)y1

(t)xC(t)y
(t)dE(t)xA(t)x

222

22222
.

=

+= (t)y2

(t)x (0)x 2

(t)d

2

2

→

 R R

(t)x (0)x 1

(t)d

1

1

→
(t)xC(t)xC 2211 =

(t)d (t)d 21 ∃∀

 1S

 2S

61

A linear relation (x,Hx) is a simulation relation iff for all

H-related systems*

(t)xC(t)y
(t)dE(t)xA(t)x

111

11111
.

=

+= (t)y1

(t)xC(t)y
(t)dE(t)xA(t)x

222

22222
.

=

+= (t)y2

21 d d ∃∀

 1S

 2S

*G.J. Pappas, G. Lafferriere, and S. Sastry, Hierarchically Consistent Control Systems, IEEE TAC, June 2000

22121111 dEHxAdExH(A +=+)
HCC 21 =

1 2 S to related-H is or simulates S

A linear relation (x,Hx) is a simulation relation iff

Deterministic systems

(t)xC(t)y
(t)xA(t)x

111

111
.

=

= (t)y1

(t)xC(t)y
(t)xA(t)x

222

222
.

=

= (t)y2

 1S

 2S

HAHA 21 =
HCC 21 =

! eRestrictiv

62

Given surjective map can we construct simulating ?

Advantage of non-determinism

(t)xC(t)y
(t)dE(t)xA(t)x

111

11111
.

=

+= (t)y1

?? (t)y2

 1S

 2S

*G.J. Pappas, G. Lafferriere, and S. Sastry, Hierarchically Consistent Control Systems, IEEE TAC, June 2000

+= HHAA 12

+= HCC 12

12 Hxx =

Ker(H)]HA [HEE 1 12 =

 2S 1S

)Ker(C Ker(H) if 1⊆

Abstraction is always possible in the class of nondeterministic systems

The more you abstract, the more non-determinism you generate

Two remarks

63

Bi-simulation is finer

 1S
)L(S)L(S 21 =

 2S

(t)x(t)y
(t)d(t)x

(t)x(t)x

11

22
.

21
.

=

=

=

(t)z(t)y
(t)d(t)z

11

11
.

=

=

21 SS ≤

12 SS ≤

21 SS ≅

11 xz =

? relation onbisimulati a Hx)(x, is When

Let be H-related to . Then the relation (x,Hx) is a
bi-simulation relation if and only if

Bisimilar linear systems*

(t)xC(t)y
(t)dE(t)xA(t)x

111

11111
.

=

+= (t)y1

(t)xC(t)y
(t)dE(t)xA(t)x

222

22222
.

=

+= (t)y2

 1S

 2S

*G.J. Pappas, Bisimilar linear systems,Automatica, 2003

)R(EKer(H)Ker(H)A 11 +⊆

 1S 2S

*A. van der Schaft, Bisimulations of dynamical systems, Hybrid Systems : Computation and Control, 2004

64

Coarsest Bisimulation
Find map which abstracts as much as possible.
Thus Ker(H) must be maximal but also must…

Preserve observations

Preserve transitions

This lead to the well known algorithm…

)Ker(CKer(H) 1⊆

)R(E Ker(H) Ker(H) A 11 +⊆

12 Hxx =

Coarsest Bisimulation Algorithm

Maximal controlled invariant subspace computation

Then is the maximal desired subspace

Once V* is computed, then pick map such that
Ker(H)=V*

and construct the H-related system.

)Ker(C V 10 =

))R(E(VAVV 11k
1

11k1k +∩= −
−

−+

nV *V =

12 Hxx =

65

Similar relationships

BisimulationSimulation

Language Inclusion Language Equivalence

)L(S)L(S then SS If 2121 ⊆≤)L(S)L(S then SS If 2121 =≅

H(X)),Reach(SX)),H(Reach(S then SS If 2121 ⊆≤

Extensions
Bi-simulations of nonlinear systems

Unifying discrete and continuous notions

A.A.Julius, A.J. van der Schaft, A behavioral framework for compositionality, MTNS 2004

Extensions to hybrid systems

G.J. Pappas and S.Simic, Consistent abstractions of affine control systems, IEEE TAC 2002.

P. Tabuada and G.J. Pappas, Abstractions of Hamiltonian systems, Automatica, 2003.

P. Tabuada and G.J. Pappas, Bisimilar control affine systems, Systems and control letters, 2003.

A. van der Schaft, Bisimulations of dynamical systems, Hybrid Systems : Computation and Control, 2004

K. Grasee, Admissibility of trajectories in Phi-related systems, MCSS 2003

A. van der Schaft, Bisimulations of dynamical systems, Hybrid Systems : Computation and Control, 2004

E> Hagverdi, P. Tabuada, G.J. Pappas, Bisimulations of discrete, continuous, and hybrid systems, Theoretical Computer Science, Submitted

P. Tabuada, G.J. Pappas, P. Lima, Composing abstractions of hybrid systems, Discrete even dynamic systems, 2004

