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Compression and Coding 

Theory and Applications 

Part 1: Fundamentals 
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Transformation 

Ordering (significance) 

Transmitter (Encoder) Receiver (Decoder) 

Channel information 
unit 

What is the problem? 
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Why is it important? 

•  The available resources for signal communication and archiving are limited 

Standardization Compression 
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Basic steps 

Transformation/
Prediction 

Extraction of the 
symbols Encoding 

•  Goal: minimize the amount of resources needed to transmit a source signal from 
the transmitter to the receiver 

•  Basic steps: 
–  Reduction of the redundancy in the data 

•  Transform-based coding 
•  Prediction-based coding 

–  Translate the resulting information from to a sequence of symbols suitable for encoding 
–  Entropy coding of the sequence of symbols 

Quantization 

Entropy coding 
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Basic idea 

•  Exploit the redundancy among the data samples for an effective representation of 
the data 

•  Classical coding schemes 
–  Look at the data as to set of numbers and reduce the mathematical and/or statistical 

redundancy among the samples 
•  JPEG, MPEG 

•  Second generation coding schemes 
–  Adapt the coding scheme to the different image regions featuring some omogeneity for 

optimizing the coding gain given the data 
•  ROI based coding, JPEG2000 

•  Model-based coding 
–  Look at the data as to perceptual information and exploit the way such information is 

processed by the sensory system to improve compression 
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Compression modes 

•  Lossless 
–  The original information can be recovered without loss from the compressed data 
–  Low compression factors 

•  Less than a factor 3 for natural images 

•  Lossy 
–  The compression process implies the loss of information that cannot be recovered at the 

decoding 
–  Basically due to quantization 
–  Very high compression factors 
–  Degradation of the perceived quality 

⇒  Key point: rate/distortion tradeoff 
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Information theoretical limits 

•  Noisy channel coding theorem 
–  Information can be transmitted reliably (i.e. without error) over a noisy channel at any 

source rate, R, below a so-called capacity C of the channel 
R<C for reliable transmission 

•  Source coding theorem 
–  There exists a map from the source waveform to the codewords such that for a given 

distortion D, R(D) bits (per source sample) are sufficient to enable waveform 
reconstruction with an average distortion that is arbitrarily close to D. Therefore, the 
actual rate R has to obey: 

R ≥ R(D) for fidelity given by D 
R(D): rate distortion function 
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Qualitative R(D) curves 

•  R(D) curves are monotonically not-increasing 
–  Feature points 

•  R(0): rate needed for exact reproduction of the source⇔ entropy of the source 
•  Ropt, Dopt: minimum rate for a given distortion / minimum distortion at a given rate 

Information theoretic bound 

low complexity coder 

medium complexity coder 

high complexity coder 

D 

R 0 



9 

Entropy Coding 

Fundamentals 
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Information 

•  Information 
Let X be a Random Variable (RV) and s be a realization of X. Then, the information held by 

symbol s can be written as 
 

 
where p(s) is the probability of the symbol s. 
–  I(s) represents the amount of information carried by the symbol s. 

•  p(s)=1 → There is no uncertainty on the expectation on value taken by the RV → no 
information is conveyed by the knowledge of the actual value of the RV (current realization). 
This is expressed by the corresponding information being zero → I(s)=0 

•  p(s)<< (very small) → the value s is highly improbable → it corresponds to a rare event → 
knowing that the current realization of the RV is equal to s is highly informative, as an indication 
of a rare event. This is expressed by the corresponding information being very high in value I(s) 
→ infinity 

•  Summary: symbols that are certain convey no information, while very improbable symbols 
are highly informative 
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Information 

•  Discrete time sources 
–  Let X be a discrete time ergodic source generating the sequences {xk}{k=1,K} of source 

symbols.  
•  The sequences are realizations of the RV {X} 
•  The source is memoryless if successive samples are statistically independent 

–  Information 
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Information 

•  Relation to uncertainty 
If the K symbols have the same probability 
 
 
Then the information is 
 
 
In this case, the uncertainty on the expectation is maximized, because all the symbols are 

equally probable. 
The amount of information is the same for all symbols 
 

Same probability ↔ Maximum uncertainty 
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Entropy 

•  Entropy 
Let X be a discrete RV: {xk}{k=1,K}. Then, the entropy is defined as 
 
 
 
 
–  H(X) represents the average information content of the source (or the average 

information conveyed by the RV) 
–  Symbols with same probability (maximum uncertainty) 

–  It can be shown that this corresponds to the upper bound  
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Entropy 

•  Summary 
–  The entropy represents the average information conveyed by the source RV 

•  H(X) is the average information received if one is informed about the value of the RV X has 
taken 

–  The entropy increases with the degree of uncertainty on the expectation of the 
realizations of the RV 

•  Equivalently: it is the uncertainty about the source output before one is informed about it 

–  All the discrete sources with a finite number K of possible amplitudes have a finite 
informational entropy that is no greater than log2K bits/symbol 

0≤H(X)≤log2K 
•  The right side equality holds if and only if all probabilities are equal (most unpredictable source) 
•  Due to unequal symbol probabilities and inter-symbol dependencies H(X) will in general 

be lower than the bound value 

•  Entropy coding exploits unequal symbol probabilities as well as source memory 
to realize average bit rates approaching H(X) bits/symbol 
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Entropy coding 

•  Goal: Minimize the number of bits needed to represent the values of X. 
–  We consider the codes that associate to each symbol xk a binary word wk of length lk.  
–  A sequence of values produced by the source is coded by aggregating the 

corresponding binary words. 

•  Bit-rate 
–  The average bit-rate to code each symbol emitted by the source is 

 

RX=-∑klklog2pk 

–  Goal: optimize the codewords to minimize RX 



16 

Shannon theorem 

•  The Shannon theorem proves that the entropy is a lower bound for the average 
bitrate RX of a prefix code 

•  The average rate of a prefix code satisfies 

RX ≥ H(X) = -∑kpklog2pk 

 Moreover, there exists a prefix code such that 

RX ≤ H(X)+1 

 
–  The lower bound is set by the entropy of the source 
–  We cannot do better than reaching the entropy of the source 

•  Redundancy:   

R(X)=log2K-H(X) 
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Entropy coding policies 

•  Fix and variable length codes 
–  Fix length codes: If log2K is an integer, all symbols could be coded with words of the 

same length lk=log2K bits.  
–  Variable length codes: the average code length can be reduced by using shorter binary 

codewords for symbols that occur frequently. 

•  Variable Length Codes (VLCs) 
–  Prefix codes 

•  Huffman coding 
•  Arithmetic coding 

pk large → short codewords 

pk small → long codewords 
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Prefix codes 

•  To guarantee that any aggregation of codewords is uniquely decodable the prefix 
condition imposes that no codeword may be the prefix (beginning) of another one 

•  Example 
{w1=0, w2=10, w3=110, w4=101} 
→  1010 can be read as both w2w2 and w4w1: ambiguous! 

→   Prefix codes are constructed by building binary trees 

1 

1 

1 

1 

0 

0 0 

0 

w1 w2 w4 

0 

w3 

w5 w6 1 
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Huffman code 

•  Optimal prefix code tree 
–  rate approaching the lower bound 

•  Each symbol is represented by a codeword whose length gets longer as the 
probability of the symbol gets smaller 

•  Dynamic programming rule that constructs a binary tree from bottom up by 
successively aggregating low probability symbols 

Let us consider K symbols with their probability of occurrence sorted by increasing order  
pk ≤pk+1 

{(x1,p1),(x2,p2),...,(xK,pK)} 
we aggregate x1 and x2 in a single symbol of probability p12=p1+p2. 
 
Recursivity: An optimal prefix tree for K symbols can be obtained by constructing an optimal 

prefix tree for the K-1 symbols 
{(x12,p12),(x2,p2),...,(xK,pK)} 

and by dividing the leafs of p12 in two children corresponding to x1 and x2 
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Huffman code 

•  Example 
–  {p1=0.05, p2=0.1, p3=0.1, p4=0.15, p5=0.2, p6=0.4} 

x6 x5 x4 x3 x2 x1 

1 0 

0.15 

0.25 

1 0.35 

0.6 

1 

1 

1 

0 

0 

0 

0 

x1  1111 

x2  1110 

x3  110 

x4  101 

x5  100 

x6  0 
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Arithmetic coding 

•  The symbols are on the number line in the probability interval 0 to 1 in a sequence 
that is known to both encoder and decoder 

•  Each symbol is assigned a sub-interval equal to its probability 

•  Goal: create a codeword that is a binary fraction pointing to the interval for the 
symbol being encoded 

•  Coding additional symbols is a matter of subdividing the probability interval into 
smaller and smaller sub-intervals, always in proportion to the probability of the 
particular symbol sequence 
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Arithmetic coding 

•  Example 
p(A)=1/3 
p(B)=2/3 
 

0 

1 

2/3 B 

A 1/3 
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Arithmetic coding 

•  Example 
p(AA)=1/3*1/3=1/9  p(BA)==1/3*2/3=2/9 
p(AB)=2/9  p(BB)=4/9 
 

0 

1 

2/3 B 

A 

4/9 

AA 

AB 

BA 

BB 

1/3 

1/3 

2/3 

2/9 
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Arithmetic coding 

•  After encoding many symbols 
–  the  final interval width P is the product of the probabilities of all symbols coded; 
–  the interval precision, the number of bits required to express an interval of that size, is given 

approximately by -log2(P).  
Therefore, since 

P=p1*p2*....*pN 
 the number of bits of precision is approximately 

- log2(P)= -(log2(p1)+log2(p2)+....+ log2(pN)) 

 
 thus the codestream length will be very nearly equal to the information for the individual symbol 
probabilities, and the average number of bits/symbol will be very close to the bound computed from 
the entropy. 

•  Adaptive arithmetic coding 
–  The probability tables for the different symbols can be made adaptive to the source statistics and 

updated during encoding 
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Arithmetic coding 

•  Features 
–  Does not require integer length codes 
–  Encodes sequences of symbols 
–  Each sequence is represented as an interval included in [0,1] 
–  The longer the sequence, the smaller the interval and the larger the number of bits 

needed to specify the interval 
–  The average bit rate asymptotically tends to the entropy lower bound when the sequence 

length increases 

–  On average, performs better than Huffman coding 
–  Moderate complexity 
–  Used in JPEG2000 
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Coding systems 

Transformation 

Prediction 

Message extraction 
definition of the set of 
symbols 

Source signal 
(image) 

Quantization Entropy coding 
Bitstream 

reducing the 
number of 
symbols 

assigning 
codewords to 
symbols 
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Prediction based coding 

Prediction 

Source signal 
(image) 

- 

“predicted” 
samples 

The value of the samples are estimated according to a predefined rule and the resulting 
values are subtracted from the corresponding ones in the original image to obtain the 
residual (or error) image. This last one is then quantized and entropy coded.  
•  Still images → spatial (intra-frame) prediction 
•  Image sequences → temporal (inter-frame) prediction 

residue (signal to 
encode) 

Encoder 
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Prediction based coding 

∑ 

residual image 
+ reconstructed 

image 

reference 
image 

•  Still images (JPEG lossless) 

•  Image sequences : motion compensation (MPEG4) 

Decoder 
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Intra-frame linear prediction 

12  34  27  42 

21  3  44  1 

12  34  27  42 

A  B  C 

D  X 

Xest = aA+bB+cC+dD 
E = X - Xest 

The prediction coefficients are estimated based on the optimization of a global cost 
function 

The error image is quantized and entropy encoded. At the receiver, it is decoded 
and used to recover the original image. 

symbol to predict 
or estimate 
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Inter-frame prediction 

current frame 

previous frame 

next frame 
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Transform based coding qui 

•  Given the source signal, il can be convenient to project the data to a different 
domain to improve compression ⇒ transformation 

–  Discrete Cosine Transform (DCT), used in JPEG 
–  Discrete Wavelet Transform (DWT), used in JPEG2000 

•  The transformed coefficients are then to be quantized for mapping to a finite set of 
symbols 

•  Such symbols can also be mapped to another set of symbols to further improve 
compression performance 

–  Embedded Zerotree Wavelet based coding (EZW) 
–  Layered Zero Coding (LZC) 
–  Multidimensional LZC (for volumetric data, after a 3D DWT) 
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Transform based coding 

•  The Karhunen-Loeve basis is optimal for wide sense stationary signals 
–  It diagonalizes the autocovariance matrix thus minimizing the mutual correlation among 

data samples in the transformed domain 
–  The root mean square error in the reconstruction image is minimal 

•  Under some assumptions, the KLT is well approximated by the DFT 
–  This provides a justification for the use of such a transform for image compression 

(JPEG) 
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Transform based coding 

•  Consider the signal as a r.v. of N samples: Y[n] 

•  Project it to an (orthonormal) basis 

Y=∑mA[m]gm 

A[m]= <Y,gm> 

•  The coefficients A[m] are quantized and then encoded 

AQ[m]=Q{A[m]} 

Reconstructed signal (after entropy decoding) 

Ydec=∑mAQ[m]gm 

–  With quantization, the decoded signal is an approximation of the original signal and the 
degree of distortion depends on the strength of the quantization 
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Quantization 

•  A/D conversion ð quantization 

Quantizer 

f[n] in L2(Z) discrete function 
 fq[n] in L2(Z) 

fq=Q{f} 

f tk  tk+1 

uniform 

rk 
a 

b 

t 

f(t) 

tk  
tk+1 
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Scalar quantization 

•  A scalar quantizer Q approximates X by X˜=Q(X), which takes its values over a 
finite set.  

•  The quantization operation can be characterized by the MSE between the original 
and the quantized signals 

•  Suppose that X takes its values in [a, b], which may correspond to the whole real 
axis. We decompose [a, b] in K intervals {( yk-1, yk]}1≤k ≤ K of variable length, with 
y0=a and yK=b.  

•  A scalar quantizer approximates all x ∈( yk-1, yk] by xk: 

∀x ∈ yk−1, yk( $%, Q x( ) = xk
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Scalar quantization 

•  The intervals (yk-1, yk] are called quantization bins.  

•  Rounding off integers is an example where the quantization bins  

(yk-1, yk]=(k-1/2, k+1/2]  

 have size 1and xk=k for any k∈Z. 

 

•  High resolution quantization 
–  Let p(x) be the probability density of the random source X. The mean-square 

quantization error is 

D = E X − X( )
2"

#$
%
&'
= x −Q x( )( )

2

−∞

+∞

∫ p x( )dx
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HRQ 

–  A quantizer is said to have a high resolution if p(x) is approximately constant on each 
quantization bin. This is the case if the sizes k are sufficiently small relative to the rate of 
variation of p(x), so that one can neglect these variations in each quantization bin. 

x 

p(x) 

0 

Δp(x) 

Δk 

HRQ: Δp(x)→0 
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Scalar quantization 

•  Teorem 10.4 (Mallat): For a high-resolution quantizer, the mean-square error d is 
minimized when xk=(yk+yk+1)/2, which yields 

2

1

1
12

K

k k
k

d p
=

= Δ∑
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Uniform quantizer 
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High resolution quantization 

•  Definition: A quantizer is said to be high resolution if p(f) is approximately constant 
on each quantization bin of size δk 

–  p(f) is the pdf of the random variable f 

f 

p(f) 

a b tk  tk+1 

Such an hypothesis is in 
general NOT true for low bit-rate 
coding (high compression rates) 
where the size of the 
quantization bin is large with 
respect to the pdf of the 
quantized variable 
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Low bit rate coding 

•  The quantization step is large → many quantized coefficients are set to zero 

•  The zero-bin interval [-T,T] corresponds to the threshold for significance of the 
coefficients at the considered precision (level of quantization) 

•  Efficient coding can be obtained by splitting the encoding phase in two successive 
steps: 

–  Encoding of the positions of the zero and non-zero coefficients (significance map) 
–  Encoding of the amplitude of the non-zero (significant) coefficients 

Wavelet-based coding 

f 

p(f) 
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Quantization 

•  A/D conversion ð quantization 

Quantizer 

f in L2(R) discrete function 
 f in L2(Z) 

X=Q{y} 

y yk  yk+1 

uniform perceptual 

rk 

fq=Q{f} 

f 
The sensitivity of the eye decreases 
increasing the background intensity 
(Weber law) 



43 

Quantization revisited 

•  To analyze the error due to quantization we need a measure for the distortion 

D=E{||Y-YQ||2}= ∑mE{||A[n]-AQ[n]||2} 
•  The distortion depends on the resolution of the quantization (the quantization step size), 

which rules the number of bits needed to represent the quantized coefficients. This gives an 
intuition of the functional relation between D and R: D=D(R) 

•  Design of the quantizer. Under the assumption of high resolution quantization 
–  The RMS value of the distortion D is minimized when the reconstruction level is the average of the 

bin boundary values 

–  D(R) is minimal for uniform scalar quantization and given by 

D(R)=Δ2/12= σ22-2R 

 Δ being the quantization step size and σ the source variance 

fq,k =
tk + tk−1
2
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Quantization 

original 5 levels 

10 levels 50 levels 
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Embedded Coding 

Part 2 
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Embedded transform coding 

•  For rapid transmission or fast image browsing, one should quickly provide a coarse 
image version which is progressively enhanced as more bits are received and 
decoded 

•  Guideline: The decomposition coefficients are sorted and the most significant bits 
of the largest coefficients are sent first 

•  The embedding of the information is obtained by a Successive Approximation 
Quantization (SAQ) strategy 

1. Set an initial threshold T 
2. Scan the coefficients to get the significance map (SM(T)) 
3. Encode the SM(T) by entropy coding 
4. Encode the amplitude of the significant coefficients (at the current precision set by T) 
5. Halve the threshold: T-> T/2 
6. If threshold > 1 go back to point 2 
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Embedded transform coding 

•  The subband coefficients are quantized uniformly with step 2n which is 
progressively reduced in the following scans 

•  The largest value for the threshold is chosen to obtain at least one no zero symbol 

•  The information on the sign of the significant coefficients is enclosed in the 
significance map 

–  Possible choice for the symbols in the significance map:  

bm(p,q) = 0   if  |am(p,q)| ≤ T  
bm(p,q) = 1     if  am(p,q) > T 
bm(p,q) = 2      if  am(p,q) < -T 
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Encoding the significance map 

•  Significant coefficient 
–  Any coefficient |am(p,q)|>T which is NOT quantized to zero 

•  Significance map 
–  Binary image whose values bm(p,q) are defined as follows 
–  bm(p,q) = 0   if  |am(p,q)|≤T  
–  bm(p,q) = 1  if  |am(p,q)|>T 

•  The significance map can then be encoded by 
–  Run-lenght coding 

•  Store in the random variables Z and I  the length of the sequences of zeros and ones and 
encode such symbols via an entropy coder (Huffman or Arithmetic) 

–  More complex algorithms (Zerotrees ) 
•  Link the appearance of zeros across scales to obtain new symbols which summarize the 

significance of a tree of coefficients at a time, improving the efficiency of the entropy coder 
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Run-length coding 

•  Every code word is made up of a pair (g, l) where g is the gray level, and l is the 
number of pixels with that gray level (length, or “run”). 

•  E.g., 
•  56 56 56 82 82 82 83 56 56 56 56 56 80 80 80 80 

–  creates the run-length code (56, 3)(82, 3)(83, 1)(80, 4)(56, 5). 

•  The code is calculated row by row. 

•  Very efficient coding for binary data. 
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Run-length coding 
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Run-length coding 

Number of pairs (runs) = 29 
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Run-length coding 

Compression Achieved 

Original image requires 3 bits per pixel (in total - 
8x8x3=192 bits). 

Compressed image has 29 runs and needs 3+3=6 bits 
per run (in total - 174 bits or 2.72 bits per pixel). 

(0,8) 
(0,1),(1,1),(2,1) 
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SM: Encoding the amplitude 

•  The amplitude of the significant coefficients is uniformly quantized with step Δ and entropy 
coded (Huffman or Arithmetic) 

–  The coefficients in a given subband (j,k) are random variables for which a pdf can be defined and 
exploited for entropy coding 

•  Example 

1  3  4  0 
5  2  7  8 
4  5  1  1 
0  2  4  3 

0  1  1  0 
1  0  1  1 
1  1  0  0 
0  0  1  1 

T=2 

0 1 1 0 1 0 1 1 1 1 0 0 0 0 1 1 

1 2 1 1 1 4 4 2 

realizations of the rv Z realizations of the rv I 

significance map 

sequence of symbols 

entropy coding 
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Embedded Transform Coding (ETC) 
algorithm 

•  1. Initialization 
–  Set the initial value of the threshold to the first power of two greater than the largest 

subband value (magnitude) 

•  2. Significance map 
–  Store the significance map and the sign of the non zero coefficients 

•  3. Quantization refinement 
–  Update the values of the coefficients that were already classified as significant during 

the previous steps 

•  4. Precision refinement 
–  Halve the threshold value and go back to point 2. 



55 

Embedded Transform Coding 

Initialization 

Encoding the 
Significance map 

Quantization 
refinement 

Precision refinement 

end? no 

n=⎣sup log2 |a[m]|⎦ 
         m 

Exploitation of  
residual correlation 
among subband 
coefficients 

Layered Zero  
Coding (LZC) 

Zerotree  
Coding (EZW) 

Decrease the quantization bin: n→n-1 

Update the value of the significant coefficients 
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Embedded Zerotree Wavelet (EZW) Coder

•  A quantization and coding strategy 

•  Incorporates characteristics of wavelet decomposition 

•  Outperforms some generic approach 

•  Fundamental concept of other wavelet-based coder 

•  Can be decomposed into two parts: 
–  Significant map coding using zerotree 
–  Successive approximation quantization

21/11/16 Y.-H. Huang 56 
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EZW – basic concepts 

•  The definition of the zero-tree:  
–  There are  coefficients in different subbands that represent  the same spatial location in 

the image and this spatial relation can be depicted by a quad tree except for the root 
node at top left corner representing the approximation coefficient which only has three 
children nodes.  

•  Zero-tree Hypothesis 
–  If a wavelet coefficient c at a coarse scale is insignificant with respect to a given 

threshold T, i.e. |c|<T then all wavelet coefficients of the same orientation at finer scales 
are also likely to be insignificant with respect to T. 

•  Successive Approximations Quantization (SAQ) 
–  A refinement process 
–  Multi-pass scanning of coefficient using successive decreasing threshold  
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Embedded Zerotree Wavelet-based coder 

…. look at the notes… 



59 

Significance Map Coding Using Zerotree 

21/11/16 Y.-H. Huang 59 

Four types of Label 
1.Positive significant 
2.Negative significant 
3.Isolated zero 
4.Zero tree root 
 

For each coefficient: 
Give a label based on 
predefine threshold T
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EZW 

HH3 LH3 

HL3 
LH2 

HL2 

HH2 

2D 

bj
k[p,q]=  

1 if 2n ≤dj
k[p,q] <2n+1 

-1 if -2n+ 1 < dj
k[p,q] ≤ -2n 

0 otherwise 
{

Significance map: 

inter-band dependencies ⇒quad-trees 
Primary pass ⇒ ZTR, IZ, POS,NEG 

Encoding the SM 

ZTR:1/3(4j-1) symbols 

Secondary pass ⇒ HIGH,LOW 
Quantization refinement 

quad-tree 

→ trees of zeros ↔ zerotrees 
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Significant Map Coding Using Zerotree 

•  Scan order : 

61 

From lower subband to 
higher subband
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EZW algorithm 

Dominant pass 

Subordinate pass 

Initialization (set T0) 

Quantization 
refinement 
(T0=T0/2) 

T0=1 
no 

Assigns symbols POS, NEG, IZ, ZTR to coefficients 
Replaces POS and NEG coefs with zeros and adds their values in a 
secondary list and assigns them a reconstruction value equal to the mid 
point of the current uncertainty interval 

Refines the values assigned to POS and NEG changing the 
reconstruction value to the mid point of either the upper or the lower 
subinterval (symbols 1 and 0, respectively)  
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EZW – the algorithm 

•  In the dominant_pass 
–  All the coefficients are scanned in a special order  
–  If the coefficient is a zero tree root, it will be encoded as ZTR. All its descendants don’t 

need to be encoded – they will be reconstructed as zero at this threshold level 
–  If the coefficient itself is insignificant but one of its descendants is significant, it is 

encoded as IZ (isolated zero).  
–  If the coefficient is significant then it is encoded as POS (positive) or NEG (negative) 

depends on its sign.  

This encoding of the zero tree produces significant compression because gray level 
images resulting from natural sources typically result in DWTs with many ZTR 
symbols. Each ZTR indicates that no more bits are needed for encoding the 
descendants of the corresponding coefficient 
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EZW – the algorithm 

•  At the end of dominant_pass 
–  all the coefficients that are in absolute value larger than the current threshold are 

extracted and placed without their sign on the subordinate list and their positions in the 
image are filled with zeroes. This will prevent them from being coded again.  

•  In the subordinate_pass 
–  All the values in the subordinate list are refined. this gives rise to some juggling with 

uncertainty intervals and it outputs next most significant bit of all the coefficients in the 
subordinate list.  
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Here MAX() means the maximum coefficient value in the image and y(x,y) denotes the 
coefficient. With this threshold we enter the main coding loop 

The main loop ends when the threshold reaches a minimum value, which could be specified to 
control the encoding performance, a “0” minimum value gives the lossless reconstruction of the 
image 

EZW – the algorithm 

The initial threshold t0 is decided as: 
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EZW : Dominant Pass 

|c(x,y,z)|≥Qi c(x,y,z)>0 yes s(x,y,z)=POS yes 

s(x,y,z)=NEG 
no 

all children are insignificant? 

no 

s(x,y,z)=ZTR s(x,y,z)=IZ 

yes no 

Prob (IZ)>Prob(ZTR) 

s(x,y,z)=IZ s(x,y,z)=ZTR 

yes no 

start 

encode(primprob,s(x,y,z)) end 

yes no any child? 
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Tn 1.5 x Tn 2 x Tn=Tn+1 

LOW HIGH 

EZW : Subordinate Pass 

•  Concerns significant coefficients 

•  Refines the value of the significant coefficients by setting the resolution at the 
current quantization level 
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Example 

T0=32 
x=63 
uncertainty interval=[32,64] 

32 64 48 40 56 

reconstruction value at the end of 
the dominant pass 

63>48 → HIGH (symbol=1) 
reconstruction value after 
the subordinate pass 

update: at the beginning of the 2° dominant pass the 63→32 (previous T0 value), so that the 
value that goes in the list is 63-32=31. This is refined as in the next page 

Dominant pass 

Subordinate pass 
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Example 

T0=16 
x=63 looks like 0 for primary pass (can become a ZTR!) 
uncertainty interval=[16,32] 

16 32 24 20 28 

this dominant pass does not 
concern x! 

31>24 → HIGH (symbol=1) 
set of symbols assigned by the subordinate passes 1,1 
reconstruction value after the subordinate pass: 32+28=60 

update: value that goes into the list: 63-(32+16)=15 

Dominant pass 

Subordinate pass 

…………… 
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Example 
•  T0=32 

•  End of 1° dominant pass: 48 

•  End of 1° subordinate pass: 56 first value seen by the decoder 

•  Update: new value in the list to be refined: 63-32=31 

•  T0=16 

•  End of 2° dominant pass: ----------- 

•  End of 2° subordinate pass: 2° update: 31-> 28 

•  New value seen by the decoder: 32+28=60 

•  Update: new value in the list to be refined: 63-32-16=15 

•  T0=8 

•  End of 3° dominant pass: ----------- 

•  End of 3° subordinate pass: 3° update: 15->14 

•  New value seen by the decoder: 32+16+14=62 

•  Update: new value in the list to be refined: 63-32-16-8=7 ……. 

•  ……. 

•  Final value seen by the decoder: 32+16+8+4+2+1=63 
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Algorithm 

threshold = initial_threshold; do  
{  
dominant_pass(image);  
subordinate_pass(image);  
threshold = threshold/2;  
}  
while (threshold > minimum_threshold);  
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Dominant pass 

/* * Dominant pass */  
initialize_fifo();  
while (fifo_not_empty)  
{  
get_coded_coefficient_from_fifo();  
if coefficient was coded as P, N or Z then  
{  
code_next_scan_coefficient();  
put_coded_coefficient_in_fifo();  
if coefficient was coded as P or N then  
{ 
add abs(coefficient)  to subordinate list;  
set coefficient position to zero; } } }  
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Subordinate pass 

/* * Subordinate pass */  

subordinate_threshold = current_threshold/2;  

for all elements on subordinate list do {  

if (coefficient > subordinate_threshold) {  

output a one;  

coefficient = coefficient-subordinate_threshold;  

}  

else output a zero;  

}  
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EZW Example (1/2)
T0 = 32
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EZW Example (2/2)

After this two step, we finish one 
iteration. 
 
Ti = Ti/2(reduce the threshold) 
 
Repeat until target fidelity or bit-
rate is achieve

T0 = 32
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Bitstream 

Qp-1 Qp-2 ... Q0 header 

LL,n ... LH,n HL,n-1 ... HH,n-1 ... LH,1 ... HH,1 

Primary Pass Secondary Pass 

p=total number of bitplanes 
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The Limitations of EZW algorithm  

•  It is not possible to encode sub-images because the entire image must be 
transformed before the encoding can start.  

•  EZW algorithm is computational expensive 



Beyond EZW 

Layered-zero coding 

(not included in the course program) 

78 
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Layered Zero Coding 

•  Proposed by Taubman and Zakhor in 1994 [Multirate 3D subband coding of video] 

•  Idea: multirate coding of subbands 

•  Advantages 
–  Large control over birate granularity 
–  Lower computational complexity than EZW 

•  Basic idea: Progressive quantization and coding of each subband in a sequence of 
N layers representing progressively finer quantization step sizes 

–  N quantizers: Q1 (rougher), …., Qn (finer) 
–  L quantization layers: L1, L2,…., Ln 

•  Guidelines:  
–  Each quantizer operates on the subband samples and produces a sequence of symbols. 

The symbols for quantizer Q1 are encoded into layer L1 
–  The information necessary to recover symbols for quantizer Qn, given the symbols for 

quantizers Qn-1,…,Q1 are already known, is encoded into layer Ln 
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LZC 

•  Thus, the decoder is able to recover the subband samples as encoded by any 
quantizer Qn by decoding layers L1,…Ln only. 

•  Constraint for coding gain: the total number of bits required to encode the layers 
L1,…,Ln must be approximately the same as the number of bits required to 
encode the output of quantizer Qn alone. If this condition is satisfied the multirate 
property is obtained without sacrificing coding efficiency. 

•  How: exploiting dependencies among quantization layers and/or subbands 
–  Statistical dependencies among quantization layers 
–  Statistical dependencies among spatially/temporally adjacent subbands 
–  Statistical dependencies among hierarchies of subband coefficients 
–  Exploiting the presence of large number of zeros in the subbands 
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LZC 

•  It can be proved that the coding efficiency condition is met if the set of quantizers 
satisfy the following condition 

•  Interpretation: every quantization interval of Qn is contained in some quantization 
interval of Qn-1 

•  Furthermore, arithmetic coding must be used to encode each quantization layer Ln 
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LZC: design of quantizers 

•  The set of uniform quantizers with dead-zone having progressively halved step 
size is chosen 

•  Then, each successive quantization layer doubles the precision with which 
subband sample values are quantized 
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Layer Zero Coding (LZC) 

Significant? 

Start 

magnitude 
refinement 

end 

zero coding 

Sign Coding (SC) 

no yes 

•  coefficient to code :   
–  c(x,y,z) 

•  p quantifizers : 
–  Qp-1 >...> Qi >…> Q0 
–  Qi = 2i 

–  p = subband bit depth 

•  significance state : 
–  s(x,y,z) = {0,1} 
–  coefficient not significant (s = 0) 

 ∀ j = p-1,…, i, |c(x,y,z)| < Qj 
–  coefficient significant (s = 1) 

 ∃ j = p-1,…, i such that |c(x,y,z)| ≥ Qj 
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LZC 

s(x,y,z)=0 

|c(x,y,z)|≥Qi 

yes 

c(x,y,z)≥0 

start setContext(ctx) 

encode(1,ctx) 

encode(1,sign) encode(0,sign) 

yes 

encode(0,ctx) 

c(x,y,z)≥Qi 

encode(1,ref) encode(0,ref) 
yes 

no 

no 

no 
no 

yes 

end 

encode(1,.)  code "1" 
encode(0,.)  code "0" 

s(x,y,z)=1 

the coefficient is still insignificant: use zero coding mode 

Bitplan encoding 
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Layered-Zero Coding 

•  Exploits both intra-band and inter-band residual correlations 
–  Intra-band dependencies are modeled by introducing conditional probabilities in entropy 

coding (context-adaptive arithmetic coding). The probability of a symbol is conditioned 
to the significance state of its neighbors; 

–  Inter-band dependencies are modeled similarly: the probability of a symbol is 
conditioned to the significance state of it ancestor 

–  … look at the notes… 

5 

4 2 1 

6 7 

3 

8 



86 

Layered Zero Coding 
Encoding the SM ⇒ Zero Coding 

a-priori information ⇒ spatial or other 
kinds of dependencies among coefficients  

Conditioning terms: κ(k,l,j) 

•  spatial (intra-band) 
•  inter-band 

⇒ context-adaptive arithmetic coding 

⇒ magnitude refinement 
Quantization refinement 

5 

4 2 1 

6 7 

3 

8 

Neighborhood ⇒ Context 
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Spatial contextes 

•  Contextes 2D 

5 

4 2 1 

6 7 

3 

8 

coefficient to code 
neighbor 

and are composed ) ( 

1. 

2. 

Scanning order : 
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Bitstream 

Qp-1 Qp-2 ... Q0 header 

marker 

LL,n ... HH,n LH,n-1 ... HH,n-1 ... LH,1 ... HH,1 

p=total number of bitplanes 
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Coding artifacts at low rates 

JPEG Wavelets Original 
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Scalability by quality 

H encoded data 
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Scalability by resolution 
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Object-based processing 


