
Java and Android Concurrency

Thread Safety

fausto.spoto@univr.it

git@bitbucket.org:spoto/java-and-android-concurrency.git

git@bitbucket.org:spoto/java-and-android-concurrency-examples.git

Fausto Spoto Università di Verona, Italy - 1 / 25



Object State

An object state is its data, stored in state variables such as its instance fields.
It might include the state of other, dependent objects. It encoppasses any
data that can affect its externally visible behavior

shared state: accessed by multiple threads

mutable state: it could change during its lifetime

Whenever more than one thread accesses a given state variable, and one
of them might write to it, they all must coordinate their access to it using
synchronization

Fausto Spoto Università di Verona, Italy - 2 / 25



State Encapsulation

When designing thread-safe classes, good object-oriented techniques – en-
capsulation, immutability, and clear specification of invariants – are your
best friends

Your enemies

public fields

static fields

mutability

state leakage

It is far easier to design a class to be thread-safe than to retrofit it to
thread-safety later

Fausto Spoto Università di Verona, Italy - 3 / 25



What is Thread Safety?

Largely philosophical question

A class is correct when it conforms to its specification. A class is thread-
safe when it continues to behave correctly when accessed from multiple
threads, regardless of the scheduling of those threads, and with no additional
synchronization or other coordination on the part of the calling code

No set of operations – calls to public methods of reads or writes of public
fields – performed sequentially or concurrently on instances of a thread-safe
class can cause an instance to be in an invalid state

Fausto Spoto Università di Verona, Italy - 4 / 25



Java Servlets

Eclipse can create dynamic web projects and export them into .war files

Fausto Spoto Università di Verona, Italy - 5 / 25



Heroku: https://www.heroku.com

Create account at https://signup.heroku.com. Then install

sudo add-apt-repository "deb https://cli-assets.heroku.com/branches/stable/apt

./"

sudo apt install curl

curl -L https://cli-assets.heroku.com/apt/release.key | sudo apt-key add -

sudo apt-get update

sudo apt-get install heroku

heroku --version

heroku-cli/5.6.27-7c0098a (linux-amd64) go1.7.5

heroku login

Enter your Heroku credentials.
Email: fausto.spoto@univr.it
Password (typing will be hidden): verysafepassword
Authentication successful.

Fausto Spoto Università di Verona, Italy - 6 / 25

https://www.heroku.com
https://signup.heroku.com


Heroku: Create and Deploy Application

heroku create

Creating app... done, limitless-bayou-56277
https://limitless-bayou-56277.herokuapp.com/
https://git.heroku.com/limitless-bayou-56277.git

Install the command line deployment plugin

heroku plugins:install heroku-cli-deploy

Deploy the application in Heroku

heroku war:deploy servlets.war --app limitless-bayou-56277

With a browser, go to https://limitless-bayou-56277.herokuapp.

com/StatelessFactorizer?number=250

Fausto Spoto Università di Verona, Italy - 7 / 25

https://limitless-bayou-56277.herokuapp.com/StatelessFactorizer?number=250
https://limitless-bayou-56277.herokuapp.com/StatelessFactorizer?number=250


A Thread-Safe Factorizing Servlet

@ThreadSafe

@WebServlet("/StatelessFactorizer") // publication path

public class StatelessFactorizer extends HttpServlet {

@Override

protected void doGet(HttpServletRequest request, HttpServletResponse response) {
doPost(request, response); // delegation

}

@Override

protected void doPost(HttpServletRequest request, HttpServletResponse response) {
BigInteger number = extractFromRequest(request);

BigInteger[] factors = factor(number); // see implementation in Eclipse

encodeIntoResponse(response, factors);

}

protected BigInteger extractFromRequest(HttpServletRequest request) {
return new BigInteger(request.getParameter("number"));

}

protected void encodeIntoResponse(HttpServletResponse response, BigInteger[] fs) {
response.getOutputStream().println(Arrays.toString(fs));

}
}

Fausto Spoto Università di Verona, Italy - 8 / 25



Stateless Objects

There is only an instance of the servlet object

The servlet container receives many concurrent requests but creates a single
instance of it.univr.servlets.StatelessFactorizer. All requests are
routed to that instance, each running inside its own thread! There is no
problem in this example, since the servlet keeps no state information in its
fields

Stateless objects are always thread-safe

Fausto Spoto Università di Verona, Italy - 9 / 25



A Program that Connects to the Servlet

Before seeing other servlets, let us see how a client can connect to the
StatelessFactorizer and ask its service:

public class ServletClient {
public final static String SERVER

= "https://limitless-bayou-56277.herokuapp.com/StatelessFactorizer?number=250";

public static void main(String[] args)

throws MalformedURLException, IOException {

URL url = new URL(SERVER);

URLConnection conn = url.openConnection();

try (BufferedReader in = new BufferedReader(new InputStreamReader

(conn.getInputStream()))) {

String response;

while ((response = in.readLine()) != null)

System.out.println(response);

}
}

}

Fausto Spoto Università di Verona, Italy - 10 / 25



Let us Count the Number of Requests

@NotThreadSafe

@WebServlet("/UnsafeCountingFactorizer")

public class UnsafeCountingFactorizer extends StatelessFactorizer {
private long count = 0;

public long getCount() {
return count;

}

@Override

protected void doPost(HttpServletRequest request,

HttpServletResponse response) {
BigInteger number = extractFromRequest(request);

BigInteger[] factors = factor(number);

++count;

encodeIntoResponse(response, factors);

}
}

Fausto Spoto Università di Verona, Italy - 11 / 25



Non-Atomic Operations

The addition of just a bit of shared, mutable state makes the servlet non-
thread-safe, because of a non-atomic operation ++count. It gets compiled
into many Java bytecode instructions:

aload 0

aload 0

getfield count:L // read

const 1L

ladd // modify

putfield count:L // write

Beware of

read-modify-write operations on shared, mutable state

check-then-act sequences on shared, mutable state

Fausto Spoto Università di Verona, Italy - 12 / 25



Race Condition

A race condition occurs when the correctness of a computation depends
on the relative timing or interleaving of multiple threads by the runtime; in
other words, when getting the right answer relies on lucky timing

A typical example of race condition is in the initialization of shared, meant
to be unique instances of objects:

@NotThreadSafe

public class LazyInitRace {
private ExpensiveObject instance = null;

public ExpensiveObject getInstance() {
if (instance == null) // check

instance = new ExpensiveObject(); // then act

return instance;

}
}

Fausto Spoto Università di Verona, Italy - 13 / 25



Atomicity

Operations A and B are atomic with respect to each other if, from the
perspective of a thread executing A, when another thread executes B, either
all of B has executed ot none of it has. An atomic operation is one that is
atomic with respect to all operations, including itself, that operate on the
same state

@ThreadSafe @WebServlet("/CountingFactorizer")

public class CountingFactorizer extends StatelessFactorizer {
private final AtomicLong count = new AtomicLong(0L);

public long getCount() { return count.get(); }

@Override

protected void doPost(HttpServletRequest request, HttpServletResponse response) {
BigInteger number = extractFromRequest(request);

BigInteger[] factors = factor(number);

count.incrementAndGet();

encodeIntoResponse(response, factors);

}
}

Fausto Spoto Università di Verona, Italy - 14 / 25



Let us Cache the Last Request Result

@NotThreadSafe

@WebServlet("/UnsafeCachingFactorizer")

public class UnsafeCachingFactorizer extends StatelessFactorizer {
private final AtomicReference<BigInteger> lastNumber = new AtomicReference<>();

private final AtomicReference<BigInteger[]> lastFactors = new AtomicReference<>();

@Override

protected void doPost(HttpServletRequest request, HttpServletResponse response) {
BigInteger number = extractFromRequest(request);

if (number.equals(lastNumber.get()))

encodeIntoResponse(response, lastFactors.get());

else {
BigInteger[] factors = factor(number);

lastNumber.set(number);

lastFactors.set(factors);

encodeIntoResponse(response, factors);

}
}

}

Fausto Spoto Università di Verona, Italy - 15 / 25



From One State Variable to Two State Variables

Since a single state variable of type long can be used thread-safely by
translating it into an AtomicLong, we could have expected to do the same
with two state variables of reference type, by using AtomicReference

The result is not thread-safe!

There is an implicit link between the values of the two (thread-safe) state
variables. Hence, to preserve state consistency, such related state variables
must be updated in a single atomic operation

Fausto Spoto Università di Verona, Italy - 16 / 25



Recovering Thread-Safeness through Synchronization

In order to make updates to the two state variables atomic, they must be
embedded inside the same synchronized block, hence exploiting the
mutex nature of Java’s intrinsic locks

@ThreadSafe @WebServlet("/SynchronizedFactorizer")

public class SynchronizedFactorizer extends StatelessFactorizer {
private @GuardedBy("this") BigInteger lastNumber;

private @GuardedBy("this") BigInteger[] lastFactors;

@Override protected synchronized void doPost(...) {
BigInteger number = extractFromRequest(request);

if (number.equals(lastNumber)) encodeIntoResponse(response, lastFactors);

else {
BigInteger[] factors = factor(number); lastNumber = number;

lastFactors = factors; encodeIntoResponse(response, factors);

}
}

}

We have recovered thread-safety at the price of efficiency: only one
SynchronizedFactorizer can run at a time. This is not what
concurrency was meant for

Fausto Spoto Università di Verona, Italy - 17 / 25



Reentrancy: A Natural Choice for an OO Language

Java’s intrinsic locks are reentrant, that is, if a thread tries to acquire alock
that it already holds, the request succeeds

This is necessary in an object-oriented language, or otherwise overriding of
synchronized methods would deadlock:

public class Widget {

public synchronized void doSomething() { ... }

}

public class LoggingWidget extends Widget {

public synchronized void doSomething() {

System.out.println(toString() + ": calling doSomething");

super.doSomething();

}

}

Fausto Spoto Università di Verona, Italy - 18 / 25



Guarding State with a Lock

For each mutable state variable that may be accessed by more than one
thread, all accesses to that variables (both for writing and for reading) must
be performed with the same lock held. In that case, we say that the variable
is guarded by that lock

For every invariant that involves more than one variable, all the variables
involved in that invariant must be guarded by the same lock

Make clear to maintainers which lock is used to access a shared, mutable
variable. This is the goal of the @GuardedBy annotation

Can we save the world by making everything synchronized ? Not
really. . .

if (!vector.contains(element))

vector.add(element)

Fausto Spoto Università di Verona, Italy - 19 / 25



Performance

Making the whole servlet doPost() method synchronized restored
thread-safety at the price of performance: only a thread can execute at a
time. Let us try to put inside synchronized blocks only those portions of
code that really need synchronization

Avoid holding locks during lengthy computations or operations at risk of
not completing quickly such as network or console I/O (or sleep!)

Fausto Spoto Università di Verona, Italy - 20 / 25



A Factorizer that Keeps a Cache, with Good Performance

@ThreadSafe

@WebServlet("/CachedFactorizer")

public class CachedFactorizer extends StatelessFactorizer {
private @GuardedBy("this") BigInteger lastNumber;

private @GuardedBy("this") BigInteger[] lastFactors;

private @GuardedBy("this") long hits;

private @GuardedBy("this") long cacheHits;

public synchronized long getHits() {
return hits;

}

public synchronized double getCacheHitsRatio() {
return cacheHits / (double) hits;

}

Fausto Spoto Università di Verona, Italy - 21 / 25



A Factorizer that Keeps a Cache, with Good Performance

@Override protected void doPost(...) {
BigInteger number = extractFromRequest(request);

BigInteger[] factors = null;

synchronized (this) {
++hits;

if (number.equals(lastNumber)) {
++cacheHits;

factors = lastFactors;

}
}

if (factors == null) {
factors = factor(number); // long operation: outside synchronization!

synchronized (this) {
lastNumber = number;

lastFactors = factors;

}
}

encodeIntoResponse(response, factors);

}
}

Fausto Spoto Università di Verona, Italy - 22 / 25



Exercise 1

Write a web application implementing a chat server, with two servlets:

Add a message to the chat

AddMessage?author=AAAA&text=TTTT

List the last messages of the chat

ListMessages?howmany=HHHH

If there are fewer messages, only lists those available. The list is provided
in the output of the servlet, in increasing chronological order, as a sequence
of XML messages:

<message>

<author>

Fausto

</author>

<text>

Hello, are you listening?

</text>

</message>

Fausto Spoto Università di Verona, Italy - 23 / 25



Exercise 1: Suggestion

Servlets have a context, holding data that must be made available to the
whole application, that is, to all servlets of the same web application. This
context can be accessed by writing:

ServletContext context = getServletContext()

Data can be stored and retrieved from the context by using its methods:

setAttribute(String key, Object value)

Object getAttribute(String key), which yields null if the
attribute is unknown

Since attribute values are shared across all instances of all servlets, they
must be thread-safe
In the exercise, the list of chat messages might be an attribute

Fausto Spoto Università di Verona, Italy - 24 / 25



Exercise 2

Write a command-line client to the chat web application, that allows one
to post new messages to the chat, by specifying author and text, and to
list the last (up to) 10 messages in the chat, in increasing chronological
order, such as:

Fausto says:

Hello, are you listening?

Linda says:

Kind of, I’m busy writing servlets

Fausto says:

Wow, you are a Java expert!

Share the same chat server across many clients and try its concurrent use

Fausto Spoto Università di Verona, Italy - 25 / 25


