Introduction to Wavelets

• CTFT

- Continuous time signals

$$F(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-j\omega t}dt$$
$$f(t) = \int_{-\infty}^{+\infty} F(\omega)e^{j\omega t}dt$$

- The amplitude *f* () of each sinusoidal wave eit is equal to its correlation with *f*, also called Fourier transform
- If *f* (*t*) is uniformly regular, then its Fourier transform coefficients also have a fast decay when the frequency increases, so it can be easily approximated with few low-frequency Fourier coefficients.

- DTFT
 - Over discrete signals, the Fourier transform is a decomposition in a discrete orthogonal Fourier basis $\{e^{i2kn/N}\}_{0 \le k < N}$ of C^N , which has properties similar to a Fourier transform on functions.
 - Its embedded structure leads to fast Fourier transform(FFT) algorithms, which compute discrete Fourier coefficients with O(N log N) instead of N². This FFT algorithm is a cornerstone of discrete signal processing.
- The Fourier transform is unsuitable for representing transient phenomena
 - the support of $e^{\omega it}$ covers the whole real line, so $\hat{f}(\omega)$ depends on the values f(t) for all times $t \in \mathbb{R}$. This global "mix" of information makes it difficult to analyze or represent any local property of f(t) from $\hat{f}(t)$.
 - As long as we are satisfied with linear time-invariant operators or uniformly regular signals, the Fourier transform provides simple answers to most questions. Its richness makes it suitable for a wide range of applications such as signal transmissions or stationary signal processing. However, to represent a transient phenomenon—a word pronounced at a particular time, an apple located in the left corner of an image—the Fourier transform becomes a cumbersome tool that requires many coefficients to represent a localized event.

- The F-transform is not suitable for representing transient phenomena
 - Intuition

$$F(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-j\omega t}dt$$

- F(ω) depends on the values taken by f(t) on the entire temporal axis, which is not suitable for analyzing local properties
- Need of a transformation which is well localized in *time and frequency*

• Transient phenomena

The two transients present in the signal contribute **differently** to the spectrum. The Ftransform does not allow to characterize them **separately** to get a local description of the frequency content of the signal.

The basis functions of the FT are complex sinusoids, thus $F(\omega)$ is a measure of the correlation of the signal f(t) with the complex exponential at frequency ω , which spreads over the whole frequency axis.

Time-frequency localization

• Time-frequency atoms: basis functions that are well localized in *both* time and frequency

Discrete Wavelet Transform

- A wavelet is a function of zero average centered in the neighborhood of t=0 and is normalized $_{\!\!\!+\!\infty}$

$$\int_{-\infty}^{+\infty} \psi(t) dt = 0$$
$$\|\psi\| = 1$$

• The translations and dilations of the wavelet generate a family of functions over which the signal is projected

$$\psi_{u,s}(t) = \frac{1}{\sqrt{s}}\psi\left(\frac{t-u}{s}\right)$$

• Wavelet transform of f in L²(R) at position u and scale s is

$$Wf(u,s) = \left\langle f, \psi_{u,s} \right\rangle = \int_{-\infty}^{+\infty} f(t) \frac{1}{\sqrt{s}} \psi^* \left(\frac{t-u}{s}\right) dt$$
$$s = 2^j$$
$$u = k \cdot 2^j$$

Fourier versus Wavelets

Recipe

- **1** Take a wavelet and compare it to a section at the start of the original signal.
- 2 Calculate a number, C, that represents how closely correlated the wavelet is with this section of the signal. The higher C is, the more the similarity. More precisely, if the signal energy and the wavelet energy are equal to one, C may be interpreted as a correlation coefficient.

Note that the results will depend on the shape of the wavelet you choose.

Recipe

3 Shift the wavelet to the right and repeat steps 1 and 2 until you've covered the whole signal.

4 Scale (stretch) the wavelet and repeat steps 1 through 3.

5 Repeat steps 1 through 4 for all scales.

Wavelet Zoom

 WT at position u and scale s measures the local correlation between the signal and the wavelet

Thus, there is a correspondence between wavelet scales and frequency as revealed by wavelet analysis:

- (small) Low scale $a \Rightarrow$ Compressed wavelet \Rightarrow Rapidly changing details \Rightarrow High frequency ω .
- (large) High scale $a \Rightarrow$ Stretched wavelet \Rightarrow Slowly changing, coarse features \Rightarrow Low frequency ω .

Frequency domain

• Parseval $Wf(u,s) = \int_{-\infty}^{+\infty} f(t)\psi^*_{u,s}(t)dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega)\Psi^*_{u,s}(\omega)d\omega$

The wavelet coefficients Wf(u,s) depend on the values of f(t) (and $F(\omega)$) in the time-frequency region where the energy of the corresponding wavelet function (respectively, its transform) is concentrated

- time/frequency localization
- The position and scale of high amplitude coefficients allow to characterize the temporal evolution of the signal
- Time domain signals (1D) : Temporal evolution
- Spatial domain signals (2D) : Localize and characterize spatial singularities

$$\psi_{u,s}(t) = \frac{1}{\sqrt{s}} \psi\left(\frac{t-u}{s}\right) \Leftrightarrow \Psi_{u,s}(\omega) = \sqrt{s} \Psi(s\omega) e^{-j\omega s}$$

Stratching in time \leftrightarrow Shrinking in frequency (and viceversa)

Wavelet representation = approximation + details

approximation \leftrightarrow scaling function details \leftrightarrow wavelets

Multiscale edge detection

Real wavelets: example

• The wavelet transform was calculated using a Mexican hat wavelet

Fig. 4.7. A Wavelet Tour of Signal Processing, 3^{rd} ed. Real wavelet transform Wf(u, s) computed with a Mexican hat wavelet The vertical axis represents $\log_2 s$. Black, grey and white points correspond respectively to positive, zero and negative wavelet coefficients.

Wavelets and linear filtering

• The WT can be rewritten as a convolution product and thus the transform can be interpreted as a linear filtering operation

$$Wf(u,s) = \left\langle f, \psi_{u,s} \right\rangle = \int_{-\infty}^{+\infty} f(t) \frac{1}{\sqrt{s}} \psi^* \left(\frac{t-u}{s}\right) dt = f * \overline{\psi}_s(u)$$
$$\overline{\psi}_s(t) = \frac{1}{\sqrt{s}} \psi^* \left(\frac{-t}{s}\right)$$
$$\hat{\overline{\psi}}_s(\omega) = \sqrt{s} \hat{\psi}^*(s\omega)$$

 $\hat{\psi}(0) = 0$

 \rightarrow band-pass filter

Wavelets & filterbanks

Quadrature Mirror Filter (QMF)

Multi-scale analysis

Bi-dimensional wavelets

Fast wavelet transform algorithm (DWT)

Decomposition step

Fast wavelet transform algorithm (DWT)

Reconstruction Step

Fast DWT for images

Decomposition Step

Fast DWT for images

Subband structure for images

FV extraction

• Step 1: create independent texture instances

Feature extraction

• Step 2: extract features to form *feature vectors*

