Introduction to Wavelets




The Fourier kingdom

CTFT
— Continuous time signals

F(o)= T f()e’”dt
f(t) = TF(a))ej‘“tdt

— The amplitude °f () of each sinusoidal wave eit is equal to its correlation with f ,
also called Fourier transform

— If f (t) is uniformly regular, then its Fourier transform coefficients also have a

fast decay when the frequency increases, so it can be easily approximated
with few low-frequency Fourier coefficients.




The Fourier kingdom

DTFT

— Opver discrete signals, the Fourier transform is a decomposition in a discrete
orthogonal Fourier basis {e?"N },_, _\ of CN , which has properties similar to a
Fourier transform on functions.

— Its embedded structure leads to fast Fourier transform(FFT) algorithms,which
compute discrete Fourier coefficients withO(N log N) instead of N2. This FFT
algorithm is a cornerstone of discrete signal processing.

The Fourier transform is unsuitable for representing transient phenomena

— the support of et covers the whole real line, so “f (w) depends on the values f
(t) for all times t €R. This global “mix” of information makes it difficult to
analyze or represent any local property of f (t) from “f ().

« As long as we are satisfied with linear time-invariant operators or uniformly regular
signals, the Fourier transform provides simple answers to most questions. Its
richness makes it suitable for a wide range of applications such as signal
transmissions or stationary signal processing. However, to represent a transient
phenomenon—a word pronounced at a particular time, an apple located in the left

corner of an image—the Fourier transform becomes a cumbersome tool that
requires many coefficients to represent a localized event.




The Fourier kingdom

The F-transform is not suitable for representing transient phenomena

— Intuition

+00

F(w)= [f(®e/dt

—00

— F(w) depends on the values taken by f(t) on the entire temporal axis, which is
not suitable for analyzing local properties

— Need of a transformation which is well localized in time and frequency
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The Fourier kingdom

« Transient phenomena

f(t) A

—
v

The two transients present in the signal contribute differently to the spectrum. The F-
transform does not allow to characterize them separately to get a local description of
the frequency content of the signal.

The basis functions of the FT are complex sinusoids, thus F(w) is a measure of the
correlation of the signal f(t) with the complex exponential at frequency w, which
spreads over the whole frequency axis.




Time-frequency localization

Time-frequency atoms: basis functions that are well localized in both time
and frequency
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Discrete Wavelet Transform

A wavelet is a function of zero average centered in the neighborhood of =0 and is
normalized

The translations and dilations of the wavelet generate a family of functions over
which the signal is projected

Vo (1) = ﬁw(’;”j

Wavelet transform of f in L2(R) at position u and scale s is

W w,s)= o, ) = jf(r) v

s
s =2/
u=rk-2’




Wavelet transform

LRy

Wf(0,s) <> correlation for u=0




Wavelet transform
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Wavelet transform
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Changing the scale

\ N
NEVA
7
§=2t1
AN ~
VARV
7

/\ coarser §s=2"2
/\ P
~_/ "

multiresolution

11




Fourier versus Wavelets

F(o) = J'f(t}e—jmtdf
C(scale, position) = jf{t}q}(scaﬂe.pmaitimz. t)dt

Wavelet (db10)
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Constituent wavelets of different scales and positions

Signal
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Scaling
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Wavelet function
Wit)

Shifting

Shifted wavelet function
Wit —k)
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Recipe

1 Take a wavelet and compare it to a section at the start of the original signal.

2 Calculate a number, C, that represents how closely correlated the wavelet is
with this section of the signal. The higher C is, the more the similarity. More
precisely, if the signal energy and the wavelet energy are equal to one, C may
be interpreted as a correlation coefficient.

Note that the results will depend on the shape of the wavelet vou choose.

)

Signal

Wavelet

C =0.0102
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Recipe

3 Shift the wavelet to the right and repeat steps 1 and 2 until you've covered
the whole signal.

Signal

Wavelet |:>

4 Scale (stretch) the wavelet and repeat steps 1 through 3.

Signal

Wavelet

C = 0.2247

5 Repeat steps 1 through 4 for all scales.




Wavelet Zoom

WT at position u and scale s measures the local correlation between the
signhal and the wavelet

- . —\/\/\/»f
 largescale

Thus, there is a correspondence between wavelet scales and frequency as
revealed by wavelet analysis:

(small) ® Low scale a = Compressed wavelet = Rapidly changing details = High
frequency o.

(large) e High scale @ = Stretched wavelet = Slowly changing, coarse features = Low
frequency o.
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Frequency domain

 Parseval Wt (u,s)= +J?of(t)g//*u,s (t)dt = LTF(&))\P*W (w)dw
- 27 S

The wavelet coefficients Wf(u,s) depend on the values of f(t) (and F(w)) in the
time-frequency region where the energy of the corresponding wavelet function
(respectively, its transform) is concentrated

» time/frequency localization

« The position and scale of high amplitude coefficients allow to characterize the
temporal evolution of the signal

« Time domain signals (1D) : Temporal evolution
« Spatial domain signals EZD) . Localize and characterize spatial singularities

l//u,s(t) - j; 4 '~ uj ~ \Pu,s (a)) = \/;LP(SC())Q_ja)s

S

Stratching in time — Shrinking in frequency (and viceversa)
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Example
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Wavelet representation = approximation + details

approximation < scaling function
details <> wavelets
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A different perspective

approximation at
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Haar pyramid [Haar 1910]
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What wavelets can do?
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Multiscale edge detection
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Real wavelets: example

The wavelet transform was calculated using a Mexican hat wavelet

f(t)
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Fig. 4.7. A Wavelsd Tour of Signal Processing, 3 ad. Real wavelet transform W f{u, s) computed with s Mexican hat wavelst The
wertical axis represents logy 5. Black, grey and white points correspond respectively to positive, zero and negative wavelet coefficients.
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Wavelets and linear filtering

The WT can be rewritten as a convolution product and thus the transform
can be interpreted as a linear filtering operation

r—u

Wl (u.s)=(f.w,,)= Tf(l‘)%t//* [ -

_ |
l)fs (1) = ﬁl/f (?j
v, (0) =sy" (sw)

t=f*y (u)

w(0)=0

— band-pass filter
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Wavelets & filterbanks
Quadrature Mirror Filter (QMF)
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Analysis or decomposition

¥

}

f

Iow -pass

Filters

h|gh pass

B

L DI ~1000 samples

s | 2000 samples

“D_—" A I ~1000 samples

I

-®-

SJ 1000 samples

o

cD I ~500 coefs

@

cA I ~500 coefs
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Analysis or decomposition
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Synthesis or reconstruction
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L' Components — ]

4’(:)—'%. A, Dy = A +Dy+Dy+D,
upsampling

SRR RARR

F o}
" ol
12 3 4 5 1 2 3 4 5 6 7 8 9 10
Signal component Upsampled signal component
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Multi-scale analysis

Analysis
Decomposition

DWT
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— Synthesis

Wavelet Reconstruction

Coefficients IDWT
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Haar

Famous wavelets

Wavelet function psi

Mexican hat

-8 6 -4 -2 0 2 4 6 8

Wavelet function psi
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Daubechie’s

dbh2 db3 db4 db5 db6
db7 db8 db9 db10
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Bi-dimensional wavelets

(D(JC >V ) - (D(X)¢(y ) coifZ: philx)*phity) N cOIfZ: PRI pSly)
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Fast wavelet transform algorithm (DWT)

Decomposition step

- approximation
low-pass filter downsample pproxu
7 coefficients
| Lo D ™ * 2 ————— Ay
s b
G
| Hi D I ¢ 2 —— cD4
hish-pass filter downsample de_t({.rl
i P coefficients
where X Convolve with filter X.

Keep the even indexed elements
(see dyaddown).
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Fast wavelet transform algorithm (DWT)

Reconstruction Step

cAj

CDJ'

level j

where

upsample low-pass
— $ 2 | Lo R
—|wkeep —= cAj
— - f 2 — Hi R :
level j-1
upsample high-pass

wkeep

Insert zeros at odd-indexed elements.

Convolve with filter X.

Take the central part of U with the
convenient length.
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Filters

Original scaling filter
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Fast DWT for images

Decomposition Step

columns

rows » oD -2 cAji1
— LoD w241
- columns (h)
»  HiD 42— Y1
horizontal
c:Aj —
columns e
\v)
FOWS Lo D ol +2 — “Yia
. o~ | vertical
—*__ HiD 291 columns ()
Hi D w g2 —= il
diagonal
where 2 ¥ 1 | Downsample columns: keep the even indexed columns.
| ¥ 2| Downsample rows: keep the even indexed rows.
I'ows
X | Convolve with filter X the rows of the entry.
column
X | Convolve with filter X the columns of the entry.
Initialization CAg = s for the decomposition initialization.
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Fast DWT for images

Two-Dimensional IDWT

Reconstruction Step

cAj1—wl 142
(h)
CUj+1 —= 1 42
horizontal
(v)
D M7
vertical
(d)
cDisi —»f 142
diagonal
where 241

142

rows

X

column

S

X

columns
" LoR Fows
columns 241+ Lo R [
L Hi R
columns ™ wkeep —I-CAJ-
> Nt FOWSs
columns 2+ 1 » Hi R [
o Hi R

Upsample columns: insert zeros at odd-indexed columns.

Upsample rows: insert zeros at odd-indexed rows.

Convolve with filter X the rows of the entry.

Convolve with filter X the columns of the entry.
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Subband structure for images
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FV extraction

Step 1: create independent texture instances

Training set

Test set
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Feature extraction

Step 2: extract features to form feature vectors

Intensity image S 7 ¥ 7
y A Ae YA A 4

A 4

y A4 S/
Transformation / /

<For each srlb-image> / /

< For each subband > / /
Calculate the local

energy (variance) / /

Fill the corresponding
position in the FV

v

One FV for each sub-image |:> Classification algorithm

subimages

The FVs contain some
statistical parameters
evaluated on the subband
images

 estimates of local variances

* histograms

— Collect the local energy of each sub-image in the
different subbands in a vector
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Building the FV

approximation

42




scale2

approximation

Building the FV

elements of FV, of texture 1
elements of FV, of texture 1

FV, FV,

XD
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