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Introduction to Wavelets
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The Fourier kingdom

• CTFT
– Continuous time signals

– The amplitude ˆf () of each sinusoidal wave eit is equal to its correlation with f , 
also called Fourier transform

– If f (t) is uniformly regular, then its Fourier transform coefficients also have a 
fast decay when the frequency increases, so it can be easily approximated 
with few low-frequency Fourier coefficients.
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The Fourier kingdom

• DTFT
– Over discrete signals, the Fourier transform is a decomposition in a discrete 

orthogonal Fourier basis {ei2kn/N }0≤k<N of CN , which has properties similar to a 
Fourier transform on functions. 

– Its embedded structure leads to fast Fourier transform(FFT) algorithms,which
compute discrete Fourier coefficients withO(N log N) instead of N2. This FFT 
algorithm is a cornerstone of discrete signal processing.

• The Fourier transform is unsuitable for representing transient phenomena
– the support of eωit covers the whole real line, so ˆf (ω) depends on the values f 

(t) for all times t ∈R. This global “mix” of information makes it difficult to 
analyze or represent any local property of f (t) from ˆf ().

• As long as we are satisfied with linear time-invariant operators or uniformly regular 
signals, the Fourier transform provides simple answers to most questions. Its 
richness makes it suitable for a wide range of applications such as signal 
transmissions or stationary signal processing. However, to represent a transient 
phenomenon—a word pronounced at a particular time, an apple located in the left 
corner of an image—the Fourier transform becomes a cumbersome tool that 
requires many coefficients to represent a localized event.
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The Fourier kingdom

• The F-transform is not suitable for representing transient phenomena
– Intuition

– F(ω) depends on the values taken by f(t) on the entire temporal axis, which is 
not suitable for analyzing local properties

– Need of a transformation which is well localized in time and frequency
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The Fourier kingdom

• Transient phenomena

t

The two transients present in the signal contribute differently to the spectrum. The F-
transform does not allow to characterize them separately to get a local description of 
the frequency content of the signal.

The basis functions of the FT are complex sinusoids, thus F(ω) is a measure of the 
correlation of the signal f(t) with the complex exponential at frequency ω, which 
spreads over the whole frequency axis.

f(t)
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Time-frequency localization

• Time-frequency atoms: basis functions that are well localized in both time 
and frequency
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Discrete Wavelet Transform

• A wavelet is a function of zero average centered in the neighborhood of t=0 and is 
normalized 

• The translations and dilations of the wavelet generate a family of functions over 
which the signal is projected

• Wavelet transform of f in L2(R) at position u and scale s is

1

0)(

=

=∫
+∞

∞−

ψ

ψ dtt

⎟
⎠
⎞

⎜
⎝
⎛ −

=
s

ut
s

tsu ψψ 1)(,

,
1( , ) , ( )

2
2

u s

j

j

t uWf u s f f t dt
ss

s
u k

ψ ψ
+∞

∗

−∞

−⎛ ⎞= = ⎜ ⎟
⎝ ⎠

=

= ⋅

∫



8

Wavelet transform

Ψu,s(t)

t

t

Ψ0,s(t)

Wf(0,s) ⇔ correlation for u=0

0
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Wavelet transform

Ψu,s(t)

t

t

Ψn2j,s(t)

u=n 2j

Wf(n 2j,s) ⇔ correlation for u=n 2j
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Wavelet transform

Ψu,s(t)
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t
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u= (n+1) 2j

Wf((n+1)2j,s) ⇔ correlation at 
u=(n+1)2j
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Changing the scale

Ψu,s(t)

Ψu,s(t)

Ψu,s(t)

finer 

coarser 

s=2j+1

s=2j

s=2j+2

multiresolution
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Fourier versus Wavelets
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Scaling
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Shifting

t t
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Recipe
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Recipe
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Wavelet Zoom

• WT at position u and scale s measures the local correlation between the 
signal and the wavelet

(small)

(large)

small scale large scale
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Frequency domain

• Parseval

The wavelet coefficients Wf(u,s) depend on the values of f(t) (and F(ω)) in the 
time-frequency region where the energy of the corresponding wavelet function 
(respectively, its transform) is concentrated

•• time/frequency localizationtime/frequency localization
• The position and scaleposition and scale of high amplitude coefficients allow to characterize the 

temporal evolutiontemporal evolution of the signal

• Time domain signals (1D) : Temporal evolution
• Spatial domain signals (2D) : Localize and characterize spatial singularities

Stratching in time ↔ Shrinking in frequency (and viceversa)
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Example

approximation

details

Wavelet representation = approximation + details approximation ↔ scaling function
details ↔ wavelets
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A different perspective
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Haar pyramid [Haar 1910]

sig0

sig1

sig2

sig3

Haar basis function Haar waveletϕ2
0

signal=approximation at scale n + details at scales 1 to n

details
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What wavelets can do?
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Multiscale edge detection
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Real wavelets: example

• The wavelet transform was calculated using a Mexican hat wavelet
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Wavelets and linear filtering

• The WT can be rewritten as a convolution product and thus the transform 
can be interpreted as a linear filtering operation
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Wavelets & filterbanks
Quadrature Mirror Filter (QMF)
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Analysis or decomposition
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Analysis or decomposition
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Synthesis or reconstruction

upsampling
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Multi-scale analysis
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Famous wavelets
Haar

Mexican hat
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Daubechie’s
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Bi-dimensional wavelets
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Fast wavelet transform algorithm (DWT)

Decomposition step
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Fast wavelet transform algorithm (DWT)
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Filters
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Fast DWT for images
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Fast DWT for images
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Subband structure for images

cD1(h)

cD1(v) cD1(d)

cD2(v) cD2(d)

cD2(h)cA2
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FV extraction

• Step 1: create independent texture instances

Training set

Test set
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Feature extraction

Intensity image

Transformation

subimages

Calculate the local 
energy (variance)

For each sub-image

Fill the corresponding 
position in the FV

One FV for each sub-image Classification algorithm

⇒ Collect the local energy of each sub-image in the 
different subbands in a vector

The FVs contain some 
statistical parameters 
evaluated on the subband
images
• estimates of local variances

• histograms

For each subband

• Step 2: extract features to form feature vectors
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Building the FV

scale 1

scale 2

approximation d1 d2 d3
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Building the FV

scale 1

scale 2

approximation d1 d2 d3

elements of FV1 of texture 1
elements of FV2 of texture 1

FV1 FV2


