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From continuous to discrete time
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From continuous to discrete time
• Sampling is the process that consists in taking a continuous 

time signal and transforming it into a discrete time signal
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Sampler



How to obtain it?
• The main actors are 

• The impulse train
• The convolution operator
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The sampled signal 
can be seen as the 
product of the CT 
signal times the 
impulse train



What else do we know?
• The product in signal domain corresponds to the convolution 

in Fourier domain
• The DTFT of a discrete time signals is periodic of period 2π
• So far, we have considered sample indices that were integer 

numbers which amounts to assume unitary spacing among 
samples

while for sampled signals the spacing among samples is Ts
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Stratching (Ts>1) or 
shrinking (Ts<1) of 
the time axis



What do we need
• F-transform of the impulse train but we know that

• The impulse train is a periodic function of period Ts

• Thus its transform is

• Thus it is a scaled version of the train of delta where the spacing 
between deltas is 1/Ts
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Sampling
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fs(t) = f(nTs) = f(t)STs(t) =
X
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• Exploiting the convolution theore
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Sampling periodizes the spectrum
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Discrete impulse train

■ Define a comb function (impulse train) as follows

combN [n]= δ[n− lN ]
l=−∞

∞

∑

where M and N are integers
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Impulse Train
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Consequences

Sampling (Nyquist) theorem
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Sampling
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Sampling

x

( )f x

u

( )F u

u

1( )* ( )
M

F u comb u

x

( ) ( )Mf x comb x

WW-

M

W

1
M1 2W

M
>Nyquist theorem: No aliasing if



13

Sampling
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If there is no aliasing, the original signal 
can be recovered from its samples by 
low-pass filtering.
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Sampling
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Sampling
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Sampling
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■ Without anti-aliasing filter: 

■ With anti-aliasing filter: 


