
Chapter 2

Vectors and Matrices

Linguaggio Programmazione Matlab-Simulink (2017/2018)

Matrices
 A matrix is used to store a set of values of the same type; every

value is stored in an element
 MATLAB stands for “matrix laboratory”
 A matrix looks like a table; it has both rows and columns
 A matrix with m rows and n columns is called m x n; these are

called its dimensions; e.g. this is a 2 x 3 matrix:

 The term array is frequently used in MATLAB to refer
generically to a matrix or a vector

9 6 3

5 7 2

Vectors and Scalars

 A vector is a special case of a matrix in which one of the
dimensions is 1
 a row vector with n elements is 1 x n, e.g. 1 x 4:

 a column vector with m elements is m x 1, e.g. 3 x 1:

 A scalar is an even more special case; it is 1 x 1, or in other words,
just a single value

5 88 3 11

3

7

4

5

Creating Row Vectors
 Direct method: put the values you want in square brackets,

separated by either commas or spaces
>> v = [1 2 3 4]

v =

1 2 3 4

>> v = [1,2,3,4]

v =

1 2 3 4

 Colon operator: iterates through values in the form first:step:last
e.g. 5:3:14 returns vector [5 8 11 14]
 If no step is specified, the default is 1 so for example 2:4 creates

the vector [1 2 3 4]

 Can go in reverse e.g. 4:-1:1 creates[4 3 2 1]

Functions linspace, logspace
 The function linspace creates a linearly spaced vector;

linspace(x,y,n) creates a vector with n values in the
inclusive range from x to y
 e.g. linspace(4,7,3) creates a vector with 3 values including

the 4 and 7 so it returns [4 5.5 7]

 If n is omitted, the default is 100 points

 The function logspace creates a logarithmically spaced
vector; logspace(x,y,n) creates a vector with n values in
the inclusive range from 10^x to 10^y
 e.g. logspace(2,4,3) returns [100 1000 10000]

 If n is omitted, the default is 50 points

Concatenation
 Vectors can be created by joining together existing vectors, or

adding elements to existing vectors

 This is called concatenation

 For example:
>> v = 2:5;

>> x = [33 11 2];

>> w = [v x]

w =

2 3 4 5 33 11 2

>> newv = [v 44]

newv =

2 3 4 5 44

Referring to Elements
 The elements in a vector are numbered sequentially; each

element number is called the index, or subscript and are
shown above the elements here:

 Refer to an element using its index or subscript in parentheses,
e.g. vec(4) is the 4th element of a vector vec (assuming it has at
least 4 elements)

 Can also refer to a subset of a vector by using an index vector
which is a vector of indices e.g. vec([2 5]) refers to the 2nd and 5th

elements of vec; vec([1:4]) refers to the first 4 elements

1 2 3 4 5

5 33 11 -4 2

Modifying Vectors
 Elements in a vector can be changed e.g.

vec(3) = 11

 A vector can be extended by referring to elements that do not yet
exist; if there is a gap between the end of the vector and the new
specified element(s), zeros are filled in, e.g.
>> vec = [3 9];

>> vec(4:6) = [33 2 7]

vec =

3 9 0 33 2 7

 Extending vectors is not a good idea if it can be
avoided, however

Column Vectors
 A column vector is an m x 1 vector

 Direct method: can create by separating values in square
brackets with semicolons e.g. [4; 7; 2]

 You cannot directly create a column vector using methods
such as the colon operator, but you can create a row vector
and then transpose it to get a column vector using the
transpose operator ’

 Referring to elements: same as row vectors; specify indices
in parentheses

Creating Matrix Variables
 Separate values within rows with blanks or commas, and separate

the rows with semicolons

 Can use any method to get values in each row (any method to
create a row vector, including colon operator)

>> mat = [1:3; 6 11 -2]

mat =

1 2 3

6 11 -2

 There must ALWAYS be the same number of values
in every row!!

Functions that create matrices
 There are many built-in functions to create matrices

 rand(n) creates an nxn matrix of random reals

 rand(n,m) create an nxm matrix of random reals

 randi([range],n,m) creates an nxm matrix of random integers in
the specified range

 zeros(n) creates an nxn matrix of all zeros

 zeros(n,m) creates an nxm matrix of all zeros

 ones(n) creates an nxn matrix of all ones

 ones(n,m) creates an nxm matrix of all ones

Note: there is no twos function – or thirteens – just zeros and ones!

Matrix Elements
 To refer to an element in a matrix, you use the matrix variable

name followed by the index of the row, and then the index of the
column, in parentheses

>> mat = [1:3; 6 11 -2]

mat =

1 2 3

6 11 -2

>> mat(2,1)

ans =

6

 ALWAYS refer to the row first, column second

 This is called subscripted indexing

 Can also refer to any subset of a matrix
 To refer to the entire mth row: mat(m,:)

 To refer to the entire nth column: mat(:,n)

Matrix Indexing
 To refer to the last row or column use end, e.g.

mat(end,m) is the mth value in the last row

 Can modify an element or subset of a matrix in an
assignment statement

 Linear indexing: only using one index into a
matrix (MATLAB will unwind it column-by
column)
 Note, this is not generally recommended

Modifying Matrices
 An individual element in a matrix can be modified by

assigning a new value to it

 Entire rows and columns can also be modified

 Any subset of a matrix can be modified, as long as
what is being assigned has the same dimensions as the
subset being modified

 Exception to this: a scalar can be assigned to any size
subset; the same scalar is assigned to every element in
the subset

Matrix Dimensions
 There are several functions to determine the dimensions of a vector or

matrix:
 length(vec) returns the # of elements in a vector

 length(mat) returns the larger dimension (row or column) for a matrix

 size returns the # of rows and columns for a vector or matrix

 Important: capture both of these values in an assignment statement

[r c] = size(mat)

 numel returns the total # of elements in a vector or matrix

 Very important to be general in programming: do not assume that you
know the dimensions of a vector or matrix – use length or size to find
out!

Functions that change dimensions
Many function change the dimensions of a matrix:

 reshape changes dimensions of a matrix to any
matrix with the same number of elements

 rot90 rotates a matrix 90 degrees counter-
clockwise

 fliplr flips columns of a matrix from left to right

 flipud flips rows of a matrix up to down

 flip flips a row vector left to right, column vector
or matrix up to down

Replicating matrices
 repmat replicates an entire matrix; it creates m x n copies

of the matrix

 repelem replicates each element from a matrix in the
dimensions specified

>> mymat = [33 11; 4 2]

mymat =

33 11

4 2

>> repmat(mymat, 2,3)

ans =

33 11 33 11 33 11

4 2 4 2 4 2

33 11 33 11 33 11

4 2 4 2 4 2

>> repelem(mymat,2,3)

ans =

33 33 33 11 11 11

33 33 33 11 11 11

4 4 4 2 2 2

4 4 4 2 2 2

Empty Vectors
 An empty vector is a vector with no elements; an empty vector

can be created using square brackets with nothing inside []

 to delete an element from a vector, assign an empty vector to that
element

 delete an entire row or column from a matrix by assigning []

 Note: cannot delete an individual element from a matrix

 Empty vectors can also be used to “grow” a vector, starting with
nothing and then adding to the vector by concatenating values to
it (usually in a loop, which will be covered later)

 This is not efficient, however, and should be avoided if possible

3D Matrices
 A three dimensional matrix has dimensions m x n x p

 Can create using built-in functions, e.g. the following
creates a 3 x 5 x 2 matrix of random integers; there are
2 layers, each of which is a 3 x 5 matrix
>> randi([0 50], 3,5,2)

ans(:,:,1) =

36 34 6 17 38

38 33 25 29 13

14 8 48 11 25

ans(:,:,2) =

35 27 13 41 17

45 7 42 12 10

48 7 12 47 12

Arrays as function arguments
 Entire arrays (vectors or matrices) can be passed as

arguments to functions; this is very powerful!

 The result will have the same dimensions as the input

 For example:
>> vec = randi([-5 5], 1, 4)

vec =

-3 0 5 1

>> av = abs(vec)

av =

3 0 5 1

Powerful Array Functions
 There are a number of very useful function that are

built-in to perform operations on vectors, or on
columns of matrices:

 min the minimum value

 max the maximum value

 sum the sum of the elements

 prod the product of the elements

 cumprod cumulative, or running, product

 cumsum cumulative, or running, sum

 cummin cumulative minimum

 cummax cumulative maximum

min, max Examples
>> vec = [4 -2 5 11];

>> min(vec)

ans =

-2

>> mat = randi([1, 10], 2,4)

mat =

6 5 7 4

3 7 4 10

>> max(mat)

ans =

6 7 7 10

 Note: the result is a scalar when the argument is a vector; the result is a 1 x n
vector when the argument is an m x n matrix

sum, cumsum vector Examples
 The sum function returns the sum of all elements; the

cumsum function shows the running sum as it
iterates through the elements (4, then 4+-2, then 4-
2+5, and finally 4-2+5+11)

>> vec = [4 -2 5 11];

>> sum(vec)

ans =

18

>> cumsum(vec)

ans =

4 2 7 18

sum, cumsum matrix Examples
 For matrices, the functions operate column-wise:

>> mat = randi([1, 10], 2,4)

mat =

1 10 1 4

9 8 3 7

>> sum(mat)

ans =

10 18 4 11

>> cumsum(mat)

ans =

1 10 1 4

10 18 4 11

The sum is the sum for each column; cumsum shows
the cumulative sums as it iterates through the rows

prod, cumprod Examples
 These functions have the same format as sum/cumsum,

but calculate products
>> v = [2:4 10]

v =

2 3 4 10

>> cumprod(v)

ans =

2 6 24 240

>> mat = randi([1, 10], 2,4)

mat =

2 2 5 8

8 7 8 10

>> prod(mat)

ans =

16 14 40 80

Overall functions on matrices
 Since these functions operate column-wise for

matrices, it is necessary to nest calls to them in order
to get the function for all elements of a matrix, e.g.:

>> mat = randi([1, 10], 2,4)

mat =

9 7 1 6

4 2 8 5

>> min(mat)

ans =

4 2 1 5

>> min(min(mat))

ans =

1

diff Function
 The diff function returns the differences between

consecutive elements in a vector

 For a vector with a length of n, the length of the result
will be n-1

>> diff([4 7 2 32])

ans =

3 -5 30

 For a matrix, the diff function finds the differences
column-wise

Scalar operations
 Numerical operations can be performed on every element

in a vector or matrix

 For example, Scalar multiplication: multiply every
element by a scalar

>> [4 0 11] * 3

ans =

12 0 33

 Another example: scalar addition; add a scalar to every
element

>> zeros(1,3) + 5

ans =

5 5 5

Array Operations
 Array operations on two matrices A and B:

 these are applied term-by-term, or element-by-element

 this means the matrices must have the same dimensions

 In MATLAB:

 matrix addition: A + B

 matrix subtraction: A – B or B – A

 For operations that are based on multiplication
(multiplication, division, and exponentiation), a dot must be
placed in front of the operator

 array multiplication: A .* B

 array division: A ./ B, A .\ B

 array exponentiation A .^ 2

 matrix multiplication: NOT an array operation

Logical Vectors
 Using relational operators on a vector or matrix results in a

logical vector or matrix
>> vec = [44 3 2 9 11 6];

>> logv = vec > 6

logv =

1 0 0 1 1 0

 can use this to index into a vector or matrix (only if the index
vector is the type logical)
>> vec(logv)

ans =

44 9 11

True/False
 false equivalent to logical(0)

 true equivalent to logical(1)

 false and true are also functions that create
matrices of all false or true values

 As of R2016a, this can also be done with ones and
zeros, e.g.
logzer = ones(1,5, 'logical')

Logical Built-in Functions
 any returns true if anything in the input argument is true

 all returns true only if everything in the input argument is true

 find finds locations and returns indices

>> vec

vec =

44 3 2 9 11 6

>> find(vec>6)

ans =

1 4 5

Comparing Arrays
 The isequal function compares two arrays, and

returns logical true if they are equal (all
corresponding elements) or false if not

>> v1 = 1:4;

>> v2 = [1 0 3 4];

>> isequal(v1,v2)

ans =

0

>> v1 == v2

ans =

1 0 1 1

>> all(v1 == v2)

ans =

0

Element-wise operators
 | and & are used for matrices; go through element-by-

element and return logical 1 or 0

 || and && are used for scalars

Matrix Multiplication: Dimensions
 Matrix multiplication is NOT an array operation

 it does NOT mean multiplying term by term

 In MATLAB, the multiplication operator * performs matrix
multiplication

 Matrix multiplication has a very specific definition
 In order to be able to multiply a matrix A by a matrix B, the number of

columns of A must be the same as the number of rows of B
 If the matrix A has dimensions m x n, that means that matrix B must

have dimensions n x something; we’ll call it p
 In mathematical notation, [A]m x n [B]n x p
 We say that the inner dimensions must be the same

 The resulting matrix C has the same number of rows as A and the same
number of columns as B
 in other words, the outer dimensions m x p
 In mathematical notation, [A]m x n [B]n x p = [C]m x p.
 This only defines the size of C; it does not explain how to calculate the

values

Matrix Multiplication
 The elements of the matrix C are found as follows:

 the sum of products of corresponding elements in the
rows of A and columns of B, e.g.

cij = kj

n

k

ikba
1

Matrix Multiplication Example

 








521

083
 * 


























520229

19174635

0320

2154

1321

The 35, for example, is obtained by taking the first row of A and the first

column of B, multiplying term by term and adding these together. In other

words, 3*1 + 8*4 + 0*0, which is 35.

Vector Operations
 Since vectors are just special cases of matrices, the

matrix operations described including addition,
subtraction, scalar multiplication, multiplication, and
transpose work on vectors as well, as long as the
dimensions are correct

 Specific vector operations:

 The dot product or inner product of two vectors a and
b is defined as a1b1 + a2b2+ a3b3 + … + anbn

 built-in function dot to do this

 Also, cross for cross product

Common Pitfalls
 Attempting to create a matrix that does not have the same number of

values in each row

 Confusing matrix multiplication and array multiplication. Array
operations, including multiplication, division, and exponentiation, are
performed term by term (so the arrays must have the same size); the
operators are .*, ./, .\, and .^. For matrix multiplication to be possible,
the inner dimensions must agree and the operator is *.

 Attempting to use an array of double 1s and 0s to index into an array
(must be logical, instead)

 Attempting to use || or && with arrays. Always use | and & when
working with arrays; || and && are only used with scalars.

Programming Style Guidelines
 If possible, try not to extend vectors or matrices, as it is not very

efficient.

 Do not use just a single index when referring to elements in a matrix;
instead, use both the row and column subscripts (use subscripted
indexing rather than linear indexing)

 To be general, never assume that the dimensions of any array (vector or
matrix) are known. Instead, use the function length or numel to
determine the number of elements in a vector, and the function size
for a matrix:

len = length(vec);

[r, c] = size(mat);

 Use true instead of logical(1) and false instead of logical(0),
especially when creating vectors or matrices.

Exercises
1. Create a vector variable and subtract 3 from every

element in it. Create a matrix variable and divide
every element by 3. Create a matrix variable and
square every element.

2. When two matrices have the same dimensions and
are square, both array and matrix multiplication can
be performed on them. For the following two
matrices, perform A.*B, A*B, and B*A by hand and
then verify the results in MATLAB.

Exercises
3. Think about what would be produced by the following
sequence of statements and expressions, and then type
them in to verify your answers.

>>mat = [1:3; 44 9 2; 5:-1:3]

>>mat(3,2) >>mat(2,:)

>>size(mat) >>mat(:,4) = [8;11;33]

>>numel(mat) >>v = mat(3,:)

>>v(v(2)) >>v(1) = [] reshape(mat,2,6)

