
April 25 � May 6, 2016,

Verona, Italy

GAME THEORY and APPLICATIONS

Mikhail Ivanov Krastanov





Games in normal form

There are given n-players. The set of all strategies (possible

actions) of the i-th player is denoted by Σi . Each player choose an

element σi ∈ Σi , i = 1, 2, . . . , n. Then the mathematical

expectation of the payo� function for the i-th player is given by

πi (σ1, σ2, . . . , σn), i = 1, 2, . . . , n.

De�nition

We say that the sets Σi , i = 1, 2, . . . , n, and the functions

πi : Σ1×,Σ2 × · · · × Σn → R , i = 1, 2, . . . , n, determine a game Γ
in normal form.

Remark

Each player want to maximize his payo� function, but this depends

on the choice of all players!



Nash equilibriom

De�nition

Let the game Γ is determined by the sets Σi , i = 1, 2, . . . , n, and
the functions πi : Σ1×,Σ2 × · · · × Σn → R , i = 1, 2, . . . , n. It is
said that the n-tuple

De�nition

We say that the sets Σi , i = 1, 2, . . . , n, and the functions

πi : Σ1×,Σ2 × · · · × Σn → R , i = 1, 2, . . . , n, determine a game Γ
in normal form.

Remark

Each player want to maximize his payo� function, but this depends

on the choice of all players!



Nash equilibrium

De�nition

Given a game Γ, a strategy n-tuple (σ̄1, σ̄2, . . . , σ̄n) is said to be a

Nash equilibrium if for any index i = 1, 2, . . . , n, and any σi ∈ Σi ,

πi (σ̄1, . . . , σ̄i−1, σi , σ̄i+1 . . . , σ̄n) ≤ π(σ̄1, σ̄2, . . . , σ̄n).

In other words, a strategy n-tuple (σ̄1, σ̄2, . . . , σ̄n) is said to be a

Nash equilibrium if no player has a reason to change his strategy,

assuming that none of the other players is going to change his

strategy.



Zero-sum games

De�nition

A game Γ is said to be zero-sum if

Σn
i=1πi (σ1, . . . , σi−1, σi , σi+1 . . . , σn) = 0

for any σi ∈ Σi , i = 1, . . . , n.

In general, a zero-sum games represents a closed system:

everything that someone wins must be lost by someone else.

Most parlor games are of the zero-sum type.

Two-person zero-sum games are called strictly competitive games.



Two-person zero-sum games

Let (σ̄1, σ̄2) ∈ Σ1 × Σ2 be a Nash equilibrium. Then

π1(σ1, σ̄2) ≤ π1(σ̄1, σ̄2) for each σ1 ∈ Σ1

and

π2(σ̄1, σ2) ≤ π2(σ̄1, σ̄2) for each σ2 ∈ Σ2.

Because in this case π2(σ1, σ2) = −π1(σ1, σ2), we obtain that

π1(σ1, σ̄2) ≤ π1(σ̄1, σ̄2) ≤ π1(σ̄1, σ2)

for each σ1 ∈ Σ1 and each σ2 ∈ Σ2, i.e. (σ̄1, σ̄2) is a saddle point

for the function π1.
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We have obtained that the �rst player want to maximize π1(σ1, σ̄2)
over Σ1, while the second player want to minimize π1(σ̄1, σ2) over

Σ2.

Let us assume that �rst player is omniscient and he can guess

correctly the action σ2 ∈ Σ2 of the second player. Then the �rst

player will choose σ̄1 ∈ Σ1 so that

π1(σ̄1, σ2) = max
σ1∈Σ1

π1(σ1, σ2).

For simplicity, we assume here and further that these �max� and

�min� exist.

But then it is natural the second player to choose σ̄2 ∈ Σ2 so that

max
σ1∈Σ1

π1(σ1, σ̄2) = min
σ2∈Σ2

(
max
σ1∈Σ1

π1(σ1, σ2)

)
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Analogously it is natural for the �rst player to choose σ̄1 ∈ Σ1 so

that

min
σ2∈Σ2

π1(σ̄1, σ2) = max
σ1∈Σ1

(
min
σ2∈Σ2

π1(σ1, σ2)

)
De�nition

It is natural to de�ne

�gain-�oor� vI := max
σ1∈Σ1

(
min
σ2∈Σ2

π1(σ1, σ2)

)
and

�loss-ceiling� vII := min
σ2∈Σ2

(
max
σ1∈Σ1

π1(σ1, σ2)

)
.

The meaning of vI and vII is: the �rst player should not win less

than vI and the second player should not loss more than vII .



Two-person zero-sum games

Lemma 1.

We have that vI ≤ vII .

Proof:

Let us �x arbitrary elements σ̂1 ∈ Σ1 and σ̂2 ∈ Σ2. Clearly, we have

that

max
σ1∈Σ1

π1(σ1, σ̂2) ≥ π1(σ̂1, σ̂2) ≥ min
σ2∈Σ2

π1(σ̂1, σ2), i.e.

max
σ1∈Σ1

π1(σ1, σ̂2) ≥ min
σ2∈Σ2

π1(σ̂1, σ2),

Since the right-hand side does not depend on σ̄1 and the left-hand

side does not depend on σ̄2, we obtain that
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Proof: (continuation)

min
σ2∈Σ2

(
max
σ1∈Σ1

π1(σ1, σ̂2)

)
≥ max

σ1∈Σ1

(
min
σ2∈Σ2

π1(σ̂1, σ2)

)
,

i.e. vII ≥ vI . This completes the proof.

De�nition.

If vI = vII , the common number v := vI = vII is said to be value of

the game Γ.
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Lemma 2.

A game Γ has a value, if and only if, it has a saddle point.

Proof. (su�ciency)

Let the game Γ has a saddle point, i.e. there exists

(σ̄1, σ̄2) ∈ Σ1 × Σ2 so that

π1(σ1, σ̄2) ≤ π1(σ̄1, σ̄2) ≤ π1(σ̄1, σ2)

for each σ1 ∈ Σ1 and each σ2 ∈ Σ2. Then

max
σ1∈Σ1

π1(σ1, σ̄2) ≤ π1(σ̄1, σ̄2) ≤ min
σ2∈Σ2

π1(σ̄1, σ2)

and hence
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Proof. (su�ciency: continuation)

min
σ2∈Σ2

(
max
σ1∈Σ1

π1(σ1, σ̄2)

)
≤ max

σ1∈Σ1

(
min
σ2∈Σ2

π1(σ̄1, σ2)

)
i.e. vII ≤ vI . We have already prove that vI ≤ vII . Hence vI = vII
and the game Γ has a value. This completes the proof of the

su�ciency.

Proof. (necessity)

Let the game Γ has a value

v = min
σ2∈Σ2

(
max
σ1∈Σ1

π1(σ1, σ̄2)

)
≤ max

σ1∈Σ1

(
min
σ2∈Σ2

π1(σ̄1, σ2)

)
.
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Proof. (necessity: continuation)

According our simplifying assumption, there exist σ̄1 ∈ Σ1 and

σ̄2 ∈ Σ2 so that

v = min
σ2∈Σ2

π1(σ̄1, σ2) = max
σ1∈Σ1

π1(σ1, σ̄2),

and hence

π1(σ1, σ̄2) ≤ v ≤ π1(σ̄1, σ2) for each σ1 ∈ Σ1 and each σ2 ∈ Σ2.

It follows from here that

π1(σ1, σ̄2) ≤ v = π1(σ̄1, σ̄2) ≤ π1(σ̄1, σ2)

for each σ1 ∈ Σ1 and each σ2 ∈ Σ2, i.e. (σ̄1, σ̄2) is a saddle point

for the function π1. This completes the proof of the necessity.



Two-person zero-sum games

De�nition

A mixed strategy is a probability distribution on the set of his pure

strategies.

Let the �rst player has m pure strategies. Then the set X of its

mixed strategies consists of all vectors x = (x1, x2, . . . , xm) whose

components satisfy

m∑
i=1

xi = 1 and xi ≥ 0, i = 1, . . . ,m.

Analogously, if the second player has n pure strategies. Then the

set Y of its mixed strategies consists of all vectors

y = (y1, y2, . . . , yn) whose components satisfy

n∑
j=1

yj = 1 and yj ≥ 0, j = 1, . . . , n.
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Let us assume that players I and II are playing a zero-sum game

determined by the matrix A. If I chooses the mixed strategy x , and
II chooses y , then the expected payo� is

P(x , y) =
m∑
i=1

n∑
j=1

aijxiyj =
m∑
i=1

xi

 n∑
j=1

aijyj

 =
n∑

j=1

yj

 n∑
j=1

aijxi


i.e. P(x , y) =

m∑
i=1

xiP(i , y) =
n∑

j=1

yjP(x , j).

Here i in the expression P(i , y) denotes the i-th pure strategy of I.

Analogously, j in the expression P(x , j) denotes the j-th pure

strategy of II.



Two-person zero-sum games

Lemma 3.

Let (x1, y1) ∈ X × Y 3 (x2, y2) be saddle points of the

payo�-function P . Then (x1, y2) and (x2, y1) are also saddle points

ofthe payo�-function P .

Proof.

The de�nition of a saddle point implies that

P(x2, y1) ≤ P(x1, y1) ≤ P(x2, y2)

and

P(x1, y2) ≤ P(x2, y2) ≤ P(x2, y1).

These inequalities imply that

P(x2, y1) = P(x1, y1) = P(x2, y2) = P(x2, y1).
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Proof. (continuation)

Let x and y be arbitrary mixed strategies from X and Y ,

respectively. Then we have that

P(x , y1) ≤ P(x1, y1) = P(x2, y1) = P(x2, y2) ≤ P(x2, y),

i.e. (x1, y2) is a also saddle point of the payo�-function P .
Analogously, one can prove that (x2, y1) is also a saddle point of

the payo�-function P .

Lemma 4.

Let (x̄ , ȳ) ∈ X × Y be a saddle point of the payo�-function P . If
x̄i0 > 0, then P(i0, ȳ) = P(x̄ , ȳ). Also, if ȳj0 > 0, then

P(x̄ , j0) = P(x̄ , ȳ).
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Proof.

Let us assume the contrary, i.e. P(i0, ȳ) < P(x̄ , ȳ). Since
(x̄ , ȳ) ∈ X × Y is a saddle point of the payo�-function P , we have

that

P(i , ȳ) ≤ P(x̄ , ȳ) for each i = 1, 2, . . . ,m, with i 6= i0.

Multiplying the both sides of these inequalities by x̄i , we obtain that

xiP(i , ȳ) ≤ xiP(x̄ , ȳ).

After adding of all these m inequalities, we obtain that

m∑
i=1

x̄iP(i , ȳ) <
m∑
i=1

x̄iP(x̄ , ȳ), i.e. P(x̄ , ȳ) < P(x̄ , ȳ).
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The obtained contradiction shows that our assumption is wrong,

and hence P(i0, ȳ) = P(x̄ , ȳ). Analogously, one can prove that

P(x̄ , j0) = P(x̄ , ȳ). This completes the proof.

Remark.

Let (x̄ , ȳ) ∈ X × Y be a saddle point of the payo�-function P .
Then P(x̄ , ȳ) is a value of the corresponding zero-sum game.

Lemma 5.

Let (x̄ , ȳ) ∈ X × Y be a saddle point of the payo�-function P
determined by the matrix A = (aij)m×n. Then (x̄ , ȳ) is a saddle

point for the zero-sum game determined by the matrix

B = (bij)m×n with bij = αaij + β, where α > 0. Moreover,

αP(x̄ , ȳ) + β is the value of the zero-sum game determined by the

matrix B .



Two-person zero-sum games

Proof.

Let us denote by PA and PB the payo�-functions of the zero-sum

games generated by the matrices A and B , respectively. Then

PB(x , y) =
m∑
i=1

n∑
j=1

bijxiyj =
m∑
i=1

n∑
j=1

(αaij + β)xiyj =

= α
m∑
i=1

n∑
j=1

aij + β
m∑
i=1

xi

n∑
j=1

yj = αPA(x , y) + β

Because (x̄ , ȳ) ∈ X ×Y is a saddle point of the payo�-function PA,

the following inequalities hold true:

PA(x , ȳ) ≤ PA(x̄ , ȳ) ≤ PA(x̄ , y)

for each x ∈ X and y ∈ Y .
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Proof of Lemma 5 (continuation).

These inequalities imply that

αPA(x , ȳ) + β ≤ αPA(x̄ , ȳ) + β ≤ αPA(x̄ , y) + β,

i.e.

PB(x , ȳ) ≤ PB(x̄ , ȳ) ≤ PB(x̄ , y)

for each x ∈ X and y ∈ Y . Hence (x̄ , ȳ) is a saddle point of the

payo�-function PB and PB(x̄ , ȳ) is its value.

Remark.

Let A = (aij)m×n be an arbitrary matrix and

M := 1 + max
1≤i≤m,1≤j≤n

|aij |. We set B = (bij)m×n with

bij = aij + M, i = 1, . . . ,m, j = 1, . . . , n. Then the all elements of

the matrix B are positive, and hence, its value is also positive.
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Lemma 6.

Let (x̄ , ȳ) ∈ X × Y be a saddle point of the payo�-function P . If
P(i0, ȳ) < P(x̄ , ȳ), then x̄i0 = 0. Also, if P(x̄ , j0) > P(x̄ , ȳ), then
ȳj0 = 0.

Proof.

Let us assume that x̄i0 > 0. According to Lemma 4 we obtain that

P(i0, ȳ) = P(x̄ , ȳ). This contradiction shows that x̄i0 = 0.

Analogously, one can prove that ȳj0 = 0.

Proposition 1.

Let S be a closed subset of Rn and let x 6∈ S . Then there exists

point y ∈ S so that

0 < ‖x − y‖ = min(‖x − s‖ : s ∈ S).
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Proof of Proposition 1.

Let d := inf(‖x − s‖ : s ∈ S) and let n be an arbitrary positive

integer. Because d +
1

n
> d there exists point yn ∈ S so that

d ≤ ‖x − yn‖ < d +
1

n
. Because

‖yn‖ ≤ ‖x − yn‖+ ‖x‖ ≤ d + 1 + ‖x‖,

the sequence {yn}∞n=1
is bounded, and hence there exists a

convergent subsequence {ynk}∞k=1
tending to y as k tends to

in�nity. Taking a limit in the inequalities d ≤ ‖x − ynk‖ < d +
1

nk
as k →∞, we obtain that d ≤ ‖x − y‖ ≤ d . This completes the

proof.
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We denote by 〈a, b〉 :=
n∑

i=1

aibi the scalar product of two vectors

a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn).

Separability theorem:

Let S be a closed convex subset of Rn and let the point x does not

belong to S . Then there exist a non-zero vector p and a real

number q such that 〈p, x〉 = q and 〈p, s〉 > q for each s ∈ S .

Proof.

Let y ∈ S be a point of S such that ‖x − y‖ =
= min(‖x − s‖ : s ∈ S). We set p := y − x and q := 〈p, x〉.
Then

〈p, y〉 − q = 〈p, y〉 − 〈p, x〉 = 〈p, y − x〉 = ‖p‖2 > 0.
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Proof (continuation).

Let us assume that there exists a point s ∈ S so that 〈p, s〉 ≤ q.
Then

r := 〈p, s − y〉 = 〈p, s〉 − 〈p, y〉 < q − q = 0.

For each ε ∈ (0, 1) we set sε := (1− ε)y + εs. The convexity of S
implies that xε ∈ S .
On can directly checked that

‖x − xε‖2 = ‖(x − y) + ε(s − y)‖2 =

‖x − y‖2 + 2ε 〈y − x , s − y〉+ ε2‖s − y‖2 =

= ‖x − y‖2 + ε
(
2r + ε‖s − y‖2

)
< ‖x − y‖2

for each su�ciently small ε > 0 (because r < 0). The obtained

contradiction completes the proof.
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Theorem of the Alternative for matrices

Let A = (aij)m×n be an arbitrary real matrix. Then either (i) or (ii)

must hold:

(i) The point 0 ∈ Rm belongs to the convex hull C of the vectors

a1, a2, . . . , an, e1, e2, . . . , em, where aj := (a1j , a2j , . . . , amj),
j = 1, 2, . . . , n, and e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . ,
em = (0, 0, . . . , 1).

(ii) There exists a vector p = (p1, p2, . . . , pm) such that

m∑
i=1

pi = 1

and pi > 0 for each i = 1, 2, . . . ,m, and 〈p, aj〉 > 0 for each

j = 1, 2, . . . , n.
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Proof.

Let us assume that 0 6∈ C . Applying the Separability theorem, we

obtain that there exist a non-zero vector p and a number q such

that q = 〈p, 0〉 = 0, pi = 〈p, ei 〉 > 0 for each i = 1, 2, . . . ,m, and

〈p, aj〉 > 0 for each j = 1, 2, . . . , n, i.e. (ii) holds true.

The min-max theorem (von Neuman and Morgenstern)

Let A = (aij)m×n be an arbitrary real matrix. Then the zero-sum

game determined by the matrix A has a value, i.e. vAI = vAII .



Two-person zero-sum games

Proof of the min-max theorem .

According to the Theorem of the Alternative for matrices, either (i)

or (ii) must hold.

If (i) is ful�lled, then there exists α1 ≥ 0, α2 ≥ 0, . . . , αn ≥ 0 and

β1 ≥ 0, β2 ≥ 0, . . . , βm ≥ 0 such that

n∑
j=1

αj +
m∑
i=1

βi = 1

and
n∑

j=1

αjaj +
m∑
i=1

βiei = 0,
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Proof (continuation)

i.e.
n∑

j=1

αjaij + βi = 0, i = 1, 2, . . . ,m.

If all αj = 0, j = 1, 2, . . . , n, then all βi = 0, i = 1, 2, . . . ,m, and

hence their sum can not be qual to 1. The obtained contradiction

shows that at least one αj must be positive. We set

ȳj :=
αj∑n

k=1
αk
≥ 0.
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Proof (continuation)

Clearly, each ȳj , j = 1, 2, . . . , n, is well de�ned,
n∑

j=1

ȳj = 1 and

n∑
j=1

αjaij = −βi ≤ 0, i = 1, 2, . . . ,m, i.e. PA(i , ȳ) ≤ 0.

This implies that for each mixed strategy x of the �rst player

PA(x , ȳ) =
m∑
i=1

xiP
A(i , ȳ) ≤ 0, and hence max

x∈X
PA(x , ȳ) ≤ 0.

Thus we obtain that vII = min
y∈Y

max
x∈X

PA(x , y) ≤ 0.
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Proof (continuation)

Suppose, instead, that (ii) holds true, i.e. there exists a vector

x̄ = (x̄1, x̄2, . . . , x̄m) such that

m∑
i=1

x̄i = 1 and x̄i > 0 for each

i = 1, 2, . . . ,m, and
∑m

i=1
x̄iaij = 〈x̄ , aj〉 > 0 for each

j = 1, 2, . . . , n. Then x̄ can be considered as a mixed strategy of

the I player and PA(x̄ , j) > 0. This implies that for each mixed

strategy y of the second player

PA(x̄ , y) =
n∑

j=1

yjP
A(x̄ , j) > 0, and hence min

y∈Y
PA(x̄ , y) > 0.

Thus we obtain that vI = max
x∈X

min
y∈Y

PA(x , y) > 0.
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Proof (continuation)

We know that vAI ≤ vAII . Let us assume that vAI < vAII . We consider

the matrix B := (bij)m×n with bij := aij −
vAI + vAII

2
. Then

vBI = vAI −
vAI + vAII

2
=

vAI − vAII
2

< 0. Analogously,

vBII = vAII −
vAI + vAII

2
= −

vAI − vAII
2

> 0. But this is impossible. The

obtained contradiction shows that vAI = vAII and completes the

proof of the Min-max theorem.
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Lemma 6.

Let x̄ and ȳ be mixed strategies of players I and II, and v be a real

number such that

P(i , ȳ) ≤ v ≤ P(x̄ , j), i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

Then v is the value of the game and the couple (x̄ , ȳ) - a Nash

equilibrium.

Proof.

Let x and y are arbitrary mixed strategies of players I and II. Then

one can check that

P(x , ȳ) =
m∑
i=1

xiP(i , ȳ) ≤
m∑
i=1

xiv = v =

=
n∑

j=1

yjv =
n∑

j=1

yjP(x̄ , j) = P(x̄ , y).
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Without loss of generality, we may think that the value v of a game

determined by the matrix A = (aij)m×n is positive (for, example, if

all elements aij > 0). Let v̄x and x̄ (v̄y and ȳ ) be solutions of the

following linear problems

vy → min

P(i , y) ≤ vy , i = 1, 2, . . . ,m
n∑

j=1

yj = 1

yj ≥ 0, j = 1, 2, . . . , n

∣∣∣∣∣∣∣∣∣∣∣

vx → max

P(x , j) ≥ vx , j = 1, 2, . . . , n
m∑
i=1

xi = 1

xi ≥ 0, i = 1, 2, . . . ,m

These problems can be written as follows
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vy → min
n∑

j=1

aijyj ≤ vy , i = 1, 2, . . . ,m

n∑
j=1

yj = 1

yj ≥ 0, j = 1, 2, . . . , n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

vx → max
m∑
i=1

aijxi ≥ vx , j = 1, 2, . . . , n

m∑
i=1

xi = 1

xi ≥ 0, i = 1, 2, . . . ,m

These two linear problems are dual. If (vx , x̄) and (vy , ȳ) are the

solutions of the �rst and second problem, respectively, then

vx = vy = v is the value of the game and the couple (x̄ , ȳ) is a

Nash equilibrium.
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If we set pi = xi/v , i = 1, 2, . . . ,m, and qj = yj/v , j = 1, 2, . . . , n,
then we can write the above problems as follows

m∑
i=1

qj → max

n∑
j=1

aijqj ≤ 1, i = 1, 2, . . . ,m

qj ≥ 0, j = 1, 2, . . . , n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m∑
i=1

pi → min

m∑
i=1

aijpi ≥ 1, j = 1, 2, . . . , n

pi ≥ 0, i = 1, 2, . . . ,m



Two-person zero-sum games

Zero-sum games determined by a matrix of type 2× 2

Let us consider a game determined by the following matrix(
a b
c d

)
Let us assume that this game has no Nash equilibrium in pure

strategies. Let (x̄ , ȳ) be a Nash equilibrium with x̄ = (1, 0) and

ȳ = (ȳ1, ȳ2), where ȳ1 > 0, ȳ2 > 0 and ȳ1 + ȳ2 = 1. Then

P(x , ȳ) ≤ P(x̄ , ȳ) ≤ P(x̄ , y). Clearly, v = P(x̄ , ȳ) = aȳ1 + bȳ2.
We set y = (1, 0) and y = (0, 1), and obtain that

aȳ1 + bȳ2 ≤ min(a, b). This implies that a = b = v . Also, we have

that v ≥ P(2, ȳ) = cȳ1 + dȳ2 ≥ min(c , d). If c = min(c, d), we
obtain that ((1.0), (1, 0)) is a Nash equilibrium in pure strategies. If

d = min(c , d), we obtain that ((1.0), (0, 1)) is a Nash equilibrium

in pure strategies.
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But, according to our assumption, the game has no Nash

equilibrium in pure strategies. Hence the assumption that (x̄ , ȳ) be

a Nash equilibrium with x̄ = (1, 0) and ȳ = (ȳ1, ȳ2), where ȳ1 > 0,

ȳ2 > 0 and ȳ1 + ȳ2 = 1, is not possible. Analogously it can be

proved that it is not possible (x̄ , ȳ) to be a Nash equilibrium with

x̄ = (0, 1) and ȳ = (ȳ1, ȳ2), where ȳ1 > 0, ȳ2 > 0 and ȳ1 + ȳ2 = 1.

This shows that whenever a zero-sum game has no a Nash

equilibrium in pure strategies, then both components of the Nash

equilibrium are mixed strategies.
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Reducing zero-sum games

Let us consider a zero-sum game determined by the matrix

A = (aij)m×n. Let the i0-pure strategy of I is dominated by a

convex combination of the remainder pure strategies of the I player,

i.e.

ai0j ≤
m∑

i=1,i 6=i0

αiai ,j for each j = 1, 2, . . . , n,

where all number αi are nonnegative and

m∑
i=1,i 6=i0

αi = 1.
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We denote by A′ the matrix obtained from the matrix A be deleting

the i0-raw. Let (x̄ ′, ȳ ′) with x̄ ′ = (x̄ ′
1
, x̄ ′

2
, . . . , x̄ ′i0−1, x̄

′
i0+1

, . . . , x̄ ′m)
be a Nash equilibrium for the game determined by the matrix A′.
Then (x̄ , ȳ ′) is a Nash equilibrium for the game determined by the

matrix A, where x̄ = (x̄ ′
1
, x̄ ′

2
, . . . , x̄ ′i0−1, 0, x̄

′
i0+1

, . . . , x̄ ′m).

Because (x̄ ′, ȳ ′) is a Nash equilibrium for the game determined by

the matrix A′, the following inequalities hold true:

PA′
(x ′, ȳ ′) ≤ v = PA′

(x̄ ′, ȳ ′) ≤ PA′
(x̄ ′, y ′), for x ′ ∈ X and y ∈ Y ,

where

PA′
(x ′, y ′) =

m∑
i=1,i 6=i0

n∑
j=1

aijxiyj .
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In particular, we have that

PA′
(i , ȳ ′) ≤ v ≤ PA′

(x̄ ′, j), i = 1, . . . , i0−1, i0+1, . . . ,m, j = 1, . . . , n.

i.e.

n∑
j=1

aij ȳj ≤ v , i = 1, . . . , i0 − 1, i0 + 1, . . . ,m,

m∑
i=1,i 6=i0

aij x̄i ≥ v , j = 1, . . . , n

(1)

Since the vector α := (α1, α2, . . . , αi0−1, αi0+1, . . . , αm) can be

considered as a mixed strategy of I, we have that PA′
(α, ȳ ′) ≤ v ,
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i.e.
m∑

i=1,i 6=i0

n∑
j=1

aijαi ȳj ≤ v .

From here (taking into account that the i0-pure strategy is

dominated by a convex combination of the remainder pure

strategies of the I player), it follows that

n∑
j=1

ai0j ȳj ≤
n∑

j=1

m∑
i=1,i 6=i0

aijαi ȳj ≤ v .

Applying this inequality and 1, we complete the proof taking into

account Lemma 6.
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Analogously, let us assume that the j0-pure strategy of II is

dominated by a convex combination of the remainder pure

strategies of the II player, i.e.

aij0 ≥
n∑

j=1,j 6=j0

βjai ,j for each i = 1, 2, . . . ,m,

where all number βj are nonnegative and

n∑
j=1,j 6=j0

βj = 1.
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We denote by A′ the matrix obtained from the matrix A be deleting

the j0-column. Let (x̄ ′, ȳ ′) with

ȳ ′ = (ȳ ′
1
, ȳ ′

2
, . . . , ȳ ′j0−1, ȳ

′
j0+1

, . . . , ȳ ′n) be a Nash equilibrium for the

game determined by the matrix A′. Then (x̄ , ȳ ′) is a Nash

equilibrium for the game determined by the matrix A, where
ȳ ′ = (ȳ ′

1
, ȳ ′

2
, . . . , ȳ ′j0−1, 0, ȳ

′
j0+1

, . . . , ȳ ′n).
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2× n and m × 2 games

We consider �rst a zero-sum game determined by a the 2× n -

matrix A. If v is its value, then

v = max
x∈X

min
y∈Y

2∑
i=1

n∑
j=1

aijxiyj = min
y∈Y

max
x∈X

2∑
i=1

n∑
j=1

aijxiyj .

Clearly,

max
x∈X

min
j=1,2,...,n

2∑
i=1

n∑
j=1

aijxi ≥ v .
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On the other hand

n∑
j=1

2∑
i=1

aijxiyj =
n∑

j=1

yj

2∑
i=1

aijxi ≥

≥
n∑

j=1

yj min
j=1,2,...,n

2∑
i=1

aijxi = min
j=1,2,...,n

2∑
i=1

aijxi ,

From here, it follows

min
y∈Y

n∑
j=1

2∑
i=1

aijxiyj ≥ min
j=1,2,...,n

2∑
i=1

aijxi ,

and hence
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v = max
x∈X

min
y∈Y

2∑
i=1

n∑
j=1

aijxiyj ≥ max
x∈X

min
j=1,2,...,n

2∑
i=1

aijxi .

In such a way, we obtain that

v = max
x∈X

min
j=1,2,...,n

2∑
i=1

aijxi .

Since X = {(x1, x2) : x1 = α, x2 = 1− α, α ∈ [0, 1]}, we obtain

that v is the maximum (with respect to α) of the minimum of n
linear functions (depending on α). So we can plot these function

and to �nd this maximum graphically.
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2× n and m × 2 games

We consider next a zero-sum game determined by a the m × 2 -

matrix A. If v is its value, then

v = min
y∈Y

max
i=1,2,...,m

2∑
j=1

aijyj .

Since Y {(y1, y2) : y1 = β, y2 = 1− β, β ∈ [0, 1]}, we obtain that

v is the minimum (with respect to β) of the maximum of m linear

functions (depending on β). So we can plot these function and to

�nd this minimum graphically.
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Symmetric games

A square matrix A = (aij)n×n is said to be skew-symmetric if

aji = −aij for all i , j = 1, . . . , n. A zero-sum game is said to be

symmetric if its matrix is skew-symmetric.

Theorem.

The value of a symmetric game is zero. If (x̄ , ȳ) is a Nash

equilibrium, then (x̄ , x̄) and (ȳ , ȳ) are also Nash equilibriums.

Proof.

Because the matrix A is skew-symmetric, AT = −A. Let x be an

arbitray mixed strategy. Then xTAx = (xTAx)T =T AT x =
= −xTAx , and hence xTAx = 0.
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Proof (continuation.

Then

0 ≤ max
x∈X

min
y∈Y

xTAx = v = min
y∈Y

max
x∈X

xTAx ≤ 0

which implies that v = 0.

Let j be an arbitrary index. Then P(x̄ , j) ≥ 0, i.e.

n∑
i=1

aij x̄i ≥ 0, i.e. −
n∑

i=1

aji x̄i ≥ 0, i.e. (2)

n∑
j=1

aij x̄j ≤ 0, i.e. P(i , x̄) ≤ 0.

The last inequality, (2) and Lemma 6 complete the proof.
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Theorem.

A symmetric game has no a Nash equilibrium in pure strategies, if

and only if one of the following assertions holds true:

(i) each column has at least one positive element;

(ii) each raw has at least one negative element.

Proof. (su�ciency)

We shall consider only (i). The case (ii) can be studied in the same

way. Let (k , k) be a Nash equilibrium in pure strategies and let

aik > 0. Then

0 < aik = P(i , k) ≤ v = 0.

The obtained contradiction shows that there is no Nash equilibrium

in pure strategies.
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Proof. (necessity)

Let us assume that there is no Nash equilibrium in pure strategies

and there exists a column k such that aik ≤ 0 for each i = 1, 2, . . . ,

n. This implies that

n∑
i=1

aikxi ≤ 0 for each mixed strategy

x = (x1, x2, . . . , xn), i.e.
n∑

i=1

−akixi ≤ 0, and hence

n∑
j=1

akjxj ≥ 0.

So, we obtain that P(x , k) ≤ 0 and P(k , x) ≥ 0. This means that

(k, k) is a Nash equilibrium in pure strategies.
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Symmetric games

Let us consider the matrix

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn


and let us de�ne the following m + n + 1×m + n + 1

skew-symmetric matrix:

B =

 Om×m Am×n −Im×1
−AT

n×m On×n In×1
IT
1×m −IT

1×n O1×1


where Ok×k is a k × k zero matrix and IT

1×m is a vector-raw with m
components equal to 1.
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Theorem.

Let the elements of the matrix A are positive. Let

((x̄ , ȳ , λ), (x̄ , ȳ , λ)) be a Nash equilibrium of the game determined

of the matrix B . Then

(i)

m∑
i=1

x̄i =
n∑

j=1

ȳj = µ > 0;

(ii) the couple (x̄/µ, ȳ/µ) is a Nash equilibrium of the game

determined by the matrix A;
(iii) the value of the game determined by the matrix A is λ/µ.

Proof.

We have that
m∑
i=1

x̄i +
n∑

j=1

ȳj + λ = 1,

with x̄i ≥ 0, i = 1, . . . ,m, ȳj ≥ 0, j = 1, . . . , n, and λ ≥ 0.
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Proof (continuation).

Since ((x̄ , ȳ , λ), (x̄ , ȳ , λ)) is a Nash equilibrium of the game

determined of the matrix B , the following inequalities hold true:

n∑
j=1

aij ȳj − λ ≤ 0, i = 1, . . . ,m, (3)

−
m∑
i=1

aij x̄i + λ ≤ 0, j = 1, . . . , n, (4)

m∑
i=1

x̄i −
n∑

j=1

ȳj ≤ 0. (5)
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Let us assume that λ = 0. This contradicts to (3).

Let us assume that λ = 1. Then x̄ = 0 and ȳ = 0. But this

contradicts to (4).

Hence λ ∈ (0, 1). Then

m∑
i=1

x̄i +
n∑

j=1

ȳj = 1− λ =: 2µ

and
m∑
i=1

x̄i −
n∑

j=1

ȳj = 0, i.e.

m∑
i=1

x̄i =
n∑

j=1

ȳj = µ.
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Then
m∑
i=1

x̄i
µ

=
n∑

j=1

ȳj
µ

= 1

n∑
j=1

aij
ȳj
µ
≤ λ

µ
,
x̄i
µ
≥ 0, i = 1, . . . ,m,

m∑
i=1

aij
x̄i
µ
≥ λ

µ
,
ȳi
µ
≥ 0, j = 1, . . . , n.

Applying Lemma 6, we obtain that the couple (x̄/µ, ȳ/µ) is a Nash

equilibrium of the game determined by the matrix A.
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Theorem.

Let the elements of the matrix A are positive. Let the couple (x̄ , ȳ)
be a Nash equilibrium of the game determined by the matrix A with

value v . Then (
x̄

2 + v
,

ȳ

2 + v
,

v

2 + v

)
.

is a Nash equilibrium of the game determined of the matrix B .

Proof.

Since (x̄ , ȳ) is a Nash equilibrium of the game determined by the

matrix A, we have that

m∑
i=1

x̄i =
n∑

j=1

ȳj = 1
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Proof (continuation).

n∑
j=1

aij ȳj ≤ v , x̄i ≥ 0, i = 1, . . . ,m,

m∑
i=1

aij x̄i ≥ v , ȳj ≥ 0, j = 1, . . . , n.
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Proof (continuation).

These inequalities imply that

n∑
j=1

aij
ȳj

v + 2
− v

v + 2
≤ 0, x̄i ≥ 0, i = 1, . . . ,m,

−
m∑
i=1

aij
x̄i

v + 2
+

v

v + 2
≥ 0, ȳj ≥ 0, j = 1, . . . , n.

Applying Lemma 6, we obtain that the couple

(
x̄i

v + 2
,

ȳj
v + 2

,
v

v + 2
)

is a Nash equilibrium of the game determined by the matrix B .


