Esercizi per il Corso di Algebra

Prof. Lidia Angeleri Università di Verona, 2008/2009 Corso di Laurea in Matematica Applicata

Esercizi per il Corso di Algebra

Soluzioni Foglio 4 27 novembre 2008

- 13. Si consideri l'anello quoziente F=K[x]/(f) per $K=\mathbb{Z}/3\mathbb{Z}$ e $f=x^2+1\in K[x].$
 - (a) $F \cong K^2$ con base $\overline{1}, \overline{x}$, quindi

$$F=\{\overline{0},\,\overline{1},\,\overline{x},\,\overline{2},\,\overline{2}\overline{x},\,\overline{1}+\overline{x},\,\overline{1}+\overline{2}\overline{x},\,\overline{2}+\overline{x},\,\overline{2}+\overline{2}\overline{x}\}$$

- (b) $(\overline{1} + \overline{x}) \cdot (\overline{2} + \overline{x}) = \overline{1} e (\overline{1} + \overline{x})^2 = \overline{2}\overline{x}$.
- (c) Per determinare l'elemento inverso di $(\overline{1}+\overline{2}\overline{x})$ dobbiamo trovare $g\in K[x]$ tale che

$$1 - (1 + 2x)g \in (f)$$

ovvero $g, h \in K[x]$ tali che

$$1 = (1+2x)q + f h.$$

A tal fine possiamo applicare l'Algoritmo Euclideo. Vedremo che

$$1 = (1+2x)(2x+2) - f,$$

quindi $\overline{2} + \overline{2}\overline{x}$ è l'elemento inverso di $(\overline{1} + \overline{2}\overline{x})$.

- 14. (a) $2x^5 + 9x^4 + 6x^2 + 3$ è irriducibile per il Criterio di Eisenstein con p = 3.
 - (b) $x^4 3x^3 x^2 + 7x + 21$ è irriducibile per riduzione modulo 2, poiché il polinomio $f = x^4 + x^3 + x^2 + x + 1$ non ha né zeri, né divisori di grado 2 in $\mathbb{Z}/2\mathbb{Z}[x]$ (basta controllare che $x^2 + x + 1$ non divide f).
 - (c) $x^{n-1} + x^{n-2} + \ldots + x + 1$ dove n è un numero pari con $n \ge 4$ è riducibile perché ha lo zero -1.
 - (d) $f = x^3 + 2x 1$ è irriducibile in $\mathbb{Z}[x]$ perché non ha zeri, in quanto uno zero α di f appartenente a \mathbb{Z} dovrebbe essere un divisore di -1 (poiché $x \alpha$ dovrebbe dividere f in $\mathbb{Z}[x]$), ma né 1 né -1 sono zeri di f. Per 8.6 segue che f è anche irriducibile in $\mathbb{Q}[x]$.
 - (e) $x^4 + 4x^3 + 6x^2 + 8x + 7$ è irriducibile perché sostituendo x con x 1 otteniamo il polinomio $x^4 + 4x + 2$ che è irriducibile per il Criterio di Eisenstein.
 - (f) $x^5 + 8x + 16$ è irriducibile perché la riduzione modulo 3 ci da $f = x^5 + 2x + 1$ che è irriducibile in $\mathbb{Z}/3\mathbb{Z}[x]$ poiché non ha zeri in $\mathbb{Z}/3\mathbb{Z}$, né divisori di grado 2: infatti passando in rassegna i polinomi monici di grado 2 in $\mathbb{Z}/3\mathbb{Z}[x]$, ed escludendo quelli che hanno zeri, vediamo che rimangono da controllare $x^2 + 1$, $x^2 + x + 2$, $x^2 + 2x + 2$, ed eseguendo divisione col resto vediamo che nessuno di loro divide f.

- 15. Sia $a = \sqrt{2} + i \in \mathbb{C}$, e sia $f = x^4 2x^2 + 9 \in \mathbb{Q}[x]$.
 - (a) Si verifica f(a) = 0.
 - (b) $\mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(a)$ è un'estensione propria di campi. Infatti

$$-1 = (a - \sqrt{2})^2 = a^2 - 2\sqrt{2}a + 2$$

mostra che $\sqrt{2} \in \mathbb{Q}(a)$, e d'altra parte $a \notin \mathbb{Q}(\sqrt{2})$ perché altrimenti $i \in \mathbb{Q}(\sqrt{2})$.

- (c) Per il Lemma del Grado segue da (b) che $[\mathbb{Q}(a):\mathbb{Q}] \geq 4$, quindi il polinomio minimo h di a su \mathbb{Q} ha grado ≥ 4 . Ma poiché h divide f per (a), concludiamo h = f (e anche $[\mathbb{Q}(a):\mathbb{Q}] = 4$).
- (d) Per quanto abbiamo visto in (c) vale $[\mathbb{Q}(a):\mathbb{Q}(\sqrt{2})]=2$. Quindi il polinomio minimo g di a su $\mathbb{Q}(\sqrt{2})$ deve avere grado 2. Calcolando a^2 vediamo come sopra che $g=x^2-2\sqrt{2}x+3$.

16. Dati $n \geq 2$ numeri primi distinti p_1, \ldots, p_n , sappiamo per 8.10(3) che il polinomio $f = x^n - p_1 \ldots p_n$ è irriducibile su \mathbb{Z} e su \mathbb{Q} , quindi non possiede zeri in \mathbb{Q} e pertanto $\sqrt[n]{p_1, \ldots, p_n}$ è irrazionale.