DFT Properties: (5) Rotation

- Rotating $f(x,y)$ by $\theta$ rotates $F(u,v)$ by $\theta$
mean value

\[ F[0, 0] = \frac{1}{NM} \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} f[n, m] \]

DC coefficient
Separability

• The discrete two-dimensional Fourier transform of an image array is defined in series form as

\[
F[k,l] = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m,n] e^{-j2\pi \left( \frac{k}{M} m + \frac{l}{N} n \right)}
\]

• Inverse transform

\[
f[m,n] = \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} F[k,l] e^{j2\pi \left( \frac{k}{M} m + \frac{l}{N} n \right)}
\]

• Because the transform kernels are separable and symmetric, the two dimensional transforms can be computed as **sequential** row and column one-dimensional transforms.

• The basis functions of the transform are complex exponentials that may be decomposed into sine and cosine components.
2D DFT: summary

<table>
<thead>
<tr>
<th>Property</th>
<th>Expression(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourier transform</td>
<td>$F(u, v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y)e^{-j2\pi(xu/M+yv/N)}$</td>
</tr>
<tr>
<td>Inverse Fourier</td>
<td>$f(x, y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) e^{j2\pi(xu/M+yv/N)}$</td>
</tr>
<tr>
<td>representation</td>
<td>$F(u, v) =</td>
</tr>
<tr>
<td>Spectrum</td>
<td>$</td>
</tr>
<tr>
<td>Phase angle</td>
<td>$\phi(u, v) = \tan^{-1} \left[ \frac{I(u, v)}{R(u, v)} \right]$</td>
</tr>
<tr>
<td>Power spectrum</td>
<td>$P(u, v) =</td>
</tr>
<tr>
<td>Average value</td>
<td>$\bar{f}(x, y) = F(0, 0) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y)$</td>
</tr>
<tr>
<td>Translation</td>
<td>$f(x, y)e^{j2\pi(xu_0/M+yv_0/N)} \Leftrightarrow F(u - u_0, v - v_0)$ $f(x - x_0, y - y_0) \Leftrightarrow F(u, v)e^{-j2\pi(xu_0/M+yv_0/N)}$ When $x_0 = u_0 = M/2$ and $y_0 = v_0 = N/2$, then $f(x, y)(-1)^{x+y} \Leftrightarrow F(u - M/2, v - N/2)$ $f(x - M/2, y - N/2) \Leftrightarrow F(u, v)(-1)^{u+v}$</td>
</tr>
</tbody>
</table>
## 2D DFT: summary

<table>
<thead>
<tr>
<th>Property</th>
<th>Formula/Expression</th>
</tr>
</thead>
</table>
| Conjugate symmetry| $F(u, v) = F^*(-u, -v)$  \
|                   | $|F(u, v)| = |F(-u, -v)|$  |
| Differentiation   | $\frac{\partial^n f(x, y)}{\partial x^n} \iff (ju)^n F(u, v)$  \
|                   | $(-jx)^n f(x, y) \iff \frac{\partial^n F(u, v)}{\partial u^n}$  |
| Laplacian         | $\nabla^2 f(x, y) \iff -(u^2 + v^2)F(u, v)$  |
| Distributivity    | $\Im\{f_1(x, y) + f_2(x, y)\} = \Im\{f_1(x, y)\} + \Im\{f_2(x, y)\}$  \
|                   | $\Im\{f_1(x, y) \cdot f_2(x, y)\} \neq \Im\{f_1(x, y)\} \cdot \Im\{f_2(x, y)\}$  |
| Scaling           | $af(x, y) \iff aF(u, v)$, $f(ax, by) \iff \frac{1}{|ab|} F(u/a, v/b)$  |
| Rotation          | $x = r \cos \theta$  \
|                   | $y = r \sin \theta$  \
|                   | $u = \omega \cos \varphi$  \
|                   | $v = \omega \sin \varphi$  \
|                   | $f(r, \theta + \theta_0) \iff F(\omega, \varphi + \theta_0)$  |
| Periodicity       | $F(u, v) = F(u + M, v) = F(u, v + N) = F(u + M, v + N)$  \
|                   | $f(x, y) = f(x + M, y) = f(x, y + N) = f(x + M, y + N)$  |
| Separability      | See Eqs (4.6-14) and (4.6-15). Separability implies that we can compute the 2-D transform of an image by first computing 1-D transforms along each row of the image, and then computing a 1-D transform along each column of this intermediate result. The reverse, columns and then rows, yields the same result.  |
## 2D DFT: summary

<table>
<thead>
<tr>
<th>Property</th>
<th>Expression(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computation of the inverse Fourier transform using a forward transform algorithm</td>
<td>$\frac{1}{MN} f^<em>(x, y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F^</em>(u, v)e^{-j2\pi(ux/M + vy/N)}$</td>
</tr>
<tr>
<td></td>
<td>This equation indicates that inputting the function $F^<em>(u, v)$ into an algorithm designed to compute the forward transform (right side of the preceding equation) yields $f^</em>(x, y)/MN$. Taking the complex conjugate and multiplying this result by $MN$ gives the desired inverse.</td>
</tr>
<tr>
<td>Convolution†</td>
<td>$f(x, y) * h(x, y) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m, n)h(x - m, y - n)$</td>
</tr>
<tr>
<td>Correlation†</td>
<td>$f(x, y) \circ h(x, y) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f^*(m, n)h(x + m, y + n)$</td>
</tr>
<tr>
<td>Convolution theorem‡</td>
<td>$f(x, y) * h(x, y) \Leftrightarrow F(u, v)H(u, v)$; $f(x, y)h(x, y) \Leftrightarrow F(u, v) \ast H(u, v)$</td>
</tr>
<tr>
<td>Correlation theorem‡</td>
<td>$f(x, y) \circ h(x, y) \Leftrightarrow F^<em>(u, v)H(u, v)$; $f^</em>(x, y)h(x, y) \Leftrightarrow F(u, v) \circ H(u, v)$</td>
</tr>
</tbody>
</table>
2D DFT: summary

<table>
<thead>
<tr>
<th>Function</th>
<th>Fourier Transform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulse</td>
<td>( \delta(x, y) \leftrightarrow 1 )</td>
</tr>
<tr>
<td>Gaussian</td>
<td>( A \sqrt{2\pi} \sigma e^{-2\pi^2 \sigma^2 (x^2 + y^2)} \leftrightarrow Ae^{-(u^2 + v^2)/2\sigma^2} )</td>
</tr>
<tr>
<td>Rectangle</td>
<td>( \text{rect}[a, b] \leftrightarrow ab \frac{\sin(\pi ua)}{\pi ua} \frac{\sin(\pi vb)}{\pi vb} e^{-\pi(ua + vb)} )</td>
</tr>
<tr>
<td>Cosine</td>
<td>( \cos(2\pi u_0 x + 2\pi v_0 y) \leftrightarrow \frac{1}{2} \left[ \delta(u + u_0, v + v_0) + \delta(u - u_0, v - v_0) \right] )</td>
</tr>
<tr>
<td>Sine</td>
<td>( \sin(2\pi u_0 x + 2\pi v_0 y) \leftrightarrow j \frac{1}{2} \left[ \delta(u + u_0, v + v_0) - \delta(u - u_0, v - v_0) \right] )</td>
</tr>
</tbody>
</table>

† Assumes that functions have been extended by zero padding.
Magnitude and Phase of DFT

- What is more important?

Hint: use inverse DFT to reconstruct the image using magnitude or phase information.
Magnitude and Phase of DFT (cont’d)

Reconstructed image using magnitude only
(i.e., magnitude determines the contribution of each component!)

Reconstructed image using phase only
(i.e., phase determines which components are present!)
Magnitude and Phase of DFT (cont’ d)

**FIGURE 4.27** (a) Woman. (b) Phase angle. (c) Woman reconstructed using only the phase angle. (d) Woman reconstructed using only the spectrum. (e) Reconstruction using the phase angle corresponding to the woman and the spectrum corresponding to the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the spectrum of the woman.
Ex. 1
Ex. 2
Ex. 3

Magnitudes
Margherita Hack

log amplitude of the spectrum
Einstein

log amplitude of the spectrum
Examples
other formulations
2D Discrete Fourier Transform

- 2D Discrete Fourier Transform (DFT)

\[ F[k,l] = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m,n]e^{-j2\pi\left(\frac{k}{M}m + \frac{l}{N}n\right)} \]

where \( l = 0,1,...,N-1 \)
\( k = 0,1,...,M-1 \)

- Inverse DFT

\[ f[m,n] = \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} F[k,l]e^{j2\pi\left(\frac{k}{M}m + \frac{l}{N}n\right)} \]
2D Discrete Fourier Transform

- It is also possible to define DFT as follows

$$F[k, l] = \frac{1}{\sqrt{MN}} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m, n] e^{-j2\pi \left( \frac{k}{M} m + \frac{l}{N} n \right)}$$

where

- \( k = 0, 1, \ldots, M - 1 \)
- \( l = 0, 1, \ldots, N - 1 \)

- Inverse DFT

$$f[m, n] = \frac{1}{\sqrt{MN}} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} F[k, l] e^{j2\pi \left( \frac{k}{M} m + \frac{l}{N} n \right)}$$
2D Discrete Fourier Transform

- Or, as follows

\[
F[k,l] = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m,n] e^{-j2\pi \left( \frac{k}{M} m + \frac{l}{N} n \right)}
\]

where \( k = 0,1,...,M-1 \) and \( l = 0,1,...,N-1 \)

- Inverse DFT

\[
f[m,n] = \frac{1}{MN} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} F[k,l] e^{j2\pi \left( \frac{k}{M} m + \frac{l}{N} n \right)}
\]
2D DCT

Discrete Cosine Transform
2D DCT

- based on most common form for 1D DCT

\[ C(u) = \alpha(u) \sum_{x=0}^{N-1} f(x) \cos \left( \frac{\pi (2x + 1) u}{2N} \right), \quad u, x = 0, 1, \ldots, N-1 \]

\[ f(x) = \sum_{n=0}^{N-1} \alpha(u) c(u) \cos \left( \frac{\pi (2x + 1) u}{2N} \right), \]

\[ \alpha(u) = \begin{cases} \sqrt{\frac{1}{N}} & \text{for } u = 0 \\ \sqrt{\frac{2}{N}} & \text{for } u \neq 0. \end{cases} \]

\[ C(u = 0) = \sqrt{\frac{1}{N}} \sum_{x=0}^{N-1} f(x). \quad \text{“mean” value} \]
1D basis functions

Cosine basis functions are orthogonal
2D DCT

- Corresponding 2D formulation

\[ C(u, v) = \alpha(u)\alpha(v) \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x, y) \cos \left( \frac{\pi(2x + 1)u}{2N} \right) \cos \left( \frac{\pi(2y + 1)v}{2N} \right), \]

\[ u, v = 0, 1, \ldots, N-1 \]

\[ \alpha(u) = \begin{cases} \sqrt{\frac{1}{N}} & \text{for } u = 0 \\ \sqrt{\frac{2}{N}} & \text{for } u \neq 0 \end{cases} \]

\[ f(x, y) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \alpha(u)\alpha(v)C(u, v) \cos \left( \frac{\pi(2x + 1)u}{2N} \right) \cos \left( \frac{\pi(2y + 1)v}{2N} \right), \]
2D basis functions

- The 2-D basis functions can be generated by multiplying the horizontally oriented 1-D basis functions (shown in Figure 1) with vertically oriented set of the same functions.
- The basis functions for $N = 8$ are shown in Figure 2.
  - The basis functions exhibit a progressive increase in frequency both in the vertical and horizontal direction.
  - The top left basis function assumes a constant value and is referred to as the DC coefficient.
2D DCT basis functions

Figure 2
The inverse of a multi-dimensional DCT is just a separable product of the inverse(s) of the corresponding one-dimensional DCT, e.g. the one-dimensional inverses applied along one dimension at a time.
Separability

• Symmetry
  • Another look at the row and column operations reveals that these operations are functionally identical. Such a transformation is called a symmetric transformation.
  • A separable and symmetric transform can be expressed in the form
    \[ T = AfA \]

  where \( A \) is a \( NxN \) matrix and entries \( a(i,j) \)

  • This is an extremely useful property since it implies that the transformation matrix can be precomputed offline and then applied to the image thereby providing orders of magnitude improvement in computation efficiency.
Computational efficiency

- Computational efficiency
  - Inverse transform

\[ f = A^{-1}TA^{-1}. \]

- DCT basis functions are orthogonal. Thus, the inverse transformation matrix of \( A \) is equal to its transpose i.e. \( A^{-1} = A^T \).
  - This property renders some reduction in the pre-computation complexity.
Block-based implementation

Block-based transform

Block size
N=M=8

The source data (8x8) is transformed to a linear combination of these 64 frequency squares.
Energy compaction
Energy compaction

(d)

(e)

(f)
Appendix

• Eulero’s formula

\[
A(j, k ; u, v) = \exp \left\{ -\frac{2\pi i}{N} (uj + vk) \right\} = \cos \left\{ \frac{2\pi}{N} (uj + vk) \right\} - i \sin \left\{ \frac{2\pi}{N} (uj + vk) \right\}
\]

\[
B(j, k ; u, v) = \exp \left\{ \frac{2\pi i}{N} (uj + vk) \right\} = \cos \left\{ \frac{2\pi}{N} (uj + vk) \right\} + i \sin \left\{ \frac{2\pi}{N} (uj + vk) \right\}
\]
Sampling theorem revisited
Sampling

\[ f(x) \]

\[ F(u) \]

\[ \operatorname{comb}_M(x) \]

\[ \operatorname{comb}_{\frac{1}{M}}(u) \]

\[ f(x) \operatorname{comb}_M(x) \]

\[ F(u) * \operatorname{comb}_{\frac{1}{M}}(u) \]
Nyquist theorem: No aliasing if \( \frac{1}{M} > 2W \)
If there is no aliasing, the original signal can be recovered from its samples by low-pass filtering.
Sampling

\[ f(x) \]

\[ F(u) \]

\[ f(x) \text{comb}_M(x) \]

\[ F(u) \ast \text{comb}_1(u) \]

Aliased
Sampling

\[ f(x) \leftrightarrow f(x) \ast h(x) \leftrightarrow \left[ f(x) \ast h(x) \right] \text{comb}_M (x) \]

\[ F(u) \quad \text{Anti-aliasing filter} \]

\[ \frac{1}{2M} \rightarrow \frac{1}{M} \]
Sampling

- Without anti-aliasing filter:

\[ f(x) \text{comb}_M(x) \]

- With anti-aliasing filter:

\[ [f(x) * h(x)] \text{comb}_M(x) \]
Sampling in 2D (images)

\[ f(x, y) \]

\[ F(u, v) \]

\[ \text{comb}_{M,N}(x, y) \]

\[ \text{comb}_{\frac{1}{M}, \frac{1}{N}}(u, v) \]
Sampling

\[ f(x, y) \text{comb}_{M,N}(x, y) \iff \]

No aliasing if
\[
\frac{1}{M} > 2W_u \quad \text{and} \quad \frac{1}{N} > 2W_v
\]
Interpolation (low pass filtering)

Ideal reconstruction filter:

\[ H(u, v) = \begin{cases} 
MN, & \text{for } u \leq \frac{1}{2M} \text{ and } v \leq \frac{1}{2N} \\
0, & \text{otherwise}
\end{cases} \]
Anti-Aliasing

```matlab
a = imread('barbara.tif');
```
Anti-Aliasing

```matlab
a = imread('barbara.tif');
b = imresize(a, 0.25);
c = imresize(b, 4);
```
Anti-Aliasing

```
a = imread('barbara.tif');
b = imresize(a,0.25);
c = imresize(b,4);

H = zeros(512,512);
H(256-64:256+64, 256-64:256+64) = 1;

Da = fft2(a);
Da = fftshift(Da);
Dd = Da.*H;
Dd = fftshift(Dd);
d = real(ifft2(Dd));
```
Impulse Train

\[ \text{comb}_{M,N}(x, y) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(x - kM, y - lN) \]

- In the case of continuous signals:

\[ \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(x - kM, y - lN) \iff \frac{1}{MN} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta\left(u - \frac{k}{M}, v - \frac{l}{N}\right) \]

\[ \text{comb}_{M,N}(x, y) \quad \text{comb}_{\frac{1}{M}, \frac{1}{N}}(u, v) \]
2D DTFT: constant

- Fourier Transform of 1

\[
f[k, l] = 1, \forall k, l
\]

\[
F[u, v] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \left[ 1 \times e^{-j2\pi(uk+vl)} \right] = \\
= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(u - k, v - l)
\]

periodic with period 1 along u and v

To prove: Take the inverse Fourier Transform of the Dirac delta function and use the fact that the Fourier Transform has to be periodic with period 1.